GMBA 7098: Statistics and Data Analysis (Fall 2014)
 Estimations

Ling-Chieh Kung

Department of Information Management National Taiwan University

November 3, 2014

Road map

- Statistical estimation.
- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Example: average daily consumers

- A retail chain of 3000 stores is going to have a special discount on the next Monday. The manager wants to know the average number of daily consumers entering the stores on that day.
- She decides to do a survey on the next Monday.
- On that day, there will be some consumers entering each store.
- For store $i, i=1, \ldots, 3000$, let x_{i} be the number of consumers.
- It is too costly to collect all x_{i} s and calculate $\mu=\frac{\sum_{i=1}^{3000} x_{i}}{3000}$.
- This is a task of estimating a parameter.
- Her budget is enough for hiring 7 temporary workers to count the number of consumers throughout the day.
- She decides to randomly draw 7 stores and calculate $\bar{x}=\frac{\sum_{i=1}^{7} x_{i}}{7}$.

Example: average daily consumers

- On that day, she gets the following sample data:
- She gets $1026,932,852,1212,844,822$, and 1032 consumers.
- The sample mean is $\bar{x}=960$.
- Intuitively, she will think that the population mean μ is "around" 960 .
- Suppose she concludes that " μ is within 950 and 970 ," how much confidence may she have?
- In general, is it okay to conclude that $\mu \in[\bar{x}-10, \bar{x}+10]$?

Estimations

- One of the most important statistical tasks is estimation.
- For unknown population parameters, we estimate them through statistics obtained from samples.
- For example, when the population mean is unknown, we use sample mean as an estimate.
- We want to go beyond intuitions and conjectures.
- We need some knowledge about the sampling distributions.
- E.g., we know $\bar{X} \sim \operatorname{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.
- In statistics, use confidence intervals to estimate parameters.
- Let's start from estimating the population mean.

Road map

- Interval estimation.
- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Drawbacks of point estimation

- We may use the sample mean \bar{x} to estimate the population mean μ.
- " μ should somewhat be close to \bar{x}."
- This is called a point estimation.
- However, there are some drawbacks of point estimation:
- We know that μ is close to \bar{x}. But how close?
- What is $|\mu-\bar{x}|$?
- As μ is unknown, we will never know the answer!
- Instead of suggesting a number, we will suggest an interval.
- Then we measure how good the suggested interval is.

Interval estimation: the first illustration

- Consider a population with unknown μ. For simplicity, let's assume:
- The population variance σ^{2} is known.
- The population follows a normal distribution.
- Let the sample mean \bar{X} be the estimator.
- Before sampling, we do not know what will be the sample mean's value.
- The random variable sample mean is denoted as \bar{X}.
- After sampling, the realized value of the sample mean is \bar{x}.
- Suppose $\sigma^{2}=16$ and the sample size $n=8$.
- Based on \bar{X}, we will choose a number b and claim that μ lies in the interval $[\bar{X}-b, \bar{X}+b]$.
- We may be either right or wrong.
- When b increases, we are more confident that we will be right.
- However, a larger interval means that the estimation is less accurate.
- What is the probability that we are right?

The sampling distribution

- Question: For any given b, find

$$
\operatorname{Pr}(\bar{X}-b \leq \mu \leq \bar{X}+b) .
$$

- As the population is normal:

$$
\bar{X} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}=\frac{4}{\sqrt{8}}=\sqrt{2}\right) .
$$

- Suppose someone proposes to set $b=\sqrt{2}$, then the interval will be

$$
[\bar{X}-\sqrt{2}, \bar{X}+\sqrt{2}] .
$$

How good the interval is?

How good an interval is?

- If, luckily, \bar{x} is close enough to $\mu,[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ covers μ.
- If, unluckily, \bar{x} is far from $\mu,[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ does not cover μ.

How good an interval is?

- The probability that "we are lucky" can be calculated!
- No matter where μ is, we have

$$
\begin{aligned}
& \operatorname{Pr}(\bar{X}-\sqrt{2} \leq \mu \leq \bar{X}+\sqrt{2}) \\
= & \operatorname{Pr}(\mu-\sqrt{2} \leq \bar{X} \leq \mu+\sqrt{2}) \\
= & 0.6827 .
\end{aligned}
$$

- To calculate this, try pnorm(mu sqrt(2), mu, sqrt(2)) for
 different values of mu. You will always see 0.1587 .

A short summary

- Given any realization $\bar{x},[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ may or may not covers μ.
- Regarding the random \bar{X}, we know $[\bar{X}-\sqrt{2}, \bar{X}+\sqrt{2}]$ covers μ with probability 0.6827 .
- This level of confidence can be calculated as we know $\bar{X} \sim \mathrm{ND}(\mu, \sqrt{2})$.
- Instead of having $\sqrt{2}$ as the leg length, let's try $2 \sqrt{2}$.

A larger interval

- The probability that "we are lucky" now becomes 0.9545 !
- $\operatorname{Pr}(\bar{X}-2 \sqrt{2} \leq \mu \leq \bar{X}+2 \sqrt{2})=\operatorname{Pr}(\mu-2 \sqrt{2} \leq \bar{X} \leq \mu+2 \sqrt{2})=0.9545$.

Confidence levels and confidence intervals

- We made two attempts:
- $[\mu-\sqrt{2}, \mu+\sqrt{2}]$ results in a covering probability 0.6827 .
- $[\mu-2 \sqrt{2}, \mu+2 \sqrt{2}]$ results in another covering probability 0.9545 .
- In statistics, when we do interval estimation:
- Such a "covering probability" is called confidence level.
- These intervals are called confidence intervals (CI).
- How to choose the interval length?
- A larger confidence interval results in a higher confidence.
- There is a trade-off between accurate estimation and high confidence.

Confidence levels vs. interval lengths

- To find the relationship:

```
z <- seq(0.2, 3, 0.2)
conf <- 1 - 2 * pnorm(-z * sqrt(2), 0, sqrt(2))
plot(z * sigma.xbar, conf, type = "b")
```


How to choose the interval length?

- In practice, we first choose a confidence level, and then we choose the smallest interval that achieves this level.
- We typically denote the error probability as α.
- The confidence level is thus $1-\alpha$.
- Common confidence levels: 90%, 95%, and 99%.
- How to calculate the leg length?
- 90\%: -qnorm(0.05, 0, sqrt(2)).
- 95\%: -qnorm(0.025, 0, sqrt(2)).
- 99\%: -qnorm(0.005, 0, sqrt(2)).

- Why?

Example revisited: average daily consumers

- Recall that we have 3000 stores, each with a number of consumers on a given day.
- The population consists of 3000 numbers.
- There is a population mean μ, which is unknown.
- We collected data from 7 stores:
- The sample data: $1026,932,852,1212,844,822$, and 1032.
- The sample mean is $\bar{x}=960$.
- How to do interval estimation with this sample?

Conducting the estimation

- We must know the population variance σ^{2}.
- Let's assume that $\sigma=120$.
- We need either the population is normal or the sample size is large.
- Let's assume that the population is normal.
- Now we are ready to construct a confidence interval. Let's construct three intervals for $1-\alpha=0.9,0.95$, and 0.99 .
- Step 1: $\bar{x}=960$.
- Step 2: The standard deviation of the sample mean is $\frac{\sigma}{\sqrt{n}}=45.356 .{ }^{1}$
- Step 3: The leg lengths are -qnorm(0.05, 0, 45.356), -qnorm(0.025, 0, 45.356), and -qnorm(0.005, 0, 45.356), which are $74.604,88.896$, and 116.829 .
- Step 4: The interval with 90% confidence level is $[960-74.604,960+74.604]=[885.39,1034.60]$. The other two intervals are [871.10, 1048.90] and [843.171076.82].
${ }^{1}$ This quantity $\frac{\sigma}{\sqrt{n}}$ is called the standard error of the sample mean.

Interpreting the estimation

- Consider the interval with 95% confidence level: [871.10, 1048.90].
- What is the business implication?
- We will claim that the true average daily consumers for all the 3000 stores is within 870 and 1050 .
- We are 95% confident. It is quite unlikely for us to be wrong.
- Recall that there is a special discount on that day.
- Suppose the marketing manager has promised that "the average daily consumers will be at least 850."
- Now we have a strong evidence showing that the target is really achieved.
- Note that maybe in fact $\mu<850$. We are just "quite confident."

Summary

- Facing an unknown population mean μ (with a known population variance σ^{2}), we may construct a confidence interval:
- Centered at the to-be-realized sample mean \bar{X}.
- Will cover μ with a predetermined probability.
- We need one of the following:
- The population follows a normal distribution.
- The sample size $n \geq 30$.

Road map

- Interval estimation.
- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Estimation without the population variance

- Sometimes (actually for most of the time) we do not know the population variance σ^{2}.
- Then we cannot calculate the standard error $\frac{\sigma}{\sqrt{n}}$.
- In this case, intuitively we may try to replace σ by s, the sample standard deviation.
- As an example, for the 7 numbers of consumers 1026, 932, 852, 1212, 844, 822 , and 1032 , we have ${ }^{2}$

$$
s=\sqrt{\frac{(1026-960)^{2}+\cdots+(1032-960)^{2}}{7-1}}=140.233
$$

- We then use $\frac{s}{\sqrt{n}}$ to construct an interval.
- However, $\bar{X} \sim \mathrm{ND}\left(\mu, \frac{s}{\sqrt{n}}\right)$ is not right!
- We need some adjustments.
${ }^{2}$ The R function sd() can do all the calculations for you.

The t distribution

- Let S be the sample standard deviation (which is random before sampling) and s be its realization.
- When we replace σ by S, we rely on the following fact:

Proposition 1

For a normal population, the quantity $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ follows the t distribution with degree of freedom $n-1$.

- We know the sampling distribution of T (when the population is normal). We call it the t distribution.
- The only parameter is the degree of freedom, which is $n-1$.
- Its probability density function is known (and we do not care about it!) Relevant probabilities may be calculated with software.
- In R, we use the functions pt (q, df) and qt (p, df).

The t distributions

- The t distribution is symmetric, centered at 0 , and bell-shaped.
- When n goes up, it approaches the standard normal distribution.

The history of the t distribution

- The t distribution is also called the Student's t distribution.
- The author William Gosset's company forbids employees from publishing their findings.
Volume VI MARCH, $1908 \quad$ No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.
By STUDENT.

Introduction.
ANY experiment may be regarded as forming an individual of a "population" of experiments which might be performed under the same conditions. A series of experiments is a sample drawn from this population.
(http://www.aliquote.org/cours/2012_biomed/biblio/Student1908.pdf)

Applying the t distribution

- Before sampling, we know we will get the sample mean \bar{X} and sample standard deviation S.
- For any b, we construct an interval $[\bar{X}-b, \bar{X}+b]$. We want to know $\operatorname{Pr}(\bar{X}-b \leq \mu \leq \bar{X}+b)$.
- Now we do not know the distribution of \bar{X}; we only know the distribution of $T=\frac{\bar{X}-\mu}{S / \sqrt{n}}$. Therefore:

$$
\begin{aligned}
& \operatorname{Pr}(\bar{X}-b \leq \mu \leq \bar{X}+b)=\operatorname{Pr}(\mu-b \leq \bar{X} \leq \mu+b) \\
= & \operatorname{Pr}\left(\frac{-b}{S / \sqrt{n}} \leq \frac{\bar{X}-\mu}{S / \sqrt{n}} \leq \frac{b}{S / \sqrt{n}}\right)=\operatorname{Pr}\left(\frac{-b}{S / \sqrt{n}} \leq T \leq \frac{b}{S / \sqrt{n}}\right) .
\end{aligned}
$$

- Once we obtain s, we may calculate the probability.

Applying the t distribution

- Consider the example of estimating average daily consumers again.
- Suppose we do not know the population variance σ^{2}.
- We know $\bar{x}=960$ and $s=140.233$.
- Suppose we propose the interval [860, 1060].
- We calculate

$$
\begin{aligned}
& \operatorname{Pr}\left(\frac{-b}{S / \sqrt{n}} \leq T \leq \frac{b}{S / \sqrt{n}}\right)=\operatorname{Pr}\left(\frac{-100}{140.233 / \sqrt{7}} \leq T \leq \frac{100}{140.233 / \sqrt{7}}\right) \\
= & \operatorname{Pr}(-1.887 \leq T \leq 1.887)=0.892,
\end{aligned}
$$

where the last step is done with $1-2 * \mathrm{pt}(-1.887,6)$.

- We are 89.2% confident that the average number of daily consumers lies within 860 and 1060 .

From a confidence level to an interval

- How to construct an interval $[\bar{X}-b, \bar{X}+b]$ for us to be 95% confident?
- We have the t distribution; given any value t, we know $\operatorname{Pr}(T \leq t)$.
- When the degree of freedom is $6, \operatorname{Pr}(T \leq-2.447)=0.025$.
- Use qt (0.025, 6)!
- Moreover, we have

$$
\operatorname{Pr}(T \leq t)=\operatorname{Pr}\left(\frac{\bar{X}-\mu}{S / \sqrt{n}} \leq t\right)=\operatorname{Pr}\left(\mu \geq \bar{X}-t \frac{S}{\sqrt{n}}\right) .
$$

- We need the leg length to be $-t \frac{S}{\sqrt{n}}=2.447 \times \frac{140.233}{\sqrt{7}}=129.694$.
- The multiplier $\frac{S}{\sqrt{n}}$ will always be used.
- The desired interval is

$$
[960-129.694,960+129.694]=[885.40,1034.60] .
$$

From a confidence level to an interval

- In general, given \bar{x}, s, n, and α, we construct the confidence interval in the following steps:
- Step 1: Calculate the multiplier $\frac{s}{\sqrt{n}}$.
- Step 2: Calculate the critical value t^{*} as -qt (p, df), where p is $\frac{\alpha}{2}$ and df is $n-1$.
- Step 3: The product of the critical t^{*} and multiplier $\frac{s}{\sqrt{n}}$ is the leg length.
- Step 4: The interval is $\left[\bar{x}-t^{*} \frac{s}{\sqrt{n}}, \bar{x}+t^{*} \frac{s}{\sqrt{n}}\right]$.

Comparing the two situations

- σ^{2} may be known or unknown:
- With σ^{2}, we know $\bar{X} \sim \operatorname{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$, and thus $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{ND}(0,1)$, the standard normal distribution, or the z distribution.
- Without $\sigma^{2}, T=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$, the t distribution.
- With σ^{2}, the confidence interval is $\left[\bar{x}-z^{*} \frac{\sigma}{\sqrt{n}}, \bar{x}+z^{*} \frac{\sigma}{\sqrt{n}}\right]$,
- The critical value z^{*} is calculated as $-\operatorname{qnorm}(\mathrm{p}, 0,1)$, or simply -qnorm(p), with p equals $\frac{\alpha}{2}$.
- Conclusion:
- With σ^{2}, the leg length is $z^{*} \frac{\sigma}{\sqrt{n}}$; use -qnorm(p) to find z^{*}.
- Without σ^{2}, the leg length is $t^{*} \frac{s}{\sqrt{n}}$; use -qt (p) to find t^{*}.
- The left-tail probability p is $\frac{\alpha}{2}$.

Remarks

- If the population is normal, the sample size n does not matter.
- We may use the t distribution anyway.
- If the population is non-normal and the sample size is large ($n \geq 30$):
- The population is non-normal, so we cannot use the t distribution.
- The sample size is large, so according to the central limit theorem, the sample mean is normal.
- For $n \geq 30, t(n-1)$ is very close to z.
- Using the t distribution as an approximation is acceptable.
- If the population is non-normal and the sample size is small $(n<30)$, using t distribution for estimation is inaccurate.
- However, the t distribution for estimating the population mean is robust to the normal population assumption: Having nonnormal population does not harm a lot.
- We still suggest one not to use the t distribution in this case.

Summary

- To estimate the population mean μ :

σ^{2}	Sample size	Population distribution	
		Normal	Nonnormal
Known	$n \geq 30$	z	z
	$n<30$	z	Nonparametric
Unknown	$n \geq 30$	t	t
	$n<30$	t	Nonparametric

- Nonparametric methods are beyond the scope of this course.

