GMBA 7098: Statistics and Data Analysis (Fall 2014)

Hypothesis testing (1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

November 17, 2014

Introduction

- ▶ How do **scientists** (physicists, chemists, etc.) do research?
 - Observe phenomena.
 - Make hypotheses.
 - ► Test the hypotheses through experiments (or other methods).
 - ▶ Make conclusions about the hypotheses.
- ► In the business world, business researchers do the same thing with hypothesis testing.
 - ▶ One of the most important technique of statistical inference.
 - ► A technique for (statistically) **proving** things.
 - ► Again relies on sampling distributions.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ightharpoonup The p-value.

People ask questions

- ▶ In the business (or social science) world, people ask questions:
 - ▶ Are older workers more loyal to a company?
 - Does the newly hired CEO enhance our profitability?
 - ▶ Is one candidate preferred by more than 50% voters?
 - ▶ Do teenagers eat fast food more often than adults?
 - ▶ Is the quality of our products stable enough?
- ▶ How should we answer these questions?
- ► Statisticians suggest:
 - ► First make a hypothesis.
 - ► Then **test** it with samples and statistical methods.

Hypotheses

- ► According to Merriam Webster's Collegiate Dictionary (tenth edition):
 - A hypothesis is a tentative explanation of a principle operating in nature.
- ▶ So we try to prove hypotheses to find reasons that explain phenomena and enhance decision making.

Statistical hypotheses

- ▶ A **statistical hypothesis** is a formal way of stating a hypothesis.
 - ▶ Typically with parameters and numbers.
- ▶ It contains two parts:
 - ▶ The **null hypothesis** (denoted as H_0).
 - ▶ The alternative hypothesis (denoted as H_a or H_1).
- ▶ The alternative hypothesis is:
 - ▶ The thing that we want (need) to prove.
 - ► The conclusion that can be made only if we have **a strong evidence**.
- ▶ The null hypothesis corresponds to a **default** position.

- ▶ In our factory, we produce packs of candy whose average weight should be 1 kg.
- ▶ One day, a consumer told us that his pack only weighs 900 g.
- We need to know whether this is just a rare event or our production system is out of control.
- ▶ If (we believe) the system is out of control, we need to shutdown the machine and spend two days for inspection and maintenance. This will cost us at least \$100,000.
- ▶ So we should not to believe that our system is out of control just because of one complaint. What should we do?

- We may state a research hypothesis "Our production system is under control."
- ► Then we ask: Is there a strong enough evidence showing that the hypothesis is **wrong**, i.e., the system is out of control?
 - ▶ Initially, we assume our system is under control.
 - ▶ Then we do a survey for a "strong enough evidence".
 - We shutdown machines only if we prove that the system is out of control.
- \blacktriangleright Let μ be the average weight, the **statistical hypothesis** is

$$H_0: \mu = 1$$

$$H_a: \mu \neq 1.$$

- ▶ In our society, we adopt the presumption of innocence.
 - ▶ One is considered **innocent** until proven **guilty**.
- ▶ So when there is a person who probably stole some money:

 H_0 : The person is innocent

H_a: The person is guilty.

- ▶ There are two possible errors:
 - ▶ One is guilty but we think she/he is innocent.
 - ▶ One is innocent but we think she/he is guilty.
- ▶ Which one is more critical?
 - ▶ It is unacceptable that an innocent person is considered guilty.
 - ▶ We will say one is guilty **only if** there is a strong evidence.

- ► Consider the research hypothesis "The candidate is preferred by more than 50% voters."
- ▶ As we need a default position, and the percentage that we care about is 50%, we will choose our null hypothesis as

$$H_0: p = 0.5.$$

▶ How about the alternative hypothesis? Should it be

$$H_a: p > 0.5$$
 or $H_a: p < 0.5$?

- ► The choice of the alternative hypothesis depends on the related decisions or actions to make.
- Suppose one will go for the election only if she thinks she will win (i.e., p > 0.5), the alternative hypothesis will be

$$H_a: p > 0.5.$$

▶ Suppose one tends to participate in the election and will give up only if the chance is slim, the alternative hypothesis will be

$$H_a: p < 0.5.$$

Remarks

- ► For setting up a statistical hypothesis:
 - ▶ Our default position will be put in the null hypothesis.
 - ► The thing we want to prove (i.e., the thing that needs a strong evidence) will be put in the alternative hypothesis.
- ▶ For writing the mathematical statement:
 - ► The equal sign (=) will always be put in the null hypothesis.
 - ► The alternative hypothesis contains an unequal sign or strict inequality: ≠, >, or <.</p>
- ▶ The alternative hypothesis depends on the business context.

One-tailed tests and two-tailed tests

- ▶ If the alternative hypothesis contains an unequal sign (≠), the test is a two-tailed test.
- ▶ If it contains a strict inequality (> or <), the test is a **one-tailed** test.
- ► Suppose we want to test the value of the population mean.
 - ▶ In a two-tailed test, we test whether the population mean significantly deviates from a value. We do not care whether it is larger than or smaller than.
 - ► In a one-tailed test, we test whether the population mean significantly deviates from a value in a specific direction.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ightharpoonup The *p*-value.

The first example

- ▶ Now we will demonstrate the process of hypothesis testing.
- ▶ Suppose we test the average weight (in g) of our products.

$$H_0: \mu = 1000$$

 $H_a: \mu \neq 1000$.

- Once we have a strong evidence supporting H_a , we will claim that $\mu \neq 1000$.
- ▶ Suppose we know the variance of the weights of the products produced: $\sigma^2 = 40000 \text{ g}^2$.

Controlling the error probability

- ▶ Certainly the evidence comes from a **random** sample.
- ▶ It is natural that we may be **wrong** when we claim $\mu \neq 1000$.
 - ▶ E.g., it is possible that $\mu = 1000$ but we unluckily get a sample mean $\bar{x} = 912$.
- ▶ We want to control the error probability.
 - Let α be the maximum probability for us to make this error.
 - ▶ 1α is called the **significance level**.
 - ▶ So if $\mu = 1000$, we will claim that $\mu \neq 1000$ with probability at most α .

Rejection rule

- Now let's test with the significance level $1 \alpha = 0.95$.
- ▶ Intuitively, if \overline{X} deviates from 1000 a lot, we should reject the null hypothesis and believe that $\mu \neq 1000$.
 - If $\mu = 1000$, it is so unlikely to observe such a large deviation.
 - ▶ So such a large deviation provides a **strong evidence**.
- ▶ So we start by sampling and calculating the **sample mean**.
 - ▶ Suppose the sample size n = 100.
 - ▶ Suppose the sample mean $\bar{x} = 963$.
- ▶ We want to construct a **rejection rule**: If $|\overline{X} 1000| > d$, we reject H₀. We need to calculate d.

Rejection rule

$$H_0: \mu = 1000$$

 $H_a: \mu \neq 1000.$

ightharpoonup We want a distance d such that

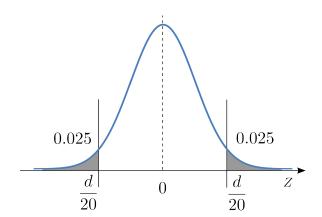
if \mathbf{H}_0 is true, the probability of rejecting \mathbf{H}_0 is 5%.

- ▶ If H₀ is true, $\mu = 1000$. We reject H₀ if $|\overline{X} 1000| > d$.
- ► Therefore, we need

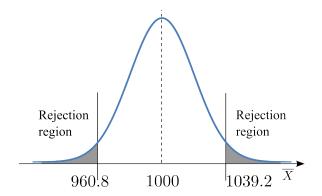
$$\Pr\left(|\overline{X} - 1000| > d \middle| \mu = 1000\right) = 0.05.$$

- People typically hide the condition $\mu = 1000$.
- ▶ The sample mean \overline{X} has its sampling distribution.
 - ▶ Due to the central limit theorem, $\overline{X} \sim ND(1000, 20)$.
 - ▶ This is under the assumption that $\mu = 1000!$

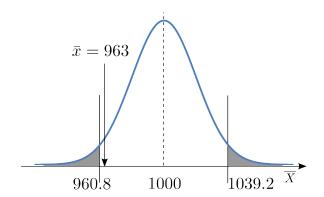
▶ $0.95 = \Pr(|\overline{X} - 1000| < d) = \Pr(1000 - d < \overline{X} < 1000 + d).$



- ▶ The rejection region is $R = (-\infty, 960.8) \cup (1039.2, \infty)$.
- ▶ If \overline{X} falls in the rejection region, we reject H_0 .



- we cannot reject \mathbf{H}_0 because $\bar{x} = 963 \notin R$.
 - ▶ The deviation from 1000 is not large enough.
 - ▶ The evidence is not strong enough.



- ► In this example, the two values 960.8 and 1039.2 are the **critical** values for rejection.
 - ▶ If the sample mean is more extreme than one of the critical values, we reject H₀.
 - \triangleright Otherwise, we do not reject H_0 .
- $\bar{x} = 963$ is not strong enough to support H_a : $\mu \neq 1000$.
- ► Concluding statement:
 - Because the sample mean does not lie in the rejection region, we cannot reject H₀.
 - ▶ With a 95% significance level, there is no strong evidence showing that the average weight is not 1000 g.
 - Based on this result, we should not shutdown machines to do an inspection.

Summary

- We want to know whether H_0 is false, i.e., $\mu \neq 1000$.
- ▶ We control the probability of making a wrong conclusion.
 - ▶ If the machine is actually good, we do not want to reach a conclusion that requires an inspection and maintenance.
 - If H_0 ($\mu = 1000$) is true, we do not want to reject H_0 .
 - We limit the probability at $\alpha = 5\%$.
- ▶ We will conclude that H_0 is false if the sample mean falls in the rejection region.
 - ► The calculation of the rejection region (i.e., the critical values) is based on the z distribution.
 - ightharpoonup We conducted a z test.

Not rejecting vs. accepting

- ▶ We should be careful in writing our conclusions:
 - ▶ Right: Because the sample mean does not lie in the rejection region, we cannot reject H₀. With a 95% significance level, there is no strong evidence showing that the average weight is not 1000 g.
 - ▶ Wrong: Because the sample mean does not lie in the rejection region, we accept H₀. With a 95% significance level, there is a strong evidence showing that the average weight is 1000 g.
 - Unable to prove one thing is false does not mean it is true!

The first example (part 2)

▶ Suppose that we modify the hypothesis into a directional one:¹

$$H_0$$
: $\mu = 1000$.
 H_a : $\mu < 1000$.

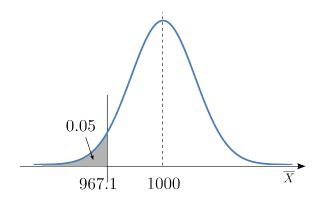
We still have $\sigma^2 = 40000$, n = 100, $\alpha = 0.05$.

- This is a one-tailed test.
- Once we have a strong evidence supporting H_a , we will claim that $\mu < 1000$.
- \blacktriangleright We need to find a distance d such that

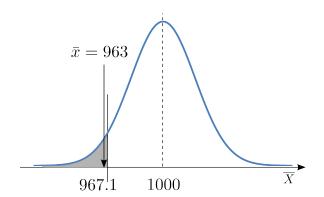
$$\Pr\left(1000 - \overline{X} > d \middle| \mu = 1000\right) = 0.05.$$

¹Some researchers write $\mu \geq 1000$ in this case.

- We need $0.05 = \Pr(1000 \overline{X} > d)$.
 - ▶ The critical value $d = 1.645 \times 20 = 32.9$.
 - ▶ The rejection region is $(-\infty, 967.1)$.



- ▶ As the observed sample mean $\bar{x} = 963 \in (-\infty, 967.1)$, we **reject H**₀.
 - ▶ The deviation from 1000 is large enough.
 - ► The evidence is strong enough.



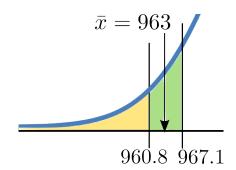
- ▶ In this example, 967.1 is the critical values for rejection.
 - ▶ If the sample mean is more extreme than (in this case, below) the critical value, we reject H₀.
 - ▶ Otherwise, we do not reject H_0 .
- ▶ There is a strong evidence supporting H_a : $\mu < 1000$.
- ► Concluding statement:
 - ▶ Because the sample mean lies in the rejection region, we reject \mathbf{H}_0 . With a 95% significance level, there is a strong evidence showing that the average weight is less than 1000 g.

One-tailed tests vs. two-tailed tests

- ▶ When should we use a two-tailed test?
 - ▶ We should use a two-tailed test to be **conservative**.
 - E.g., we suspect that the parameter has changed, but we are unsure whether it becomes larger or smaller.
- ▶ If we know or believe that the change is possible **only in one direction**, we may use a one-tailed test.
- ▶ If we do not know it, using one-tailed test is **dangerous**.
 - ▶ In the previous example with $H_a: \mu < 1000$.
 - ▶ If $\bar{x} = 2000$, all we can say is "there is no strong evidence that $\mu < 1000$."
 - We are unable to conclude that $\mu \neq 1000$.

One-tailed tests vs. two-tailed tests

- ▶ Having more information (i.e., knowing the direction of change) makes rejection "easier".
- ▶ Easier to find a strong enough evidence.



Summary

- ▶ Distinguish the following pairs:
 - ▶ One- and two-tailed tests.
 - ▶ No evidence showing H_0 is false and having evidence showing H_0 is true.
 - ▶ Not rejecting H_0 and accepting H_0 .
 - ▶ Using = and using \geq or \leq in the null hypothesis.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ▶ The p-value.

The p-value

▶ The *p*-value is an important, meaningful, and widely-adopted tool for hypothesis testing.

Definition 1

In a hypothesis testing, for an observed value of the statistic, the p-value is the probability of observing a value that is at least as extreme as the observed value under the assumption the null hypothesis is true.

- ▶ Based on an **observed** value of the statistic.
- ▶ Is the **tail probability** of the observed value.
- ▶ Assuming that the null hypothesis is true.

The p-value

- ► Mathematically:
 - Suppose we test a population mean μ with a one-tailed test

$$H_0: \mu = 1000$$

 $H_a: \mu < 1000.$

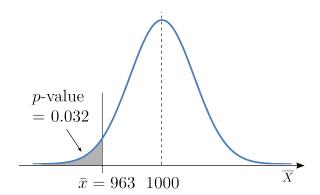
▶ Given an observed \bar{x} , the *p*-value is defined as

$$\Pr(\overline{X} < \bar{x}).$$

- ▶ In the previous example:
 - $\sigma^2 = 40000, n = 100, \alpha = 0.05, \bar{x} = 963.$
 - ▶ How to calculate the p-value of \bar{x} ?

The p-value

- ▶ If H_0 is true, i.e., $\mu = 1000$, we have:
 - $\Pr(\overline{X} \le 963) = 0.032.$



How to use the *p*-value?

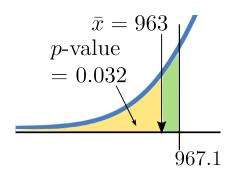
- ▶ The *p*-value can be used for constructing a **rejection rule**.
- ▶ For a one-tailed test:
 - ▶ If the *p*-value is **smaller** than α , we **reject** H_0 .
 - If the p-value is greater than α , we do not reject H_0 .
- ► Consider the one-tailed test

$$H_0$$
: $\mu = 1000$
 H_a : $\mu < 1000$.

- Suppose we still adopt $\alpha = 0.05$.
- ▶ Because the *p*-value 0.032 < 0.05, we reject H₀.

p-values vs. critical values

- ▶ Using the *p*-value is **equivalent** to using the critical values.
 - The rejection-or-not decision we make will be the same based on the two methods.



The benefit of using the p-value

- ▶ In calculating the p-value, we do not need α .
- After the p-value is calculated, we compare it with α .
- ▶ The *p*-value, which needs to be calculated **only once**, allows us to know whether the evidence is strong enough under various significance levels.

α	0.1	0.05	0.01
Rejecting H ₀ ?	Yes $(0.032 < 0.1)$	Yes $(0.032 < 0.05)$	No $(0.032 > 0.01)$

▶ If we use the critical-value method, we need to calculate the critical value for three times, one for each value of α .

The benefit of using the p-value

- ▶ In many studies, the researchers do not determine the significance level 1α before a test is conducted.
- ► They calculate the *p*-value and then mark **how significant** the result is with **stars**.

p-value	< 0.01	< 0.05	< 0.1	> 0.1
Significant?	Highly significant	Moderately significant	Slightly significant	Insignificant
Mark	***	**	*	(Empty)

The benefit of using the p-value

- ▶ As an example, suppose one is testing whether people sleep at least eight hours per day in average.
 - ▶ Age groups: [10, 15), [15, 20), [20, 35), etc.
 - ▶ For group i, a one-tailed test is conducted. $H_a: \mu_i > 8$.
 - ▶ The result may be presented in a table:

Group	Age group	p-value
1	[10,15)	0.002***
2	[15,20)	0.2
3	[20,25)	0.06*
4	[25,30)	0.04**
5	[30,35)	0.03**

- ▶ A smaller *p*-value does NOT mean a larger deviation!
 - We cannot conclude that $\mu_5 > \mu_4$, $\mu_1 > \mu_3$, etc.

The p-value for two-tailed tests

- ▶ How to construct the rejection rule for a two-tailed test?
 - ▶ If the *p*-value is **smaller** than $\frac{\alpha}{2}$, we **reject** H₀.
 - ▶ If the *p*-value is greater than $\frac{\alpha}{2}$, we do not reject H₀.
- ► Consider the two-tailed test

$$H_0: \mu = 1000.$$

 $H_a: \mu \neq 1000.$

- Suppose we still adopt $\alpha = 0.05$.
- ▶ Because the *p*-value $0.032 > \frac{\alpha}{2} = 0.025$, we do not reject H₀.

Summary

- ► The *p*-value is the tail probability of the realization of a statistics assuming the null hypothesis is true.
- ▶ The p-value method is an alternative way of making the rejection decision.
 - ▶ It is equivalent to the critical-value method.
- ▶ The p-value is related to how likely for H_0 to be false.
- ▶ It does not measure how larger the deviation is.