GMBA 7098: Statistics and Data Analysis (Fall 2014)

Hypothesis testing (2)

Ling-Chieh Kung

Department of Information Management National Taiwan University

November 24, 2014

Road map

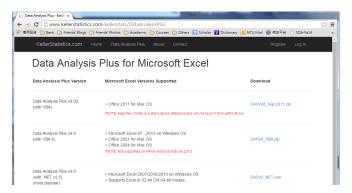
- ▶ Preparations.
- ► Testing population mean: variance known.
- ▶ Testing population mean: variance unknown.
- ▶ Testing population proportion.

Steps of hypothesis testing

- ▶ In conducting a test, write the following three parts:
 - ▶ **Hypothesis**: H_0 and H_a .
 - ► **Test**: The test to apply.
 - Calculation: Statistics, critical values, and/or p-values obtained by software.
 - ▶ Decision and implication: Reject or do not reject H_0 ? What does that mean?
- ▶ While the calculation part requires arithmetic or software, it is the "easiest" part.
 - ▶ Writing the correct hypothesis is the most important.
 - Writing a good concluding statement is also critical.

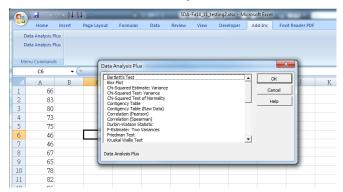
"Data Analysis Plus" (DAP)

► To do hypothesis testing by MS Excel, get "Data Analysis Plus" at http://www.kellerstatistics.com/kellerstats/DataAnalysisPlus.



"Data Analysis Plus" (DAP)

- ▶ Unzip it, double click the Excel file, and then open your own Excel files.
- ▶ Click "Add-Ins" and then "Data Analysis Plus:"



Road map

- ▶ Preparations.
- ► Testing population mean: variance known.
- ▶ Testing population mean: variance unknown.
- ▶ Testing population proportion.

Testing the population mean

- ▶ There are many situations to test the **population mean** μ .
 - ► Is the average monthly salary of fresh college graduates above \$22,000 (22K)?
 - ▶ Is the average thickness of a plastic bottle 2.4 mm?
 - ▶ Is the average age of consumers of a restaurant below 40?
 - ► Is the average amount of time spent on information system projects above six months?
- ▶ We will use hypothesis testing to test the population mean.
- ► Main factor:
 - Whether the **population variance** σ^2 is known.
 - ▶ Whether the population is normal.
 - ▶ Whether the sample size is large.

Testing the population mean

- When the population variance σ^2 is know:
 - ▶ If the population is normal or the sample size $n \ge 30$: z test.
 - ▶ In R: z.test(x, alternative, mu, sigma.x, conf.level).¹
 - ▶ In MS Excel: DAP \rightarrow Z-Test: Mean.²
- ▶ When the population variance σ^2 is unknown:
 - ▶ If the population is normal or the sample size $n \ge 30$: t test.
 - ▶ In R: t.test(x, alternative, mu, sigma.x, conf.level).
 - ▶ In MS Excel: $\underline{DAP} \rightarrow \underline{T}\text{-Test: Mean.}^3$
- ▶ Otherwise: Nonparametric methods (beyond the scope of this course).

¹Execute first install.packages("BSDA") and then library("BSDA").

²Or the built-in ZTEST(array, x, sigma).

³There is no built-in method in MS Excel.

Example 1

- ▶ A retail chain has been operated for many years.
- ▶ The average amount of money spent by a consumer is \$60.
- ▶ A new marketing policy has been proposed: Once a consumer spends \$70, she/he can get one credit. With ten credits, she/he can get one toy for free.
- ▶ After the new policy has been adopted for several months, the manager asks: Has the average amount of money spent by a consumer increased? Let $\alpha = 0.01$.
 - ▶ Let μ be the average expenditure (in \$) per consumer after the policy is adopted. Is $\mu > 60$?
 - ► The population standard deviation is \$16.

Example 1: hypothesis and test

► The hypothesis is

$$H_0: \mu = 60$$

 $H_a: \mu > 60$.

- $\mu = 60$ is our **default position**.
- ▶ We want to know whether the population mean has increased.
- ▶ Some researchers write

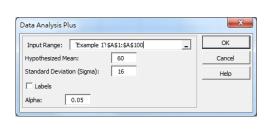
$$H_0: \mu \le 60$$

 $H_a: \mu > 60.$

▶ Because the population variance is known and the sample size is large, we should use the z test.

Example 1: calculation

- ▶ The manager collects a sample with 100 purchasing records of consumers (in Sheet "Example 1" in "SDA-Fa14_11_testing2.xlsx.")
- ▶ In MS Excel: $\underline{DAP} \rightarrow \underline{Z\text{-Test: Mean}}$. The **one-tailed** p-value is $0.0009.^4$



	A	В	С	D
1	Z-Test: M	lean		
2				
3				Column 1
4	Mean			65
5	Standard Deviation			13.0601
6	Observations			100
7	Hypothesized Mean			60
8	SIGMA			16
9	z Stat			3.125
10	P(Z<=z) one-tail			0.0009
11	z Critical one-tail			1.6449
12	P(Z<=z) two-tail			0.0018
13	z Critical two-tail			1.96

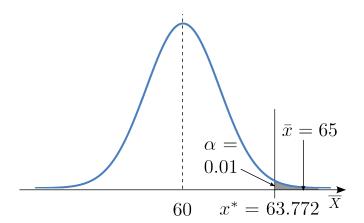
⁴In Excel, ZTEST(A1:A100, 60, 16) also gives 0.0009. In R, execute z.test(x, alternative = "g", mu = 60, sigma.x = 16), where x is the vector containing the sample data.

Example 1: interpretation

- As p-value = $0.000899 < 0.01 = \alpha$, we reject H_0 .
- ▶ With a 99% confidence, the population mean is greater than 60.
- ▶ The new marketing policy (\$70 for one credit and ten credits for one toy) is successful: Each consumer is willing to pay more (in expectation) under the new policy.

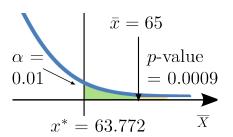
Example 1: graphical illustration

▶ Because $\bar{x} = 65$ falls in the rejection region $(63.722, \infty)$, we reject the null hypothesis.



Example 1: graphical illustration

▶ Because p-value = $0.000899 < 0.01 = \alpha$, we reject the null hypothesis.



Road map

- ▶ Preparations.
- ► Testing population mean: variance known.
- ▶ Testing population mean: variance unknown.
- ▶ Testing population proportion.

Example 2

- ▶ An MBA program seldom admits applicants without a work experience longer than two years.
- ▶ To test whether the average work year of admitted students is above two years, 20 admitted applicants are randomly selected.
- ► Their work experiences prior to entering the program are recorded (in Sheet "Example 2" in "SDA-Fa14_11_testing2.xlsx.")
- ▶ The population is believed to be normal.

Example 2: hypothesis

- ▶ Suppose the one asking the question is a potential applicant with one year of work experience. He is **pessimistic** and will apply for the program **only if** the average work experience is proven to be **less** than two years.
- ► The hypothesis is

$$H_0: \mu = 2$$

 $H_a: \mu < 2$.

- μ is the average work experience (in years) of all admitted applicants prior to entering the program.
- ► To **encourage** him, we need to give him a strong evidence showing that his chance is high.

Example 2: hypothesis and test

- ▶ Suppose he is **optimistic** and will not apply for the program **only if** the average work experience is proven to be **greater** than two.
- ► The hypothesis becomes

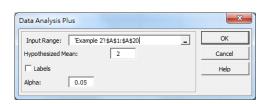
$$H_0: \mu = 2$$

 $H_a: \mu > 2$.

- ► To discourage him, we need to give him a strong evidence showing that his chance is slim.
- ▶ Let's consider the optimistic candidate (and $H_a: \mu > 2$) first.
- \blacktriangleright Because the population variance is unknown and the population is normal, we may use the t test.

Example 2A: test

▶ In MS Excel, $\underline{DAP} \rightarrow \underline{T\text{-Test: Mean}}$.



	A	В	С	D
1	t-Test: Mean			
2				
3				Column 1
4	Mean			2.5
5	Standard Deviation			1.3765
6	Hypothesized Mean			2
7	df			19
8	t Stat			1.6245
9	P(T<=t) one-tail			0.0604
10	t Critical one-tail			1.7291
11	P(T<=t) two-tail			0.1208
12	t Critical two-tail			2.093

▶ The one-tailed p-value is 0.0604.

Example 2A: test

- ▶ Alternatively, we may do the test step by step.
 - ▶ In Cell A21: $\bar{x} = AVERAGE(A1:A20) = 2.5$.
 - ▶ In Cell A22: s = STDEV(A1:A20) = 1.376.
 - ▶ In Cell A23: If H_0 is true and thus $\mu = 2$, the t statistic

$$\frac{\bar{x}-\mu}{s/\sqrt{n}} = \frac{2.5-2}{1.112/\sqrt{20}} = \text{(A21 - 2) / (A22 / SQRT(20))} = 1.6245.$$

- ▶ In Cell A24: The *p*-value = TDIST(A23, 19, 1) = 0.0604.
- ▶ In R, execute t.test(x, alternative = "g", mu = 2), where x is the vector containing the sample data.

Example 2A: interpretation

- ► Conclusion:
 - ▶ For this one-tailed test, as p-value = $0.0604 > 0.05 = \alpha$, we do not reject H_0 .
 - ► There is **no strong evidence** showing that the average work experience is longer than two years.
 - The result is not strong enough to discourage the potential applicant, who has only one year of work experience.
- ▶ Decision:
 - ► The (optimistic) applicant **should** apply.

Example 2B – a pessimistic applicant

▶ Suppose the applicant is pessimistic and the hypothesis is

$$H_0: \mu = 2$$

 $H_a: \mu < 2$.

- ► The *p*-value will be 1 0.0604 = 0.9396.
- ▶ We do not reject H_0 and cannot conclude that $\mu < 2$. There is no strong evidence to encourage him.
- ► He should not apply.
- ▶ Note that when we write different alternative hypotheses, the final decision is different!
 - ▶ This happens if and only if in both cases we do not reject H_0 .

 $^{^5{\}rm In}$ R, execute t.test(x, alternative = "1", mu = 2), where x is the vector containing the sample data.

Road map

- ▶ Preparations.
- ► Testing population mean: variance known.
- ▶ Testing population mean: variance unknown.
- ► Testing population proportion.

Testing the population proportion

- ▶ In many situations, we need to test the **population proportion**.
 - ▶ The defective rate or yield rate of a production system.
 - ▶ The proportion of people supporting a candidate.
 - ▶ The proportion of people supporting a policy.
 - ► The proportion of people viewing a product web page that will really buy the product (conversion rate).
- ▶ How to test the population proportion?
- ▶ Suppose we want to test the proportion of male users:
 - ▶ Let's label a male user by 1 and non-male users by 0.
 - ▶ Then the population proportion $p = \frac{\sum_{i=1}^{N} x_i}{N}$, the **population mean**.
 - A sample proportion $\hat{p} = \frac{\sum_{i=1}^{n} x_i}{n}$, the sample mean.
 - \blacktriangleright We may apply the z test to test population proportion.⁶
- ▶ Technical restrictions: $n \ge 30$, $n\hat{p} \ge 5$, and $n(1 \hat{p}) \ge 5$.

⁶We may derive σ^2 from p for 0-1 data.

The hypotheses

- \triangleright The population proportion is denoted as p.
- ▶ A two-tailed test for the population proportion is

$$H_0: p = p_0$$
$$H_a: p \neq p_0,$$

where p_0 is the **hypothesized proportion**.

▶ In a one-tailed test, the alternative hypothesis may be either

$$H_a: p > p_0$$

or

$$H_a: p < p_0.$$

Example 3

- ▶ In a factory, it seems to us that the defective rate of our product is too high. Ideally it should be below 1% but some workers believe that it is above 1%.
- ▶ If the defective rate is above 1%, we should fix the machine. Otherwise, we do not do anything.
- \triangleright Let p be the defective rate, the hypothesis is

$$H_0: p = 0.01$$

 $H_a: p > 0.01.$

• When to adopt $H_a: p < 0.01$?

Example 3

- ▶ In several random production runs, we found that out of 1000 produced items. 14 of them are defective.
 - ► Sheet "Example 3" in "SDA-Fa14_11_testing2.xlsx."
 - ▶ The observed sample proportion $\hat{p} = 0.014$.
 - ▶ All the technical requirements are satisfied; n = 1000, $n\hat{p} = 14$, and $n(1 \hat{p}) = 986$.
- ▶ Suppose the significance level is set of $\alpha = 0.05$, what is our conclusion?

Example 3: calculation

▶ In MS Excel, $\underline{\text{DAP}} \rightarrow \text{Z-Test: Proportion.}^7$

Data Analysis Plus		X
Input Range: Example 3'I\$A\$1:\$A\$1000 Code for Success: 1 Hypothesized Proportion: 0.01 Labels Alpha: 0.05	_	OK Cancel Help

	Α	В	C	D
1	z-Test: Proportion			
2				
3				Column 1
4	Sample Proportion			0.014
5	Observations			1000
6	Hypothesized Proportion			0.01
7	z Stat			1.2713
8	P(Z<=z) one-tail			0.1018
9	z Critical one-tail			1.6449
10	P(Z<=z) two-tail			0.2036
11	z Critical two-tail			1.96

▶ The one-tailed p-value is 0.1018.

 $^{^7\}mathrm{In}\ \mathrm{R},$ execute prop.test(x = 14, n = 1000, p = 0.01, alternative = "g", correct = FALSE).

Example 3: conclusion and decision

- ► Conclusion:
 - ▶ For this one-tailed test, as p-value = 0.1018 > 0.05 = α , we do not reject H_0 .
 - ► There is **no strong evidence** showing that the defective rate is higher than 1%.
- ▶ Decision:
 - ▶ We should not try to fix the machine.