GMBA 7098: Statistics and Data Analysis (Fall 2014)

Regression Analysis (1)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

December 1, 2014

Road map

- Introduction.
- Simple regression.
- Multiple regression.
- Validating a regression model.

Correlation and prediction

- We often try to find correlation among variables.
- For example, prices and sizes of houses:

House	1	2	3	4	5	6
Size $\left(\mathrm{m}^{2}\right)$	75	59	85	65	72	46
Price $(\$ 1000)$	315	229	355	261	234	216
House	7	8	9	10	11	12
Size $\left(\mathrm{m}^{2}\right)$	107	91	75	65	88	59
Price $(\$ 1000)$	308	306	289	204	265	195

- We may calculate their correlation coefficient as $r=0.729 .{ }^{1}$
- Now given a house whose size is $100 \mathrm{~m}^{2}$, may we predict its price?
${ }^{1}$ In R, use cor(); in MS Excel, use CORREL().

Correlation among more than two variables

- Sometimes we have more than two variables:
- For example, we may also know the number of bedrooms in each house:

House	1	2	3	4	5	6
Size $\left(\mathrm{m}^{2}\right)$	75	59	85	65	72	46
Price $(\$ 1000)$	315	229	355	261	234	216
Bedroom	1	1	2	2	2	1
House	7	8	9	10	11	12
Size $\left(\mathrm{m}^{2}\right)$	107	91	75	65	88	59
Price $(\$ 1000)$	308	306	289	204	265	195
Bedroom	3	3	2	1	3	1

- How to summarize the correlation among the three variables?
- How to predict house price based on size and number of bedrooms?

Regression analysis

- Regression is the solution!
- As one of the most widely used tools in Statistics, it discovers:
- Which variables affect a given variable the most.
- How do they affect the target.
- In general, we will predict/estimate one dependent variable by one or multiple independent variables.
- Independent variables: Potential factors that may affect the outcome.
- Dependent variable: The outcome.
- As another example, suppose we want to predict the number of arrival consumers for tomorrow:
- Dependent variable: Number of arrival consumers.
- Independent variables: Weather, holiday or not, promotion or not, etc.

Regression analysis

- There are multiple types of regression analysis.
- Based on the number of independent variables:
- Simple regression: One independent variable.
- Multiple regression: More than one independent variables.
- Based on the assumed relationship:
- Linear regression: Variables have only linear relationship.
- Nonlinear regression: Variables have nonlinear relationship.
- In this course, we only talk about regression models with a quantitative dependent variable.
- If the dependent variable is qualitative, the techniques introduced in this course cannot be applied.
- Advanced techniques, e.g., logistic regression, are required.

Road map

- Introduction.
- Simple regression.
- Multiple regression.
- Validating a regression model.

Basic principle

- Consider the price-size relationship again. In the sequel, let x_{i} be the size and y_{i} be the price of house $i, i=1, \ldots, 12$.

Sizes and prices of houses

Size $\left(\right.$ in m^{2})	Price (in $\$ 1000)$
46	216
59	229
59	195
65	261
65	204
72	234
75	315
75	289
85	355
88	265
91	306
107	308

- How to relate sizes and prices "in the best way?"

Linear estimation

- If we believe that the relationship between the two variables is linear, we will assume that

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i} .
$$

- β_{0} is the intercept of the equation.
- β_{1} is the slope of the equation.
- ϵ_{i} is the random noise for house i.
- For example, if we choose $\beta_{0}=100$ and $\beta_{1}=2$, we have

x_{i}	46	59	59	65	65	72	75	75	85	88	91	107
y_{i}	216	229	195	261	204	234	315	289	355	265	306	308
$100+2 x_{i}$	192	218	218	230	230	244	250	250	270	276	282	314
ϵ_{i}	24	11	-23	31	-26	-10	65	39	85	-11	24	-6

Linear estimation

- Graphically, we are using a straight line to "pass through" those points:

$$
y=100+2 x
$$

x_{i}	46	59	59	65	65	72	75	75	85	88	91
y_{i}	216	229	195	261	204	234	315	289	355	265	306
308											
$100+2 x_{i}$	192	218	218	230	230	244	250	250	270	276	282
ϵ_{i}	24	11	-23	31	-26	-10	65	39	85	-11	24

Better estimation

- Is $\left(\beta_{0}, \beta_{1}\right)=(100,2)$ good? How about $\left(\beta_{0}, \beta_{1}\right)=(100,2.4)$?

- We need a way to define the "best" estimation!

Least square approximation

- Let $\hat{y}_{i}=\beta_{0}+\beta_{1} x_{i}$ as our estimate of y_{i}.
- We hope $\epsilon_{i}=y_{i}-\hat{y}_{i}$ to be as small as possible.
- For all data points, let's minimize the sum of squared errors (SSE):

$$
\sum_{i=1}^{n} \epsilon_{i}^{2}=\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left[\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}\right.
$$

- The solution of

$$
\min _{\beta_{0}, \beta_{1}} \sum_{i=1}^{n}\left[\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}\right.
$$

is our least square approximation (estimation) of the given data.

Least square approximation

- For $\left(\beta_{0}, \beta_{1}\right)=(100,2), \mathrm{SSE}=16667$.

x_{i}	46	59	59	\ldots	91	107
y_{i}	216	229	195	\ldots	306	308
\hat{y}_{i}	192	218	218	\ldots	282	314
ϵ_{i}^{2}	576	121	529	\ldots	576	36

- For $\left(\beta_{0}, \beta_{1}\right)=(100,2.4), \mathrm{SSE}=15172.76$.

x_{i}	46	59	59	\cdots	91	107
y_{i}	216	229	195	\cdots	306	308
\hat{y}_{i}	210.4	241.6	241.6	\cdots	318.4	356.8
ϵ_{i}^{2}	31.36	158.76	2171.56	\cdots	153.76	2381.44

- What is the best $\left(\beta_{0}, \beta_{1}\right)$?

Least square approximation

- The least square approximation problem

$$
\sum_{i=1}^{n}\left[\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}\right.
$$

has a closed-form formula (which we do not care) for the best (β_{0}, β_{1}).

- To calculate it:
- In R: use $\operatorname{lm}()$.
- In MS Excel: use Data Analysis \rightarrow Regression.

Regression by R

- To use R to do the regression analysis:

```
size <- c(75, 59, 85, 65, 72, 46, 107, 91, 75, 65, 88, 59)
price <- c(315, 229, 355, 261, 234, 216, 308, 306, 289, 204, 265, 195)
lm(price ~ size)
```

- The function $\operatorname{lm}(y \sim x)$ in general takes x as the independent variable and y as the independent variable.
- The output of lm(price ${ }^{\sim}$ size):

Call:
$\operatorname{lm}($ formula $=$ price \sim size $)$

Coefficients:

(Intercept)	size
102.717	2.192

- We will never know β_{0} and β_{1}. However, according to our sample data, the best (least square) estimate is $\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=(102.717,2.192)$.

Regression by MS Excel

- To use MS Excel to do the regression analysis:

$\underline{1}$	A	B	C
1	Price (\$1000)	Size ($\mathrm{m}^{\wedge} 2$)	Bedroom
2	315	75	1
3	229	59	1
4	355	85	2
5	261	65	2
6	234	72	2
7	216	46	1
8	308	107	3
9	306	91	3
10	289	75	2
11	204	65	1
12	265	88	3
13	195	59	1

Interpretations

- Our regression model:

$$
y=102.717+2.192 x
$$

- Interpretation: When the house size increases by $1 \mathrm{~m}^{2}$, the price is expected to increase by $\$ 2,192$.
- (Bad) interpretation: For a house whose size is $0 \mathrm{~m}^{2}$, the price is expected to be $\$ 102,717$.

Road map

- Introduction.
- Simple regression.
- Multiple regression.
- Validating a regression model.

Linear multiple regression

- In most cases, more than one independent variable may be used to explain the outcome of the dependent variable.
- For example, it is also possible that the number of bedrooms also affect a house price.
- We may take both variables as independent variables to do linear multiple regression:

$$
y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\epsilon_{i} .
$$

- y_{i} is the house price (in $\$ 1000$).
- $x_{1, i}$ is the house size (in m^{2}).
- $x_{2, i}$ is the number of bedrooms of house i.
- ϵ_{i} is the random noise.

Linear multiple regression by \mathbf{R}

- To use R to do the regression analysis:

```
size <- c(75, 59, 85, 65, 72, 46, 107, 91, 75, 65, 88, 59)
price <- c(315, 229, 355, 261, 234, 216, 308, 306, 289, 204, 265, 195)
bedroom <- c(1, 1, 2, 2, 2, 1, 3, 3, 2, 1, 3, 1)
lm(price ~ size + bedroom)
```

- The function $\operatorname{lm}(y$ ~ $x 1+x 2)$ in general takes $x 1$ and $x 2$ as the independent variables and y as the independent variable.
- The output of lm(price ~ size + bedroom):

Call:
lm(formula = price ~ size + bedroom)
Coefficients:
(Intercept) size bedroom
$82.737 \quad 2.854 \quad-15.789$

- Our (least square) estimate is $\left(\hat{\beta}_{0}, \hat{\beta}_{1}, \hat{\beta}_{2}\right)=(82.737,2.854,-15.789)$.

Regression by MS Excel

- To use MS Excel to do the regression analysis:

4	A	B	C
1	Price (\$1000)	Size ($\mathrm{m}^{\wedge} 2$)	Bedroom
2	315	75	1
3	229	59	1
4	355	85	2
5	261	65	2
6	234	72	2
7	216	46	1
8	308	107	3
9	306	91	3
10	289	75	2
11	204	65	1
12	265	88	3
13	195	59	1

Interpretations

- Our regression model:

$$
y=82.737+2.854 x_{1}-15.789 x_{2}
$$

- Interpretations:
- When the house size increases by $1 \mathrm{~m}^{2}$, we expect the price to increase by $\$ 2,854$.
- When there is one more bedroom, we expect the price to decrease by \$15, 789.
- One must interpret the results and determine whether the result is meaningful by herself!
- The number of bedrooms may not be a good indicator of house price. To verify this, we must test the significance of regression coefficients.
- We also need to judge the overall quality of a given regression model.

Road map

- Introduction.
- Simple regression.
- Multiple regression.
- Validating a regression model.

Estimation with no model

- For the price-size regression model

$$
y=102.717+2.192 x
$$

how good it is?

- In general, for a given regression model

$$
y=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots \hat{\beta}_{k} x_{k},
$$

how to evaluate its overall quality?

- Suppose we do not do regression. Instead, we (very naively) estimate y_{i} by $\bar{y}=\frac{\sum_{i=1}^{12} y_{i}}{n}$, the average of $y_{i} \mathrm{~s}$.
- We cannot do worse than that; it can be done without a model.
- How much does our regression model do better than it?

SSE, SST, and R^{2}

- Without a model, the sum of squared total errors (SST) is

$$
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} .
$$

- With out regression model, the sum of squared errors (SSE) is

$$
S S E=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left[\left(y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2} .\right.
$$

- The proportion of total variability that is explained by the regression model is ${ }^{2}$

$$
R^{2}=1-\frac{S S E}{S S T} .
$$

The larger R^{2}, the better the regression model.
${ }^{2}$ Note that $0 \leq R^{2} \leq 1$. Why?

Obtaining R^{2} in R

- Whenever we find the estimated coefficients, we have R^{2}.
- For the price-size regression model $y=102.717+2.192 x$:
- In R, execute
fit <- lm(price ~ size)
summary (fit)
to see a detailed report for the regression analysis. At the bottom:
Residual standard error: 36.22 on 10 degrees of freedom Multiple R-squared: 0.5315, Adjusted R-squared: 0.4846 F-statistic: 11.34 on 1 and $10 \mathrm{DF}, \mathrm{p}$-value: 0.007145
- This shows that $R^{2}=0.5315$:
- Around 53% of a house price is determined by its house size.

Obtaining R^{2} in MS Excel

- Your MS Excel report also gives you R^{2} :

	A	B
1	SUMMARY OUTPUT	
2		
3	Regression Statistics	
4	Multiple R	0.72902782
5	R Square	0.531481563
6	Adjusted R Square	0.484629719
7	Standard Error	36.21965402
8	Observations	12

- If (and only if) there is only one independent variable, then $R^{2}=r^{2}$, where r is the correlation coefficient between the dependent and independent variables. ${ }^{3}$
${ }^{3}$ It is displayed in the MS Excel report as "Multiple R."

Comparing regression models

- Now we have a way to compare regression models.
- For our example:

	Size	Bedroom	Size and bedroom
R^{2}	0.5315	0.29	0.5513

- Using prices is better than using numbers of bedrooms.
- Is using prices and bedrooms better than using prices?
- In general, adding more variables always increases R^{2} !
- In the worst case, we may set the corresponding coefficients to 0 .
- Some variables may actually be meaningless.
- To perform a "fair" comparison and identify those meaningful factors, we need to adjust R^{2} based on the number of independent variables.

Adjusted R^{2}

- The standard way to adjust R^{2} to adjusted R^{2} is

$$
R_{\mathrm{adj}}^{2}=1-\left(\frac{n-1}{n-k-1}\right)\left(1-R^{2}\right) .
$$

- n is the sample size and k is the number of independent variables used.
- For our example:

	Size	Bedroom	Size and bedroom
R^{2}	0.5315	0.29	0.5513
R_{adj}^{2}	0.4846	0.219	0.4516

- Actually using prices only results in the best model!

Testing coefficient significance

- Another important task for validating a regression model is to test the significance of each coefficient.
- Recall our model with two independent variables

$$
y=82.737+2.854 x_{1}-15.789 x_{2} .
$$

- Note that 2.854 and -15.789 are solely calculated based on the sample. We never know whether β_{1} and β_{2} are really these two values!
- In fact, we cannot even be sure that β_{1} and β_{2} are not 0 . We need to test them:

$$
\begin{aligned}
& H_{0}: \beta_{i}=0 \\
& H_{a}: \beta_{i} \neq 0 .
\end{aligned}
$$

- We hope that we will have a strong enough evidence that $\beta_{i} \neq 0$.

Testing coefficient significance by R

- The testing results are provided by regression reports.
- In R: ${ }^{4}$

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$		
(Intercept)	82.737	59.873	1.382	0.2003		
size	2.854	1.247	2.289	0.0478	$*$	
bedroom	-15.789	25.056	-0.630	0.5443		

Signif. codes:	0	$* * *$	$0.001 * *$	$0.01 * 0.05$	0.1	1

- At a 95% confidence level, we believe that $\beta_{1} \neq 0$. House size really has some impact on house price.
- At a 95% confidence level, we have no evidence showing that $\beta_{2} \neq 0$. We cannot conclude that the number of bedrooms has an impact on house price.
${ }^{4}$ These p-values have been multiplied by 2 . Simply compare them with α !

Testing coefficient significance by MS Excel

- In MS Excel: ${ }^{5}$

16		Coefficients	Standard Error	t Stat	P-value
17	Intercept	82.73677332	59.87263215	1.381879673	0.200340486
18	Size $\left(\mathrm{m}^{\wedge} 2\right)$	2.854010359	1.24668795	2.289274039	0.047831423
19	Bedroom	-15.78856673	25.05643215	-0.630120307	0.544280254

- If we use only size as an independent variable, its p-value will be 0.00714 . We will be quite confident that it has an impact.

[^0]
Summary

- With a regression model, we try to identify how independent variables affect the dependent variable.
- For a linear regression model, we adopt the least square criterion for estimating the coefficients.
- The overall quality of a regression model is decided by its R^{2} and R_{adj}^{2}.
- We may test the significance of each independent variable.
- Next lecture:
- How to select independent variables.
- How to "create" independent variables.
- How to further validate the model.

[^0]: ${ }^{5}$ These p-values have been multiplied by 2 . Simply compare them with α !

