| Introduction<br>00000 | Simple regression | Multiple regression<br>00000 | Validating a regression model 00000000000 |
|-----------------------|-------------------|------------------------------|-------------------------------------------|
|                       |                   |                              |                                           |
|                       |                   |                              |                                           |

# GMBA 7098: Statistics and Data Analysis (Fall 2014)

# Regression Analysis (1)

#### Ling-Chieh Kung

Department of Information Management National Taiwan University

December 1, 2014

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| •0000        | 0000000000        | 00000               | 0000000000                    |
|              |                   |                     |                               |

## Road map

#### ► Introduction.

- ▶ Simple regression.
- ▶ Multiple regression.
- ▶ Validating a regression model.

| Introduction | Simple regression | Multiple regression | Validating a regression model 00000000000 |  |  |
|--------------|-------------------|---------------------|-------------------------------------------|--|--|
| 0000         | 0000000000        | 00000               |                                           |  |  |
|              |                   |                     |                                           |  |  |

## Correlation and prediction

- ▶ We often try to find correlation among variables.
- ▶ For example, prices and sizes of houses:

| House                                    | 1                 | 2         | 3           | 4                                       | 5         | 6                                       |
|------------------------------------------|-------------------|-----------|-------------|-----------------------------------------|-----------|-----------------------------------------|
| Size (m <sup>2</sup> )<br>Price (\$1000) | $75 \\ 315$       | 59<br>229 | $85 \\ 355$ | $\begin{array}{c} 65\\ 261 \end{array}$ | 72<br>234 | $\begin{array}{c} 46\\ 216 \end{array}$ |
| House                                    | 7                 | 8         | 9           | 10                                      | 11        | 12                                      |
| Size $(m^2)$<br>Price (\$1000)           | $\frac{107}{308}$ | 91<br>306 | 75<br>289   | $65 \\ 204$                             | 88<br>265 | 59<br>195                               |

- We may calculate their **correlation coefficient** as r = 0.729.<sup>1</sup>
- ▶ Now given a house whose size is 100 m<sup>2</sup>, may we **predict** its price?

<sup>1</sup>In R, use cor(); in MS Excel, use CORREL().

| Introduction | Simple regression | Multiple regression | Validating a regression model 00000000000 |
|--------------|-------------------|---------------------|-------------------------------------------|
|              |                   |                     |                                           |

#### Correlation among more than two variables

- ▶ Sometimes we have more than two variables:
- ▶ For example, we may also know the number of bedrooms in each house:

| House                                               | 1                                                                            | 2              | 3                | 4                | 5                | 6                |
|-----------------------------------------------------|------------------------------------------------------------------------------|----------------|------------------|------------------|------------------|------------------|
| Size (m <sup>2</sup> )<br>Price (\$1000)<br>Bedroom | $75 \\ 315 \\ 1$                                                             | 59<br>229<br>1 | $85 \\ 355 \\ 2$ |                  | $72 \\ 234 \\ 2$ | $46 \\ 216 \\ 1$ |
| House                                               | 7                                                                            | 8              | 9                | 10               | 11               | 12               |
| Size (m <sup>2</sup> )<br>Price (\$1000)<br>Bedroom | $     \begin{array}{r}       107 \\       308 \\       3     \end{array}   $ | 91<br>306<br>3 | $75 \\ 289 \\ 2$ | $65 \\ 204 \\ 1$ |                  | 59<br>195<br>1   |

▶ How to summarize the correlation among the three variables?

▶ How to predict house price based on size and number of bedrooms?

| Introduction | Simple regression | Multiple regression | Validating a regression model |  |  |
|--------------|-------------------|---------------------|-------------------------------|--|--|
| 00000        | 00000000000       | 00000               | 00000000000                   |  |  |
|              |                   |                     |                               |  |  |

## **Regression analysis**

- ▶ **Regression** is the solution!
- ▶ As one of the most widely used tools in Statistics, it discovers:
  - Which variables affect a given variable the most.
  - How do they affect the target.
- ► In general, we will predict/estimate one **dependent variable** by one or multiple **independent variables**.
  - ▶ Independent variables: Potential factors that may affect the outcome.
  - ▶ Dependent variable: The outcome.
- ▶ As another example, suppose we want to predict the number of arrival consumers for tomorrow:
  - ▶ Dependent variable: Number of arrival consumers.
  - ▶ Independent variables: Weather, holiday or not, promotion or not, etc.

| Introduction | Simple regression | Multiple regression | Validating a regression model |  |  |
|--------------|-------------------|---------------------|-------------------------------|--|--|
| 00000        | 0000000000        | 00000               | 0000000000                    |  |  |
|              |                   |                     |                               |  |  |
|              |                   |                     |                               |  |  |

## **Regression analysis**

- ▶ There are multiple types of regression analysis.
- ▶ Based on the number of independent variables:
  - ▶ Simple regression: One independent variable.
  - ▶ Multiple regression: More than one independent variables.
- ▶ Based on the assumed relationship:
  - Linear regression: Variables have only linear relationship.
  - ▶ Nonlinear regression: Variables have nonlinear relationship.
- ► In this course, we only talk about regression models with a **quantitative** dependent variable.
  - ▶ If the dependent variable is qualitative, the techniques introduced in this course cannot be applied.
  - ▶ Advanced techniques, e.g., logistic regression, are required.

|  | Introduction<br>00000 | Simple regression<br>•0000000000 | Multiple regression | Validating a regression model 00000000000 |
|--|-----------------------|----------------------------------|---------------------|-------------------------------------------|
|--|-----------------------|----------------------------------|---------------------|-------------------------------------------|

## Road map

- Introduction.
- ► Simple regression.
- ▶ Multiple regression.
- ▶ Validating a regression model.

| Introduction<br>00000 | Simple regression | Multiple regression<br>00000 | Validating a regression model<br>0000000000 |
|-----------------------|-------------------|------------------------------|---------------------------------------------|
|                       |                   |                              |                                             |
|                       |                   |                              |                                             |

Sizes and prices of houses

#### **Basic** principle

• Consider the price-size relationship again. In the sequel, let  $x_i$  be the size and  $y_i$  be the price of house i, i = 1, ..., 12.



▶ How to relate sizes and prices "in the best way?"

Regression Analysis (1)

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 000000000         | 00000               | 0000000000                    |
|              |                   |                     |                               |
|              |                   |                     |                               |

#### Linear estimation

▶ If we believe that the relationship between the two variables is **linear**, we will assume that

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i.$$

- $\beta_0$  is the **intercept** of the equation.
- $\beta_1$  is the **slope** of the equation.
- $\epsilon_i$  is the **random noise** for house *i*.

▶ For example, if we choose  $\beta_0 = 100$  and  $\beta_1 = 2$ , we have

| $x_i \\ y_i$                  | 46<br>216 | $59 \\ 229$ | $59 \\ 195$  | $65 \\ 261$ | $65 \\ 204$  | 72<br>234    | $75 \\ 315$ | $75 \\ 289$ | $\frac{85}{355}$ | $\frac{88}{265}$ | $91 \\ 306$ | $\begin{array}{c} 107 \\ 308 \end{array}$ |
|-------------------------------|-----------|-------------|--------------|-------------|--------------|--------------|-------------|-------------|------------------|------------------|-------------|-------------------------------------------|
| $\frac{100+2x_i}{\epsilon_i}$ | 192<br>24 | $218 \\ 11$ | $218 \\ -23$ | $230 \\ 31$ | $230 \\ -26$ | $244 \\ -10$ | $250 \\ 65$ | $250 \\ 39$ | 270<br>85        | $276 \\ -11$     | $282 \\ 24$ | $314 \\ -6$                               |

#### Linear estimation

• Graphically, we are using a straight line to "pass through" those points: y=100+2x



| Y = CIZO | (m/\`) |
|----------|--------|
| A = 312C |        |
|          |        |

| $\begin{array}{c c} x_i & 46 \\ y_i & 216 \end{array}$ | $59 \\ 229$ | $59 \\ 195$  | $\frac{65}{261}$ | $\begin{array}{c} 65 \\ 204 \end{array}$ | $72 \\ 234$  | $75 \\ 315$ | $\frac{75}{289}$ | 85<br>355   | $\frac{88}{265}$ | $91 \\ 306$ | $\begin{array}{c} 107 \\ 308 \end{array}$ |
|--------------------------------------------------------|-------------|--------------|------------------|------------------------------------------|--------------|-------------|------------------|-------------|------------------|-------------|-------------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $218 \\ 11$ | $218 \\ -23$ | $230 \\ 31$      | $230 \\ -26$                             | $244 \\ -10$ | $250 \\ 65$ | $250 \\ 39$      | $270 \\ 85$ | $276 \\ -11$     | $282 \\ 24$ | $314 \\ -6$                               |

Regression Analysis (1)

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000€000000       | 00000               | 0000000000                    |
| Better e     | estimation        |                     |                               |

• Is  $(\beta_0, \beta_1) = (100, 2)$  good? How about  $(\beta_0, \beta_1) = (100, 2.4)$ ?



▶ We need a way to define the "best" estimation!

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000000000        | 00000               | 0000000000                    |
|              |                   |                     |                               |

#### Least square approximation

- Let  $\hat{y}_i = \beta_0 + \beta_1 x_i$  as our **estimate** of  $y_i$ .
  - We hope  $\epsilon_i = y_i \hat{y}_i$  to be as small as possible.
- ► For all data points, let's minimize the sum of squared errors (SSE):

$$\sum_{i=1}^{n} \epsilon_i^2 = (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left[ (y_i - (\beta_0 + \beta_1 x_i)) \right]^2.$$

▶ The solution of

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n \left[ (y_i - (\beta_0 + \beta_1 x_i)) \right]^2$$

is our least square approximation (estimation) of the given data.

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000000000        | 00000               | 000000000                     |
|              |                   |                     |                               |
|              |                   |                     |                               |

#### Least square approximation

• For  $(\beta_0, \beta_1) = (100, 2)$ , SSE = 16667.

| $x_i$          | 46  | 59  | 59  |       | 91  | 107 |
|----------------|-----|-----|-----|-------|-----|-----|
| $y_i$          | 216 | 229 | 195 | • • • | 306 | 308 |
| $\hat{y}_i$    | 192 | 218 | 218 | •••   | 282 | 314 |
| $\epsilon_i^2$ | 576 | 121 | 529 |       | 576 | 36  |

• For  $(\beta_0, \beta_1) = (100, 2.4)$ , SSE = 15172.76.

| $x_i$          | 46    | 59     | 59      | <br>91     | 107     |
|----------------|-------|--------|---------|------------|---------|
| $y_i$          | 216   | 229    | 195     | <br>306    | 308     |
| $\hat{y}_i$    | 210.4 | 241.6  | 241.6   | <br>318.4  | 356.8   |
| $\epsilon_i^2$ | 31.36 | 158.76 | 2171.56 | <br>153.76 | 2381.44 |

• What is the best  $(\beta_0, \beta_1)$ ?

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 00000000000       | 00000               | 0000000000                    |
|              |                   |                     |                               |

## Least square approximation

▶ The least square approximation problem

$$\sum_{i=1}^{n} \left[ \left( y_i - \left( \beta_0 + \beta_1 x_i \right) \right]^2 \right]$$

has a closed-form formula (which we do not care) for the best  $(\beta_0, \beta_1)$ .

- ► To calculate it:
  - ▶ In R: use lm().
  - ▶ In MS Excel: use Data Analysis  $\rightarrow$  Regression.

| Introduction | Simple regression                       | Multiple regression | Validating a regression model |
|--------------|-----------------------------------------|---------------------|-------------------------------|
| 00000        | 000000000000000000000000000000000000000 | 00000               | 0000000000                    |
|              |                                         |                     |                               |

#### Regression by R

▶ To use R to do the regression analysis:

```
size <- c(75, 59, 85, 65, 72, 46, 107, 91, 75, 65, 88, 59)
price <- c(315, 229, 355, 261, 234, 216, 308, 306, 289, 204, 265, 195)
lm(price ~ size)</pre>
```

- The function lm(y ~ x) in general takes x as the independent variable and y as the independent variable.
- The output of lm(price ~ size):

Call: lm(formula = price ~ size)

Coefficients: (Intercept) size 102.717 2.192

▶ We will never know  $\beta_0$  and  $\beta_1$ . However, according to our sample data, the best (least square) estimate is  $(\hat{\beta}_0, \hat{\beta}_1) = (102.717, 2.192)$ .

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression<br>00000 | Validating a regression model<br>00000000000 |
|-----------------------|---------------------------------|------------------------------|----------------------------------------------|
|                       |                                 |                              |                                              |
|                       |                                 |                              |                                              |

# Regression by MS Excel

▶ To use MS Excel to do the regression analysis:

|    | А              | В          | С       |
|----|----------------|------------|---------|
| 1  | Price (\$1000) | Size (m^2) | Bedroom |
| 2  | 315            | 75         | 1       |
| 3  | 229            | 59         | 1       |
| 4  | 355            | 85         | 2       |
| 5  | 261            | 65         | 2       |
| 6  | 234            | 72         | 2       |
| 7  | 216            | 46         | 1       |
| 8  | 308            | 107        | 3       |
| 9  | 306            | 91         | 3       |
| 10 | 289            | 75         | 2       |
| 11 | 204            | 65         | 1       |
| 12 | 265            | 88         | 3       |
| 13 | 195            | 59         | 1       |

| Regression                                                                               | and Description                                                      | ? ×            |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|
| Input<br>Input <u>Y</u> Range:<br>Input <u>X</u> Range:<br>V Labels<br>Confidence Level: | \$A\$1:\$A\$13 (%)<br>\$8\$1:\$B\$13 (%)<br>Constant is Zero<br>95 % | Cancel<br>Help |
| Output options                                                                           | Residual Plots                                                       |                |

| 16 |            | Coefficients |
|----|------------|--------------|
| 17 | Intercept  | 102.7172995  |
| 18 | Size (m^2) | 2.192099669  |

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 000000000         | 00000               | 0000000000                    |
|              |                   |                     |                               |

#### Interpretations

▶ Our regression model:

y = 102.717 + 2.192x.

- Interpretation: When the house size increases by 1 m<sup>2</sup>, the price is expected to increase by \$2, 192.
- ► (Bad) interpretation: For a house whose size is 0 m<sup>2</sup>, the price is expected to be \$102,717.





| Introduction | Simple regression | Multiple regression | Validating a regression model 00000000000 |
|--------------|-------------------|---------------------|-------------------------------------------|
| 00000        | 0000000000        | •0000               |                                           |
|              |                   |                     |                                           |

## Road map

- Introduction.
- ▶ Simple regression.
- ► Multiple regression.
- ▶ Validating a regression model.

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000000000        | 0000                | 0000000000                    |
|              |                   |                     |                               |
|              |                   |                     |                               |

## Linear multiple regression

- ▶ In most cases, more than one independent variable may be used to explain the outcome of the dependent variable.
- ▶ For example, it is also possible that the number of bedrooms also affect a house price.
- We may take both variables as independent variables to do linear multiple regression:

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \epsilon_i.$$

- $y_i$  is the house price (in \$1000).
- $x_{1,i}$  is the house size (in m<sup>2</sup>).
- $x_{2,i}$  is the number of bedrooms of house *i*.
- $\epsilon_i$  is the random noise.

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression $00000$ | Validating a regression model 00000000000 |
|-----------------------|---------------------------------|-----------------------------|-------------------------------------------|
|                       |                                 |                             |                                           |
|                       |                                 |                             |                                           |
|                       |                                 |                             |                                           |
| Linear n              | nultiple regre                  | ession by R                 |                                           |
| ► To use R            | to do the regression            | analysis:                   |                                           |
| size <- c(            | 75. 59. 85. 65. 72. 4           | 46. 107. 91. 75. 65. 88     | 59)                                       |

price <- c(315, 229, 355, 261, 234, 216, 308, 306, 289, 204, 265, 195) bedroom <- c(1, 1, 2, 2, 2, 1, 3, 3, 2, 1, 3, 1) lm(price ~ size + bedroom)

- The function  $lm(y \sim x1 + x2)$  in general takes x1 and x2 as the independent variables and y as the independent variable.
- The output of lm(price ~ size + bedroom):

```
Call:
lm(formula = price ~ size + bedroom)
Coefficients:
(Intercept)
                 size
                           bedroom
    82.737
                 2.854
                           -15.789
```

• Our (least square) estimate is  $(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (82.737, 2.854, -15.789).$ 

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression $000 \bullet 0$ | Validating a regression model 00000000000 |
|-----------------------|---------------------------------|-------------------------------------|-------------------------------------------|
|                       |                                 |                                     |                                           |

#### Regression by MS Excel

▶ To use MS Excel to do the regression analysis:

|    | А              | В          | С       |
|----|----------------|------------|---------|
| 1  | Price (\$1000) | Size (m^2) | Bedroom |
| 2  | 315            | 75         | 1       |
| 3  | 229            | 59         | 1       |
| 4  | 355            | 85         | 2       |
| 5  | 261            | 65         | 2       |
| 6  | 234            | 72         | 2       |
| 7  | 216            | 46         | 1       |
| 8  | 308            | 107        | 3       |
| 9  | 306            | 91         | 3       |
| 10 | 289            | 75         | 2       |
| 11 | 204            | 65         | 1       |
| 12 | 265            | 88         | 3       |
| 13 | 195            | 59         | 1       |



| 16 |            | Coefficients |
|----|------------|--------------|
| 17 | Intercept  | 82.73677332  |
| 18 | Size (m^2) | 2.854010359  |
| 19 | Bedroom    | -15.78856673 |

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000000000        | 00000               | 0000000000                    |
|              |                   |                     |                               |
|              |                   |                     |                               |

## Interpretations

• Our regression model:

 $y = 82.737 + 2.854x_1 - 15.789x_2.$ 

- ▶ Interpretations:
  - ▶ When the house size increases by 1 m<sup>2</sup>, we expect the price to increase by \$2,854.
  - ▶ When there is one more bedroom, we expect the price to decrease by \$15,789.
- One must interpret the results and determine whether the result is meaningful by herself!
- ► The number of bedrooms may not be a good indicator of house price. To verify this, we must test the significance of regression coefficients.
- ► We also need to judge the **overall quality** of a given regression model.

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000000000        | 00000               | •000000000                    |
|              |                   |                     |                               |

## Road map

- Introduction.
- ▶ Simple regression.
- ▶ Multiple regression.
- ▶ Validating a regression model.

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
| 00000        | 0000000000        | 00000               | 000000000                     |
|              |                   |                     |                               |

### Estimation with no model

▶ For the price-size regression model

y = 102.717 + 2.192x,

how good it is?

▶ In general, for a given regression model

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots \hat{\beta}_k x_k,$$

how to evaluate its overall quality?

- ▶ Suppose we do not do regression. Instead, we (very naively) estimate  $y_i$  by  $\bar{y} = \frac{\sum_{i=1}^{12} y_i}{n}$ , the average of  $y_i$ s.
  - ▶ We cannot do worse than that; it can be done **without** a model.
- ▶ How much does our regression model do better than it?

| Introduction | Simple regression | Multiple regression | Validating a regression model |
|--------------|-------------------|---------------------|-------------------------------|
|              |                   |                     |                               |
|              |                   |                     |                               |

# SSE, SST, and $R^2$

▶ Without a model, the **sum of squared total errors** (SST) is

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2.$$

▶ With out regression model, the sum of squared errors (SSE) is

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left[ (y_i - (\beta_0 + \beta_1 x_i)) \right]^2.$$

The proportion of total variability that is explained by the regression model is<sup>2</sup>

$$R^2 = 1 - \frac{SSE}{SST}.$$

The larger  $\mathbb{R}^2$ , the better the regression model.

<sup>2</sup>Note that  $0 \le R^2 \le 1$ . Why?

Regression Analysis (1)

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression<br>00000 | Validating a regression model 0000000000 |
|-----------------------|---------------------------------|------------------------------|------------------------------------------|
|                       |                                 |                              |                                          |
|                       |                                 |                              |                                          |

# Obtaining $R^2$ in **R**

- Whenever we find the estimated coefficients, we have  $R^2$ .
- ▶ For the price-size regression model y = 102.717 + 2.192x:
- ▶ In R, execute

```
fit <- lm(price ~ size)
summary(fit)</pre>
```

to see a detailed report for the regression analysis. At the bottom:

Residual standard error: 36.22 on 10 degrees of freedom Multiple R-squared: 0.5315, Adjusted R-squared: 0.4846 F-statistic: 11.34 on 1 and 10 DF, p-value: 0.007145

- This shows that  $R^2 = 0.5315$ :
  - ▶ Around 53% of a house price is **determined by** its house size.

# Obtaining $R^2$ in MS Excel

▶ Your MS Excel report also gives you  $R^2$ :

|   | А                 | В           |
|---|-------------------|-------------|
| 1 | SUMMARY OUTPU     | ΓŢ          |
| 2 |                   |             |
| 3 | Regression S      | Statistics  |
| 4 | Multiple R        | 0.72902782  |
| 5 | R Square          | 0.531481563 |
| 6 | Adjusted R Square | 0.484629719 |
| 7 | Standard Error    | 36.21965402 |
| 8 | Observations      | 12          |

• If (and only if) there is only one independent variable, then  $R^2 = r^2$ , where r is the correlation coefficient between the dependent and independent variables.<sup>3</sup>

<sup>&</sup>lt;sup>3</sup>It is displayed in the MS Excel report as "Multiple R."

| Introduction | Simple regression | Multiple regression | Validating a regression model 00000000000 |
|--------------|-------------------|---------------------|-------------------------------------------|
| 00000        | 00000000000       | 00000               |                                           |
|              |                   |                     |                                           |

#### Comparing regression models

- ▶ Now we have a way to compare regression models.
- ▶ For our example:

|       | Size   | Bedroom | Size and bedroom |
|-------|--------|---------|------------------|
| $R^2$ | 0.5315 | 0.29    | 0.5513           |

- Using prices is better than using numbers of bedrooms.
- ▶ Is using prices and bedrooms better than using prices?
- In general, adding more variables **always** increases  $R^2$ !
  - ▶ In the worst case, we may set the corresponding coefficients to 0.
  - ▶ Some variables may actually be meaningless.
- ➤ To perform a "fair" comparison and identify those meaningful factors, we need to adjust R<sup>2</sup> based on the number of independent variables.

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression<br>00000 | Validating a regression model $000000000000000000000000000000000000$ |
|-----------------------|---------------------------------|------------------------------|----------------------------------------------------------------------|
|                       |                                 |                              |                                                                      |
|                       |                                 |                              |                                                                      |

# Adjusted $R^2$

• The standard way to adjust  $R^2$  to **adjusted**  $R^2$  is

$$R_{\rm adj}^2 = 1 - \left(\frac{n-1}{n-k-1}\right)(1-R^2).$$

n is the sample size and k is the number of independent variables used.
For our example:

|                             | Size               | Bedroom         | Size and bedroom   |
|-----------------------------|--------------------|-----------------|--------------------|
| $\frac{R^2}{R_{\rm adj}^2}$ | $0.5315 \\ 0.4846$ | $0.29 \\ 0.219$ | $0.5513 \\ 0.4516$ |

▶ Actually using prices only results in the best model!

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression<br>00000 | Validating a regression model 0000000000000 |
|-----------------------|---------------------------------|------------------------------|---------------------------------------------|
|                       |                                 |                              |                                             |
|                       |                                 |                              |                                             |

## Testing coefficient significance

- ► Another important task for validating a regression model is to test the **significance of each coefficient**.
- ▶ Recall our model with two independent variables

 $y = 82.737 + 2.854x_1 - 15.789x_2.$ 

- ► Note that 2.854 and -15.789 are solely calculated based on the sample. We never know whether β<sub>1</sub> and β<sub>2</sub> are really these two values!
- ▶ In fact, we cannot even be sure that  $\beta_1$  and  $\beta_2$  are not 0. We need to **test** them:

 $H_0: \beta_i = 0$  $H_a: \beta_i \neq 0.$ 

• We hope that we will have a strong enough evidence that  $\beta_i \neq 0$ .

Regression Analysis (1)

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression<br>00000 | Validating a regression model $000000000000000000000000000000000000$ |
|-----------------------|---------------------------------|------------------------------|----------------------------------------------------------------------|
|                       |                                 |                              |                                                                      |
|                       |                                 |                              |                                                                      |

## Testing coefficient significance by R

- ▶ The testing results are provided by regression reports.
- $\blacktriangleright$  In R:<sup>4</sup>

Coefficients:

|              | Estimate  | Std. Error   | t value   | Pr(> t )  |   |
|--------------|-----------|--------------|-----------|-----------|---|
| (Intercept)  | 82.737    | 59.873       | 1.382     | 0.2003    |   |
| size         | 2.854     | 1.247        | 2.289     | 0.0478    | * |
| bedroom      | -15.789   | 25.056       | -0.630    | 0.5443    |   |
|              |           |              |           |           |   |
| Signif. code | es: 0 *** | * 0.001 ** ( | 0.01 * 0. | .05 . 0.1 |   |

- ► At a 95% confidence level, we believe that  $\beta_1 \neq 0$ . House size really has some impact on house price.
- At a 95% confidence level, we have no evidence showing that  $\beta_2 \neq 0$ . We cannot conclude that the number of bedrooms has an impact on house price.

<sup>4</sup>These *p*-values have been multiplied by 2. Simply compare them with  $\alpha$ !

| Introduction | Simple regression | Multiple regression | Validating a regression model $000000000000000000000000000000000000$ |
|--------------|-------------------|---------------------|----------------------------------------------------------------------|
| 00000        | 0000000000        | 00000               |                                                                      |
|              |                   |                     |                                                                      |

## Testing coefficient significance by MS Excel

#### ▶ In MS Excel:<sup>5</sup>

| 16 |            | Coefficients | Standard Error | t Stat       | P-value     |
|----|------------|--------------|----------------|--------------|-------------|
| 17 | Intercept  | 82.73677332  | 59.87263215    | 1.381879673  | 0.200340486 |
| 18 | Size (m^2) | 2.854010359  | 1.24668795     | 2.289274039  | 0.047831423 |
| 19 | Bedroom    | -15.78856673 | 25.05643215    | -0.630120307 | 0.544280254 |

▶ If we use only size as an independent variable, its *p*-value will be 0.00714. We will be quite confident that it has an impact.

<sup>&</sup>lt;sup>5</sup>These *p*-values have been multiplied by 2. Simply compare them with  $\alpha$ !

| Introduction<br>00000 | Simple regression<br>0000000000 | Multiple regression<br>00000 | Validating a regression model $0000000000$ |
|-----------------------|---------------------------------|------------------------------|--------------------------------------------|
|                       |                                 |                              |                                            |
|                       |                                 |                              |                                            |

## Summary

- ▶ With a regression model, we try to identify how independent variables affect the dependent variable.
- ▶ For a linear regression model, we adopt the least square criterion for estimating the coefficients.
- The overall quality of a regression model is decided by its  $R^2$  and  $R^2_{adj}$ .
- ▶ We may test the significance of each independent variable.
- ▶ Next lecture:
  - ▶ How to select independent variables.
  - ▶ How to "create" independent variables.
  - How to further validate the model.