Testing an intuition 00000	Appropriateness 000000	Significance 0000	Outliers 000

GMBA 7098: Statistics and Data Analysis (Fall 2014)

Feedback for Case Study 3

Ling-Chieh Kung

Department of Information Management National Taiwan University

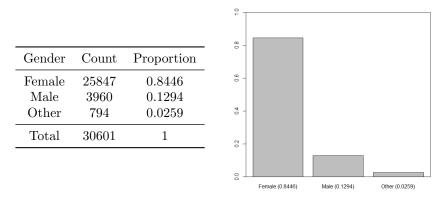
December 22, 2014

Testing an intuition	Appropriateness	Significance	Outliers
•0000	000000	0000	000

• Testing an intuition.

- ▶ Appropriateness of independent variables.
- ▶ Significance of independent variables.
- ▶ Skewed data and outliers.

Testing an intuition $0 \bullet 000$	Appropriateness	Significance	Outliers
	000000	0000	000


Problem 1 in Case Study 3

- ▶ Problem 1 in Case Study 3:
 - ▶ According to the USER table, around 82% of the users are female.
 - ▶ If all users in average post at the same frequency, the proportion of articles that are posted by female users should also be around 82%.
 - ▶ Do a descriptive study to find the sample proportion of articles posted by female users.
 - ▶ Then conduct an appropriate statistical test on the population proportion of articles posted by female users with respect to 82%.
- ► Two tasks:
 - ► Sample proportions (descriptive statistics).
 - Testing the population proportion (inferential statistics).

Testing an intuition 00000	Appropriateness	Significance	Outliers
	000000	0000	000

Sample proportion

► Sample proportion (without removing any row):

- Obviously, 0.8446 > 0.82. Is this difference "significant"?
- Our data is just a sample!

Testing an intuition $000 \bullet 0$	Appropriateness	Significance	Outliers
	000000	0000	000

Testing population proportion

- ▶ What we really want to see is:
 - ▶ Is the sample proportion $\hat{p} = 0.8446$ significantly different from the hypothesized population proportion.
- ▶ The sample size matters:
 - If n = 100, we are not so confident.
 - If n = 100000, we are highly confident.
- ▶ The statistical test:

 $H_0: p = 0.82$ $H_a: p \neq 0.82.$

	Testing an intuition $0000 \bullet$	Appropriateness 000000	Significance 0000	Outliers 000
--	-------------------------------------	---------------------------	----------------------	-----------------

Testing population proportion

▶ In R, run

```
prop.test(x = Female, n = Total, p = 0.82,
alternative = "t", correct = FALSE)
```

we get *p*-value ≈ 0 .

- We reject H_0 at any practical level of significance.
- ▶ We are confident to conclude that $p \neq 0.82$ (or p > 0.82 if we do a one-tailed test).
- Girls in average post more frequently than boys.

Testing an intuition	Appropriateness	Significance	Outliers
00000	•00000	0000	000

- ▶ Testing an intuition.
- ► Appropriateness of independent variables.
- ▶ Significance of independent variables.
- ▶ Skewed data and outliers.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0000	000

Appropriateness of independent variables

- Regression is hard!
 - Selecting independent variables is hard.
- ► A general guideline:
 - ► An independent variable **should not** be affected by the dependent one.
 - We use independent variables to **predict**, **estimate**, or **explain** the dependent variable.

Testing an intuition	Appropriateness 000000	Significance	Outliers
00000		0000	000

Problem 5 in Case Study 3

- ▶ Problem 5 in Case Study 3:
 - ▶ Nancy and Jay also wonder what factors decide a user's posting frequency.
 - ▶ For example, does one's age affects her/his posting frequency?
 - ▶ How about one's occupation, gender, frequency of viewing and liking articles, etc.?
 - Try to find a regression model to answer this question.
 - ► Then **interpret** your regression model and explain **how to predict** whether a user will actively post articles given the factors you identify.
- ▶ The dependent variable: posting frequency.
 - ▶ Number of articles posted per day/week/month since the registration.
 - ▶ Proportion of days that at least one article is posted.
 - There may be other definitions.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0000	000

Potential independent variables

- ▶ Demographic information (occupation, gender, age, etc.):
 - ▶ Good! They are not affected by one's posting frequency.
- ▶ Non-posting Behaviors:
 - Registration date.
 - ▶ Whether one registers during a promotion period.
 - ▶ Frequencies of viewing/liking others' articles.
 - ▶ Frequencies of messaging with others.
- ▶ Posting-related behaviors:
 - Time between registration and the last post.
 - ▶ Frequencies of being viewed/liked.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0000	000

Time between registration and the last post

- ▶ The posting frequency somewhat affects the timing of the last post.
- The timing of the last post **cannot** be used to **predict** the posting frequency.
- ▶ Nevertheless, some things are reasonable:
 - At any moment, predict how many articles one will post in the next period given the timing of the last post.

Testing an intuition	Appropriateness	Significance	Outliers
00000	00000●	0000	000

Frequencies of being viewed/liked

- ▶ The posting frequency somewhat affects the frequencies of being viewed/liked.
- ► The frequencies of being viewed/liked **cannot** be used to **predict** the posting frequency.
- ▶ Nevertheless, some things are reasonable:
 - ► At any moment, predict **how many** articles one will post in the next **period** given the up-to-now frequencies of being viewed/liked.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	•000	000

- ▶ Testing an intuition.
- ▶ Appropriateness of independent variables.
- ► Significance of independent variables.
- Skewed data and outliers.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0●00	000

Significance of independent variables

- ▶ When we have a set of candidate independent variables, how to decide whether one is significant?
- ▶ We do a multiple regression and look at their *p*-values.
 - ▶ Suppose the significance level is set to 95%.
 - ▶ Those variables whose *p*-values are less than 5% will be considered significant.
- ▶ How about this:
 - For each variable, run a simple regression to see if its p-value < 0.05.
 - Repeat this for all variables.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	00●0	000

Significance of independent variables

- ▶ Testing each variable's *p*-value with simple regressions is not right!
- ► A variable may **become** insignificant when another variable is added.
 - ▶ E.g., temperature vs. adjusted temperature.
- ▶ This does not consider the **interaction** among variables.
 - ▶ In regression, the interaction between two variables can be tested by adding the **product** of these two as a new variable.
 - ▶ E.g., if we consider

 $price = \beta_0 + \beta_1 size + \beta_2 bedroom + \beta_3 size \times bedroom,$

the last variable captures the interaction between *size* and *bedroom*.

▶ For large houses, having more bedrooms is good; for small houses, having more bedrooms can be bad.

00000 000000 0000 000 000	Testing an intuition	Appropriateness	Significance	Outliers
	00000	000000	0000	000

Significance of independent variables

- ▶ Sometimes you have **too many** variables.
 - ▶ In practice (typical for engineering applications), there may be hundreds or even thousands of variables.
 - Especially an issue in the age of big data.
- In one problem about predicting the yield rate of semiconductor manufacturing:
 - Each lot of chips goes through hundreds of stages.
 - ▶ In each stage, there are tens or hundreds of steps.
 - ▶ In each step, tens or hundreds or censored values (e.g., temperature, humidity, and many parameters that controls the machine) are recorded.
- ▶ There are many methods to **reduce the dimension**:
 - ▶ E.g., principal component analysis (PCA).
 - ▶ Take courses for data mining or multivariate analysis!

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0000	•00

- ▶ Testing an intuition.
- ▶ Appropriateness of independent variables.
- ▶ Significance of independent variables.
- ► Outliers.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0000	0●0

Outliers

- ▶ Before we do any fitting, we should first identify outliers.
- There is no standard way to define outliers.
- ▶ Use common intuitions and experiences.

Testing an intuition	Appropriateness	Significance	Outliers
00000	000000	0000	00●

