Suggested Solution for Final Exam

Statistics and Data Analysis, Fall 2015

1. (20 points; 5 points each)
(a) $[162.8857,168.5643]$
(b) $[163.3599,168.0901]$
(c) The 95% confidence interval is larger. We need a larger interval to cover 95% than 90%, so we are more confident that the population mean will be within this interval.
(d) Since the sample size is larger than 30 , we may use the z distribution.

Since the population is normally distributed, we may use the t distribution.
2. (30 points; 10 points each)
(a) Class 1: 0.387548

Class 2: 0.030974
(b) Class 1: Since the p-value is larger than 0.05 , we cannot reject H_{0}. (Cannot reject doesn't mean accept!)
Class 2: Since the p-value is smaller than 0.05 , we reject H_{0}. We are 95% confident that instructor 2 is teaching well that the average scores of all her/his students are higher than 70.
(c) No, because we know nothing about the performance of instructor 1 .
3. (10 points; 5 points each)
(a) scores $=67.08+3.42$ class. The p-value of class is 0.2558 . R-squared is 0.0329 . It seems that the variable is not significant enough and the model only explains about 32% of the variance.
(b) In a regression model, the hypothesis we want to test is $\mathrm{H} 0: \beta=0 ; \mathrm{H} 1: \beta \neq 0$. The result shows that the true p -value of each level in class is $0.2558 / 2$ which is 0.1279 . Since that the p -value is too high, we cannot reject the null hypothesis that the coefficient equals to 0 . Thus, we are not able to make any conclusions.
4. (20 points; 5 points each)
(a) score $=70.22-9.75$ class $_{2}-3.57$ class $_{3}-10.3$ class $_{4}$

R-squared is 0.34 . The p-value of class $_{2}$, class $_{3}$ and class $_{4}$ are $7.447 \times 10^{-6}, 6.25 \times$ 10^{-2} and 4.568×10^{-7}. The model explains about 34% of the variance. Except for class $_{3}$, other variables are significant. Compared to class $_{1}$, score decrease 9.75 for class $_{2}$, score decrease 3.57 for class $_{3}$, and score decrease 10.3 for class $_{4}$.
(b) score $=60.47+9.75$ class $_{1}+6.18$ class $_{3}-0.55$ class $_{4}$

R -squared is 0.34 . The p -value of class $_{1}$, class $_{3}$ and class $_{4}$ are $7.447 \times 10^{-6}, 1.87 \times$ 10^{-3} and 7.7×10^{-1}. The model explains about 34% of the variance. Except for class $_{4}$, other variables are significant. Compared to class $_{2}$, score increase 9.75 for class $_{1}$, score increase 6.18 for class $_{3}$, and score decrease 0.55 for class $_{4}$.
(c) score $=65.7-14.02 \frac{1}{\text { credit }}$

R -squared is 0.00197 . The p -value of $\frac{1}{\text { credit }}$ is 0.69 . The model can just explain nothing because of a small R-squared. The p-value of coefficient is large so that it is not significant.
(d) score $=70.125-7.82$ class $_{2}-5.45$ class $_{3}-9.06$ class $_{4}+0.175$ genderMale 4.61 class $_{2} *$ genderMale +3.08 class $_{3} *$ genderMale -4.09 class $_{4} *$ genderMale R -squared is 0.39 . The p -value of class $_{1}$, class $_{3}$, class $_{4}$, genderMale, class ${ }_{2} *$ genderMale, class $_{3} *$ genderMale, class ${ }_{4} *$ genderMale are $6.7 \times 10^{-3}, 6.18 \times 10^{-2}, 6.32 \times 10^{-4}, 9.5 \times 10^{-1}, 2.58 \times 10^{-1}, 4.13 \times$ 10^{-1} and 2.93×10^{-1}. Interaction term and gender (reference level: F) are not significant. We may try some other interactions and transformations. (You may set the reference level for gender and class on your own)
5. (20 points; 2 points each)
(a) F
(b) F
(c) F
(d) T
(e) F
(f) F
(g) T
(h) T
(i) T
(j) F
6. (Bonus 10 points; 5 points each)
(a) Given $\beta_{0}=-1$ and $\beta_{1}=1, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|0-2|+|1-4|+|3-3|+$ $|5-6|+|7-9|)=8$.
(b) Given $\beta_{0}=-1$ and $\beta_{1}=0, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|-1-2|+|-1-4|+$ $|-1-3|+|-1-6|+|-1-9|)=29$.

Given $\beta_{0}=-1$ and $\beta_{1}=0.5, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|-0.5-2|+|0-4|+$ $|1-3|+|2-6|+|3-9|)=18.5$.
Given $\beta_{0}=0$ and $\beta_{1}=0, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|0-2|+|0-4|+|0-3|+$ $|0-6|+|0-9|)=24$.
Given $\beta_{0}=0$ and $\beta_{1}=0.5, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|0.5-2|+|1-4|+$ $|2-3|+|3-6|+|4-9|)=13.5$.
Given $\beta_{0}=0$ and $\beta_{1}=1, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|1-2|+|2-4|+|4-3|+$ $|6-6|+|8-9|)=5$.
Given $\beta_{0}=1$ and $\beta_{1}=0, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|1-2|+|1-4|+|1-3|+$ $|1-6|+|1-9|)=19$.

Given $\beta_{0}=1$ and $\beta_{1}=0.5, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|1.5-2|+|2-4|+$ $|3-3|+|3-6|+|4-9|)=8.5$.
Given $\beta_{0}=1$ and $\beta_{1}=1, \operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{5}\left|\hat{y}_{i}-y_{i}\right|=\sum(|2-2|+|3-4|+|5-3|+$ $|7-6|+|9-9|)=4$.

The wining combination that minimize $\operatorname{SAE}\left(\beta_{0}, \beta_{1}\right)$ is $\left(\beta_{0}, \beta_{1}\right)=(1,1) . \operatorname{SAE}(1,1)=4$.

