Suggested Solution for Homework 4

Statistics and Data Analysis, Fall 2015

1. $(10$ points)

Month is qualitative variable. It would be useful because seasonality may influence number of available bikes. Day, weekday and hour are qualitative variables. They would be useful since time factors may affect number of available bikes as well. For station_id, location, station_name and station_address, since we only focus on one specific site, these qualitative variables are not useful. Total_parking_num is quantitative variable. It also not useful since it is a fix number for a specific site. Empty_parking_num is equivalent to available_bike_num since it is the difference between total_parking_num and available_bike_num. Latitude and longitude are not suitable for simple regression model. In_service is qualitative variable. It is useful because if the station is out of service, there would be no available bikes at all. Weather_type is qualitative variable. Temp, pressure, humidity and wind_speed are quantitative variables. Intuitively, weather variables would have some impact on whether people want to ride a bike or not. They would be useful in a regression model.
2. (30 points)
(a) Use scatter plot to help us consider quantitative variable selection. wind_speed and temp seems to have slightly negative effect on available_bike_num. However, it seems that no obvious pattern can be observed. We may consider some transformation or interaction terms.

(b) (5 points)
available_bike_num $=66.5106-0.1899$ temp
Coefficient of temp is -0.1899 . R-squared is 0.0044 . p-value of temp is 0.06829 . It seems the model need more variables or some transformation.
(c) (5 points)
available_bike_num
$=94.4060-0.1838$ temp -0.0254 pressure -0.0224 humidity
-0.5104 wind_speed
R -squared is 0.029 only. wind_speed is the only variable significant, whose p-value is approximately to 0 . It seems that the model need some transformation and further refinement.
3. (35 points)
(a) (10 points)

We can see by the boxplots that the averages of available_bike_num are not significantly different in different month, weekday, and weather_type. ${ }^{1}$ We might want to try day and hour as our independent variable to do the regression.
(b) (5 points)
available_bike_num $=10.64583+1.53384 w e e k d a y$

[^0]If weekday changes from 0 to 1 , we expect the available bike number to increase by 1.53384 . With $\mathrm{R}^{2}=0.00355$, adjusted $\mathrm{R}^{2}=0.0022$, which are really small; and the p -value is 0.1048 for weekday, which is not small enough, we know that this model should be modified.
(c) (5 points)
available_bike_num

$$
\begin{aligned}
& =9.225806+2.580645 \text { hour }^{(2-3)}+3.3870967 \text { hour }^{(4-5)} \\
& +5.225806 \text { hour }^{(6-7)}+7.758065 \text { hour }^{(8-9)}+4.548387 \text { hour }^{(10-11)} \\
& +4.080645 \text { hour }^{(12-13)}+5.516129 \text { hour }^{(14-15)}+3.354839 \text { hour }^{(16-17)} \\
& -4.48387 \text { hour }^{(18-19)}-0.82258 \text { hour }^{(20-21)}-0.50449 \text { hour }^{(22-23)}
\end{aligned}
$$

If hour changes from $0-1$ to $i-(i+1)$ and all others remain the same, we expect the dependent variable to increase by β_{i-i+1}. With $\mathrm{R}^{2}=0.08356$, adjusted $\mathrm{R}^{2}=0.06977$, and more significant p -values for the independent variables, we know that this model does better than part (b), but should still be improved since R^{2} is not good enough.
(d) (5 points)
available_bike_num

$$
\begin{aligned}
& =14.74194-5.51613 \text { hour }^{(0-1)}-2.93548 \text { hour }^{(2-3)}-2.12903 \text { hour }^{(4-5)} \\
& -0.29032 \text { hour }^{(6-7)}+2.241935 \text { hour }^{(8-9)}-0.96774 \text { hour }^{(10-11)} \\
& -1.43548 \text { hour }^{(12-13)}-2.16129 \text { hour }^{(16-17)}-10 \text { hour }^{(18-19)} \\
& -6.33871 \text { hour }^{(20-21)}-6.02062 \text { hour }^{(22-23)}
\end{aligned}
$$

There are fewer significant variables than in the model in part (c). It might be so because hour 15-16 in around the middle of a day, the average available bike number would be somewhat similar to other hour ranges within a day; however, hour $0-1$ is in the early morning of a day, the average available bike number would be very different from those in rush hours.
4. (25 points)
(a) (5 points)

Intuitively, available_bike_num t_{t-1} may be a good predictor for available_bike_num ${ }_{t}$ since the number would be somewhat close to each. available_bike_num t-2 and
available_bike_num t-3 would also be good predictors since the time is not too far away from each other, and they will help you see the trend within those hours.
(b) (10 points)

$$
\text { available_bike_num }_{t}=6.338023+0.464603 \text { available_bike_num }_{t-1}
$$

If the available bike number at time $t-1$ increases 1 , we expect the available bike number at time t to increase by 0.464603 . With $\mathrm{R}^{2}=0.21582$, adjusted $\mathrm{R}^{2}=0.21476$, we know that available_bike_num t_{-1} can explain 21.6%, and it is really significant since its p-value is small enough.

[^0]: ${ }^{1}$ A box plot is a way to describe the distribution of a set of numeric values. The box contains data points within the first and third quartiles, and the think bar indicates the location of the median. Small circles represent data points far from the median by more than 2.5 interquartile ranges. When two box plots are put together, a larger box typically means that the corresponding distribution is more disperse.

