Statistics and Data Analysis

Descriptive Statistics (2): Summarization

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Summarizing the data with numbers

- Descriptive Statistics includes some common ways to describe data.
- Visualization with graphs.
- Summarization with numbers.
- This is always the first step of any data analysis project: To get intuitions that guide our directions.
- Today we talk about summarization.
- For a set of (a lot of) numbers, we use a few numbers to summarize them.
- For a population: these numbers are parameters.
- For a sample: these numbers are statistics.
- We will talk about three things:
- Measures of central tendency for the center or middle part of data.
- Measures of variability for how variable the data are.
- Measures of correlation for the relationship between two variables.

Road map

- Describing central tendency.
- Describing variability.
- Describing correlation.

Central tendency

- In a baseball team, players' heights (in cm) are:

Distribution of member heights

178	172	175	184
172	175	165	178
177	175	180	182
177	183	180	178
179	162	170	171

- Let's try to describe the central tendency of this set of data.

Modes

- The mode(s) is (are) the most frequently occurring value(s) in a set of data.
- In the team, the modes are 175 and 178.

- It is better to look for a mode in a set of qualitative data.
- Otherwise, maybe all values are modes!

Medians

- The median is the middle value in an ordered set of numbers.
- Roughly speaking, half of the numbers are below and half are above it.
- Suppose there are N numbers:
- If N is odd, the median is the $\frac{N+1}{2}$ th large number.
- If N is even, the median is the average of the $\frac{N}{2}$ th and the $\left(\frac{N}{2}+1\right)$ th large number.
- For example:
- The median of $\{1,2,4,5,6,8,9\}$ is 5 .
- The median of $\{1,2,4,5,6,8\}$ is $\frac{4+5}{2}=4.5$.

Medians

- A median is unaffected by the magnitude of extreme values:
- The median of $\{1,2,4,5,6,8,9\}$ is 5 .
- The median of $\{1,2,4,5,6,8,900\}$ is still 5 .
- Medians may be calculated from quantitative or ordinal data.
- It cannot be calculated from nominal data.
- Unfortunately, a median uses only part of the information contained in these numbers.
- For quantitative data, a median only treats them as ordinal.

Means

- The mean is the average of a set of data.
- Can be calculated only from quantitative data.
- The mean of $\{1,2,4,5,6,8,9\}$ is

$$
\frac{1+2+4+5+6+8+9}{7}=5
$$

- A mean uses all the information contained in the numbers.
- Unfortunately, a mean will be affected by extreme values.
- The mean of $\{1,2,4,5,6,8,900\}$ is $\frac{1+2+4+5+6+8+900}{7} \approx 132.28$!
- Using the mean and median simultaneously can be a good idea.
- We should try to identify outliers (extreme values that seem to be "strange") before calculating a mean (or any statistics).

Population means vs. sample means

- Let $\left\{x_{i}\right\}_{i=1, \ldots, N}$ be a population with N as the population size. The population mean is

$$
\mu \equiv \frac{\sum_{i=1}^{N} x_{i}}{N} .
$$

- Let $\left\{x_{i}\right\}_{i=1, \ldots, n}$ be a sample with $n<N$ as the sample size. The sample mean is

$$
\bar{x} \equiv \frac{\sum_{i=1}^{n} x_{i}}{n} .
$$

- People use μ and \bar{x} in almost the whole statistics world.

Population means v.s. sample means

$$
\mu \equiv \frac{\sum_{i=1}^{N} x_{i}}{N}
$$

$$
\bar{x} \equiv \frac{\sum_{i=1}^{n} x_{i}}{n}
$$

- Isn't these two means the same?
- From the perspective of calculation, yes.
- From the perspective of statistical inference, no.
- Typically the population mean is fixed but unknown.
- The sample mean is random: We may get different values of \bar{x} today and tomorrow.
- To start from \bar{x} and use inferential statistics to estimate or test μ, we need to apply probability.

Quartiles and percentiles

- The median lies at the middle of the data.
- The first quartile lies at the middle of the first half of the data.
- The third quartile lies at the middle of the second half of the data.
- For the p th percentile:
- $\frac{p}{100}$ of the values are below it.
- $1-\frac{p}{100}$ of the values are above it.
- Median, quartiles, and percentiles:
- The 25 th percentile is the first quartile.
- The 50 th percentile is the median (and the second quartile).
- The 75th percentile is the third quartile.

Road map

- Describing central tendency.
- Describing variability.
- Describing correlation.

Variability

- Measures of variability describe the spread or dispersion of a set of data.
- Especially important when two sets of data have the same center.

Ranges and Interquartile ranges

- The range of a set of data $\left\{x_{i}\right\}_{i=1, \ldots, N}$ is the difference between the maximum and minimum numbers, i.e.,

$$
\max _{i=1, \ldots, N}\left\{x_{i}\right\}-\min _{i=1, \ldots, N}\left\{x_{i}\right\}
$$

- The interquartile range of a set of data is the difference of the first and third quartile.
- It is the range of the middle 50 of data.
- It excludes the effects of extreme values.

Deviations from the mean

- Consider a set of population data $\left\{x_{i}\right\}_{i=1, \ldots, N}$ with mean μ.
- Intuitively, a way to measure the dispersion is to examine how each number deviates from the mean.
- For x_{i}, the deviation from the population mean is defined as

$$
x_{i}-\mu
$$

- For a sample, the deviation from the sample mean of x_{i} is

i	x_{i}	deviation
1	1	$1-5=-4$
2	2	$2-5=-3$
3	4	$4-5=-1$
4	5	$1-5=0$
5	6	$6-5=1$
6	8	$8-5=3$
7	9	$9-5=4$
Mean	5	

$$
x_{i}-\bar{x}
$$

Mean deviations

- May we summarize the N deviations into a single number to summarize the aggregate deviation?
- Intuitively, we may sum them up and then calculate the mean deviation:

$$
\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)}{N}
$$

- Is it always 0 ?

i	x_{i}	deviation
1	1	$1-5=-4$
2	2	$2-5=-3$
3	4	$4-5=-1$
4	5	$1-5=0$
5	6	$6-5=1$
6	8	$8-5=3$
7	9	$9-5=4$
Mean	5	0

Adjusting mean deviations

- People use two ways to adjust it:
- Mean absolute deviations (MAD):

$$
\frac{\sum_{i=1}^{N}\left|x_{i}-\mu\right|}{N}
$$

- Mean squared deviations (variance):

$$
\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}
$$

i	x_{i}	deviation d_{i}	$\left\|d_{i}\right\|$	d_{i}^{2}
1	1	$1-5=-4$	4	16
2	2	$2-5=-3$	3	9
3	4	$4-5=-1$	1	1
4	5	$1-5=0$	0	0
5	6	$6-5=1$	1	1
6	8	$8-5=3$	3	9
7	9	$9-5=4$	4	16
Mean	5	0	2.29	7.43

Measuring variability

- Larger MADs and variances means the data are more disperse.
- Consider two 7 -student groups and their grades:
- Group 1: 70, 72, 75, 76, 78, 80, 81.
- Group 2: 58, 63, 68, 74, 82, 90, 97.

i	x_{i}	d_{i}	$\left\|d_{i}\right\|$	d_{i}^{2}
1	70	-6	6	36
2	72	-4	4	16
3	75	-1	1	1
4	76	0	0	0
5	78	2	2	4
6	80	4	4	16
7	81	5	5	25
Mean	76	0	3.14	14

i	x_{i}	d_{i}	$\left\|d_{i}\right\|$	d_{i}^{2}
1	58	-18	18	324
2	63	-13	13	169
3	68	-8	8	64
4	74	-2	2	4
5	82	6	6	36
6	90	14	14	196
7	97	21	21	441
Mean	76	0	11.71	176.29

MADs vs. variances

- The main difference:
- An MAD puts the same weight on all values.
- A variance puts more weights on extreme values.
- They may give different ranks of dispersion:

i	x_{i}	d_{i}	$\left\|d_{i}\right\|$	d_{i}^{2}
1	0	-5	5	25
2	4	-1	1	1
3	5	0	0	0
4	6	1	1	1
5	10	5	5	25
Mean	5	0	2.4	10.4

i	x_{i}	d_{i}	$\left\|d_{i}\right\|$	d_{i}^{2}
1	1	4	4	16
2	2	3	3	9
3	5	0	0	0
4	8	3	3	9
5	9	4	4	16
Mean	5	0	2.8	10

- In general, people use variances more than MADs.
- But MADs are still popular in some areas, e.g., demand forecasting.
- It is the analyst's discretion to choose the appropriate one.

Standard deviations

- One drawback of using variances is that the unit of measurement is the square of the original one.
- For the baseball team, the variance of member heights is $34.05 \mathrm{~cm}^{2}$. What is it?!

178	172	175	184
172	175	165	178
177	175	180	182
177	183	180	178
179	162	170	171

$$
\sqrt{34.05} \approx 5.85 \mathrm{~cm}
$$

- A standard deviation typically has more managerial implications.

z-scores

- Consider a set of sample data $\left\{x_{i}\right\}_{i=1, \ldots, n}$ with sample mean \bar{x} and sample standard deviation s. For x_{i}, the z-score is

$$
z_{i}=\frac{x_{i}-\bar{x}}{s}
$$

- In a set of population data $\left\{x_{i}\right\}_{i=1, \ldots, N}$ with population mean μ and population standard deviation σ, the z-score of x_{i} is

$$
z_{i}=\frac{x_{i}-\mu}{\sigma}
$$

- A value's z-score measures for how many standard deviations it deviates from the mean.

z-scores vs. outliers

- For detecting outliers, one common way is double check whether x_{i} is an outlier if

$$
\left|z_{i}\right|=\left|\frac{x_{i}-\mu}{\sigma}\right|>3 .
$$

- It is quite rare for a value's magnitude of z-score to be so large.
- For sample data, use $\frac{x_{i}-\bar{x}}{s}$.
- Some people propose the use of median and MAD is a similar way: double check whether x_{i} is an outlier if ${ }^{1}$

$$
\left|\frac{x_{i}-\text { median }}{\text { MAD }}\right|>3 .
$$

- The above rules only suggest one to investigate some extreme values again. These rules are neither sufficient nor necessary for outliers.
${ }^{1}$ The "MAD" here can be mean absolute deviation from mean, mean absolute deviation from median, median absolute deviation from median, etc.

Population v.s. sample variances

- Recall that the formulas for population and sample means are

$$
\mu \equiv \frac{\sum_{i=1}^{N} x_{i}}{N} \quad \text { and } \quad \bar{x} \equiv \frac{\sum_{i=1}^{n} x_{i}}{n}, \text { respectively. }
$$

- Formula-wise there is no difference.
- However, population and sample variances are

$$
\sigma^{2} \equiv \frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N} \quad \text { and } \quad s^{2} \equiv \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}, \text { respectively }
$$

- Note the difference between N and $n-1$!
- Population and sample standard deviations are $\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}$ and $s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$, respectively.
- People use $\sigma^{2}, \sigma, s^{2}$, and s in almost the whole statistics world.

Coefficient of variation

- The coefficient of variation is the ratio of the standard deviation to the mean:

$$
\text { Coefficient of variation }=\frac{\sigma}{\mu} \text {. }
$$

- When will you use coefficients of variation?

Road map

- Describing central tendency.
- Describing variability.
- Describing correlation.

Introduction

- Consider the size of a house and its price in a city:

Size (in m^{2})	Price (in $\$ 1000)$
75	315
59	229
85	355
65	261
72	234
46	216
107	308
91	306
75	289
65	204
88	265
59	195

Sizes and prices of houses

- How do we measure/describe the correlation (linear relationship) between the two variables?

Intuition

- Consider a set of paired data $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1, \ldots, N}$.
- When one variable goes up, does the other one tend to go up or down?
- More precisely, if x_{i} is larger than μ_{x} (the mean of the $x_{i} \mathrm{~s}$), is it more likely to see $y_{i}>\mu_{y}$ or $y_{i}<\mu_{y}$?
- Let's highlight the two means on the scatter plot.

Intuition

- The scatter plot with the two means:

- We say that the two variables have a positive correlation.
- If one goes up when the other goes down, there is a negative correlation.

Covariances

- We define the covariance of a set of two-dimensional population data as

$$
\sigma_{x y} \equiv \frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N}
$$

- If most points fall in the first and third quadrants, most $\left(x_{i}-\mu_{x}\right)\left(y-\mu_{y}\right)$ will be positive and $\sigma_{x y}$ tends to be positive.
- Otherwise, $\sigma_{x y}$ tends to be negative.
- The sample covariance is

$$
s_{x y} \equiv \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

Example: house sizes and prices

- For our example:

x_{i}	y_{i}	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
75	315	1.08	50.25	54.44
59	229	-14.92	-35.75	533.27
85	355	11.08	90.25	1000.27
65	261	-8.92	-3.75	33.44
72	234	-1.92	-30.75	58.94
46	216	-27.92	-48.75	1360.94
107	308	33.08	43.25	1430.85
91	306	17.08	41.25	704.69
75	289	1.08	24.25	26.27
65	204	-8.92	-60.75	541.69
88	265	14.08	0.25	3.52
59	195	-14.92	-69.75	1040.44
$\bar{x}=73.92$	$\bar{y}=264.75$	-	-	$s_{x y}=617.16$

- So the covariance of house size and price is 617.16.
- Is it large or small?
- This depends on how variable the two variables themselves are.

Correlation coefficients

- To take away the auto-variability of each variable itself, we define the population and sample correlation coefficients as

$$
\rho \equiv \frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}} \quad \text { and } \quad r \equiv \frac{s_{x y}}{s_{x} s_{y}}
$$

- σ_{x} and σ_{y} are the population standard deviations of $x_{i} \mathrm{~S}$ and $y_{i} \mathrm{~s}$.
- s_{x} and s_{y} are the sample standard deviations of $x_{i} \mathrm{~S}$ and $y_{i} \mathrm{~s}$.
- In our example, we have $r=\frac{617.16}{16.78 \times 50.45} \approx 0.729$.
- It can be shown that we always have

$$
-1 \leq \rho \leq 1 \quad \text { and } \quad-1 \leq r \leq 1
$$

- $\rho>0(s>0)$: Positive correlation.
- $\rho=0(s=0)$: No correlation.
- $\rho<0(s<0)$: Negative correlation.

Magnitude of correlation

- In practice, people often determine the degree of correlation based on $|\rho|$ or $|s|$:
- $0 \leq|\rho|<0.25$ or $0 \leq|s|<0.25$: A weak correlation.
- $0.25 \leq|\rho|<0.5$ or $0.25 \leq|s|<0.5$: A moderately weak correlation.
- $0.5 \leq|\rho|<0.75$ or $0.5 \leq|s|<0.75$: A moderately strong correlation.
- $0.75 \leq|\rho| \leq 1$ or $0.75 \leq|s| \leq 1$: A strong correlation.

Correlation vs. independence

- A correlation coefficient only measures how one variable linearly depends on the other variable.

$$
(r=0.5973)
$$

$$
(r=0)
$$

- Being uncorrelated does not mean being independent!

