Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Statistics and Data Analysis Introduction to Probability (1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

Basic concepts	Independent events	Random variables	Descriptive measurements
0000000	000000	000000	00000

An example of statistical inference

- Quality control: For all LED lamps of brand IM, we are interested in μ, the average number of hours of luminance.
- ▶ Let's select a random sample of 40 lamps. A test shows that the sample average is $\bar{x} = 28000$ hours.
 - If I estimate that $\mu = 28000$, how likely I will be right?
 - If I estimate that $\mu \in [27000, 29000]$, how likely I will be right?
 - How about $\mu \in [26000, 30000]$?
- ▶ To assess these probabilities, we need to study Probability.

Basic concepts	Independent events	Random variables	Descriptive measurements
•0000000	000000	000000	00000

Road map

► Basic concepts.

- ▶ Independent events.
- ▶ Random variables.
- ▶ Descriptive measurements.

Basic concepts 0●000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Experiments and events

- ► An experiment is a process that produces (random) outcomes.
 - ▶ Tossing a coin. Outcomes: head or tail.
 - ▶ Testing a new drug on a patient: Outcomes: Effective, not effective, getting worse.
 - ▶ Interviewing 20 consumers regarding how many will buy a new product. Outcomes: 10, 15, 0, etc.
 - Sampling every 200th bottle of ketchup for its weight. Outcome?
- An **event** is an outcome of an experiments.
- Each event has its **probability** to occur.
 - Tossing a fair coin: $\frac{1}{2}$ for head and $\frac{1}{2}$ for tail.
 - Rolling a fair dice: $\frac{1}{6}$ for each possible outcome.
- Let A be an event of an experiment, we write Pr(A) to denote the probability for A to occur.
 - Let A be getting a head when tossing a fair coin, then $Pr(A) = \frac{1}{2}$.

Basic concepts	Independent events	Random variables	Descriptive measurements
0000000	000000	000000	00000

Elementary events

- ► An elementary event is an event that cannot be decomposed into smaller events.
- Consider the experiment of rolling a dice.
 - Getting 3 is an elementary event.
 - ▶ How about getting a number larger than 3?
 - ▶ The event of getting larger than 3 can be decomposed into three elementary events: getting 4, 5, and 6.
 - How about getting an even number?
- ▶ For asking Jane, Mary, Melissa, and Lucy about a new product:
 - ▶ Is "one is willing to buy" an elementary event?
 - ▶ How about "Mary is willing to buy but all the other three are not?"

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Sample spaces

- ► The **sample space** of an experiment is the collection of all elementary events.
 - ▶ A sample space contains "all basic things that may happen."
 - ▶ Nothing outside the sample space can occur.
- ▶ What is the sample space of:
 - ▶ Rolling a dice?
 - Rolling two dices?
 - Asking 20 consumers?
 - Testing a new drug?
- If S is a sample space, we have Pr(S) = 1.
- ► A sample space is a set. Elementary elements are elements of the set. Events are subsets of the set.
 - If x is an elementary event of an event X, we write $x \in X$.
 - ▶ E.g., "getting 2" \in "getting an even number."

Basic concepts	Independent events	Random variables	Descriptive measurements
00000000	000000	000000	00000

Unions and intersections

- Let A and B be two events and S be the sample space.
- ▶ The union of A and B, denoted by $A \cup B$, contains elementary events in A or B.

•
$$A \cup B = \{x | x \in A \text{ or } x \in B\}.$$

- E.g., $\{2,3,5\} \cup \{1,5,6\} = \{1,2,3,5,6\}.$
- ▶ The intersection of A and B, denoted by $A \cap B$, contains elementary events that are in A and B.

•
$$A \cap B = \{x | x \in A \text{ and } x \in B\}.$$

• E.g.,
$$\{2, 3, 5\} \cap \{1, 5, 6\} = \{5\}.$$

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Unions and intersections

▶ The union of two (or more) events is also an event.

- Consider rolling a fair dice.
- Let event A be getting an even number. We have $Pr(A) = \frac{1}{2}$.
- Let event B be getting larger than three. We have $Pr(B) = \frac{1}{2}$.
- The **union probability** of *A* and *B* is

$$\Pr(A \cup B) = \Pr(\text{getting } 2, 4, 5, \text{ or } 6) = \frac{2}{3}.$$

- ▶ The intersection of two (or more) events is also an event.
 - Consider rolling a fair dice.
 - ▶ The **joint probability** of *A* and *B* is

$$\Pr(A \cap B) = \Pr(\text{getting 4 or 6}) = \frac{1}{3}.$$

 \blacktriangleright In fact, A and B are both unions of multiple elementary events.

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Two special cases

- Events are **mutually exclusive** if there is no intersection.
 - $A \cap B = \emptyset$ (empty).
 - ▶ Events are mutually exclusive if all their elementary events are different.
 - E.g., for rolling a dice, getting an even number and getting 5 are mutually exclusive.
- Events are collectively exhaustive if they together cover the whole sample space.
 - $\blacktriangleright \ S = A \cup B.$
 - ▶ Events are collectively exhaustive if one of them must occur.
 - E.g., for rolling a dice, getting an even number and getting smaller than six are collectively exhaustive.
 - ► Two collectively exhaustive sets are **not necessarily** mutually exclusive!

Basic concepts 0000000●	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Complements

- The **complement** of X, denoted by X', contains all elements not contained in X.
 - $X' = \{x | x \notin X\}$, where $x \notin X$ means x is not an element of X.
 - ▶ Graphically:

- ▶ E.g., for rolling a dice, getting less than three and getting greater than two are complements.
- ▶ E.g., for rolling a dice, getting less than three and getting greater than three are not complements.
- ▶ For any set X, X and its complement X' are mutually exclusive and collectively exhaustive, i.e., $X \cap X' = \emptyset$ and $X \cup X' = S$.
- Intuitively, $\Pr(X') = 1 \Pr(X)$.

Basic concepts 00000000	Independent events •00000	Random variables 000000	Descriptive measurements 00000

Road map

- ▶ Basic concepts.
- ► Independent events.
- ▶ Random variables.
- ▶ Descriptive measurements.

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Independent events

- ► Two events are **independent** if **whether one occurs** does not affect **the probability** for the other one to occur.
- ▶ Two events are **dependent** if they are not independent.
- ▶ A set of events are independent if **all** pairs of events are independent.
- ▶ Are the following pairs of events independent?
 - ▶ Rolling two today and rolling three tomorrow with a fair dice.
 - A customer is a man and he likes watching baseball.
 - One's phone number contains "7" and she was born on July.
 - A laptop is defective and it has a 14-inch screen.

Mathematical property

▶ For independent events, calculating the joint probability is easy:

Proposition 1

For any two independent events A and B, we have

 $\Pr(A \cap B) = \Pr(A) \Pr(B).$

▶ E.g., suppose we toss an unfair coin whose probability of head is $\frac{2}{3}$.

- ▶ Let *H* be getting a head and *T* be getting a tail in one toss: $Pr(H) = \frac{2}{3}$ and $Pr(T) = \frac{1}{3}$.
- Let HH be getting two heads, TT be getting two tails, HT be getting a head then a tail, and TH be getting a tail then a head in two tosses:

$$\Pr(HH) = \Pr(H)\Pr(H) = \frac{4}{9}, \Pr(HT) = \Pr(H)\Pr(T) = \frac{2}{9}, \text{etc.}$$

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 00000

Joint probability tables

▶ Two experiments may be presented by a **joint probability table**.

- Events of experiment 1 are listed in the first **column**.
- Events of experiment 2 are listed in the first **row**.
- A column and a row at the margin for **totals**.
- ▶ For the previous example of an unfair dice:

1 of	2nd		Total
180	Η	Т	Iotai
H	?	?	$\frac{2}{3}$
T	?	?	$\frac{1}{3}$
Total	$\frac{2}{3}$	$\frac{1}{3}$	1

- The last column records the probabilities of H and T for the first toss.
- The last row records the probabilities of H and T for the second toss.
- ▶ How to find the joint probabilities?

Basic concepts	Independent events	Random variables	Descriptive measurements
0000000	000000	000000	00000

Calculating joint probabilities

- ▶ To find the **joint probabilities** of two independent events A and B, simply apply $Pr(A \cap B) = Pr(A) Pr(B)$.
 - ▶ For the previous example of an unfair dice:

1 of	2nd		Total
150	Η	Т	10041
Н	$\frac{4}{9}$	$\frac{2}{9}$	$\frac{2}{3}$
T	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{1}{3}$
Total	$\frac{2}{3}$	$\frac{1}{3}$	1

• Each entry records a joint probability.

▶ Two joint events corresponding to two entries are mutually exclusive.

- The union probability can be found by summing up joint probabilities.
- ▶ E.g., the probability of "getting exactly one head" is

$$\Pr(HT \text{ or } TH) = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$$

Basic concepts	Independent events	Random variables	Descriptive measurements
0000000	00000	000000	00000

Joint probability tables with dependent events

• Events are not always independent.

	Supporting KM	IT Sup	porting DP	P Neither
Will vote for Ko Will vote for Lien	$17\% \\ 71\%$		$\frac{85\%}{4\%}$	$37\% \\ 20\%$
		Women	Men	
W Wi	ill vote for Ko ll vote for Lien	$36\% \\ 54\%$	$39\% \\ 30\%$	

(http://www.chinatimes.com/newspapers/20140929000800-260302)

Basic concepts	Independent events	Random variables	Descriptive measurements
0000000	000000	●00000	00000

Road map

- ▶ Basic concepts.
- ▶ Independent events.
- ▶ Random variables.
- ► Descriptive measurements.

Independent events 000000	Random variables 000000	Descriptive measurements 00000
	Independent events 000000	Independent events Random variables 000000 000000

Random variables

► A random variable (RV) is a variable whose outcomes are random.

► Examples:

- The outcome of tossing a coin.
- ▶ The outcome of rolling a dice.
- The number of people preferring Pepsi to Coke in a group of 25 people.
- The number of consumers entering a store at 7-8pm.
- ▶ The temperature of this classroom at tomorrow noon.
- ▶ The average studying hours of a group of 10 students.

Discrete and continuous random variables

- A random variable can be discrete or continuous.
- ▶ For a discrete RV, its value is **counted**.
 - The outcome of tossing a coin.
 - ▶ The outcome of rolling a dice.
 - ▶ The number of people preferring Pepsi to Coke in a group of 25 people.
 - ▶ The number of consumers entering a store at 7-8pm.
- ► For a continuous RV, its value is **measured**.
 - The temperature of this classroom at tomorrow noon.
 - ▶ The average studying hours of a group of 10 students.
- ► A discrete RV has **gaps** among its possible values; a continuous RV's possible values typically form an **interval**.

Basic concepts	Independent events	Random variables	Descriptive measurements
00000000	000000	000●00	00000

Discrete and continuous distributions

- ▶ How to describe a random variable?
 - ▶ Writing down all possible values (the **sample space**) is not enough.
 - ▶ For each possible value, we must also describe **how likely** it will occur.
- ► The likelihoods for all outcomes of a random variable to be realized are summarized by **probability distributions**, or simply distributions.
- ▶ As variables can be either discrete or continuous, distributions may also be either discrete or continuous.
 - ▶ Today we study discrete distributions.
 - ▶ In the next week we study continuous distributions.

Basic concepts 00000000	Independent events 000000	Random variables	Descriptive measurements 00000

Describing a discrete distribution

- ▶ For a discrete random variable, we may **list** all possible outcomes and their probabilities.
 - Let X be the result of tossing a fair coin:

x	Head	Tail
$\Pr(X = x)$	$\frac{1}{2}$	$\frac{1}{2}$

• Let X be the result of rolling a fair dice:

x	1	2	3	4	5	6
$\Pr(X = x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- The function Pr(X = x), sometimes abbreviated as Pr(x), for all $x \in S$, is called the **probability mass function** (pmf) or probability function of X.
- ► For any random variable X, we have $\sum_{x \in S} \Pr(X = x) = 1$.

Basic concepts 00000000	Independent events 000000	Random variables	Descriptive measurements 00000

Describing a discrete distribution: an example

- Let X_1 be the result of tossing a fair coin for the first time.
- Let X_2 be the result of tossing a fair coin for the second time.
- ▶ Let Y be the **number of heads** obtained by tossing a fair coin twice.
- What is the distribution of Y?
 - ▶ Possible values: 0, 1, and 2.
 - ▶ Probabilities: What are Pr(Y = 0), Pr(Y = 1), and Pr(Y = 2)?
- According to the joint probability table:

	$X_2 = \text{Head}$	$X_2 = \text{Tail}$	-		0	-1	0
$X_1 - Head$	1	1		y	0	1	2
$A_1 = \text{field}$	$\overline{4}$	4	-	$\Pr(V = u)$	1	1	1
$X_1 = \text{Tail}$	<u>1</u>	<u>1</u>		11(1-g)	4	2	4
1un	4	4					

▶ How would you find the distribution of Z, the number of heads obtained by tossing a fair coin for three times?

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements •0000

Road map

- ▶ Basic concepts.
- ▶ Independent events.
- ▶ Random variables.
- ► Descriptive measurements.

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements 0000

Descriptive measurements

- ► Consider a discrete random variable X with a sample space S, realizations $\{x_i\}_{i \in S}$, and a pmf $Pr(\cdot)$.
- The **expected value** (or mean) of X is

$$\mu \equiv \mathbb{E}[X] = \sum_{i \in S} x_i \Pr(x_i).$$

• The **variance** of X is

$$\sigma^2 \equiv \operatorname{Var}(X) \equiv \mathbb{E}\left[(X - \mu)^2 \right] = \sum_{i \in S} (x_i - \mu)^2 \operatorname{Pr}(x_i).$$

• The standard deviation of X is $\sigma \equiv \sqrt{\sigma^2}$.

Basic concepts	Independent events	Random variables	Descriptive measurements 00000
00000000	000000	000000	

Descriptive measurements: example 1

- ▶ Let X be the outcome of rolling a dice, then the pmf is $Pr(x) = \frac{1}{6}$ for all x = 1, 2, ..., 6.
 - ▶ The expected value of X is

$$\mathbb{E}[X] \equiv \sum_{i=1}^{6} x_i \Pr(x_i) = \frac{1}{6} (1 + 2 + \dots + 6) = 3.5.$$

• The variance of X is

$$\operatorname{Var}(X) \equiv \sum_{i \in S} (x_i - \mu)^2 \operatorname{Pr}(x_i)$$
$$= \frac{1}{6} \left[(-2.5)^2 + (-1.5)^2 + \dots + 2.5^2 \right] \approx 2.92.$$

• The standard deviation of X is $\sqrt{2.92} \approx 1.71$.

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements $000 \bullet 0$

Descriptive measurements: example 2

▶ Let X be the outcome of rolling an unfair dice:

x_i	1	2	3	4	5	6
$\Pr(x_i)$	0.2	0.2	0.2	0.15	0.15	0.1

• The expected value of X is

$$\mathbb{E}[X] \equiv \sum_{i=1}^{6} x_i \Pr(x_i)$$

= 1 × 0.2 + 2 × 0.2 + 3 × 0.2 + 4 × 0.15 + 5 × 0.15 + 6 × 0.1
= 3.15.

• Note that 3.15 < 3.5, the expected value of rolling a fair dice. Why?

Basic concepts 00000000	Independent events 000000	Random variables 000000	Descriptive measurements $0000 \bullet$

Descriptive measurements: example 2

• Let X be the outcome of rolling an unfair dice:

x_i	1	2	3	4	5	6
$\Pr(x_i)$	0.2	0.2	0.2	0.15	0.15	0.1

- The expected value of X is $\mu = 3.15$.
- The variance of X is

$$Var(X) \equiv \sum_{i \in S} (x_i - \mu)^2 \Pr(x_i)$$

= $(-2.15)^2 \times 0.2 + (-1.15)^2 \times 0.2 + (-0.15)^2 \times 0.2$
+ $0.85^2 \times 0.15 + 1.85^2 \times 0.15 + 2.85^2 \times 0.1$
 $\approx 2.6275.$

- ▶ Note that 2.6275 < 2.92, the variance of rolling a fair dice. Why?
- The standard deviation of X is $\sqrt{2.6275} \approx 1.62$.