Statistics and Data Analysis Introduction to Probability (2)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Road map

- Application: inventory management.
- Continuous random variables.
- Normal distribution.

Application: inventory management

- Suppose you are selling apples.
- The unit purchasing cost is $\$ 2$.
- The unit selling price is $\$ 10$.
- Question: How many apples to prepare at the beginning of each day?
- Too many is not good: Leftovers are valueless.
- Too few is not good: There are lost sales.
- According to your historical sales records, you predict that tomorrow's demand is X, whose distribution is summarized below:

x_{i}	0	1	2	3	4	5	6	7	8
$\operatorname{Pr}\left(x_{i}\right)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

Daily demand distribution

- The probability distribution is depicted.
- A distribution with a long tail at the right is said to be positively skewed.
- It is negatively skewed if there is a long tail at the left.
- Otherwise, it is symmetric.

Inventory decisions

- Researchers have found efficient ways to determine the optimal (profit-maximizing) stocking level for any demand distribution.
- This should be discussed in courses like Operations and Service Management.
- For our example, at least we may try all the possible actions.
- Suppose the stocking level is $y, y=0,1, \ldots, 8$, what is the expected profit $f(y)$?
- Then we choose the stocking level with the highest expected profit.

Expected profit function

- If $y=0$, obviously $f(y)=0$.
- If $y=1$:
- With probability $0.06, X=0$ and we lose $0-2=-2$ dollars.
- With probability $0.94, X \geq 1$ and we earn $10-2=8$ dollars.
- The expected profit is $(-2) \times 0.06+8 \times 0.94=7.4$ dollars.

Daily demand distribution

Expected profit function

- If $y=2$:
- With probability $0.06, X=0$ and we lose $0-4=-4$ dollars.
- With probability $0.15, X=1$ and we earn $10-4=6$ dollars.
- With probability $0.79, X \geq 2$ and we earn $20-4=16$ dollars.
- The expected profit is
$(-4) \times 0.06+6 \times 0.15+16 \times 0.79=13.3$ dollars.
- By repeating this on $y=3,4, \ldots, 8$, we may fully derive the expected profit
 function $f(y)$.

Optimizing the inventory decision

Expected profit function

- The optimal stocking level is 4 .
- What if the unit production cost is not $\$ 2$?

Impact of the unit cost

Expected profit functions

- For unit costs $1,2,3$, or 4 dollars, the optimal stocking levels are 5, 4, 4 , and 3 , respectively.
- Does the optimal stocking level always decrease when the unit cost increase?
- Anyway, understanding probability allows us to make better decisions!

Road map

- Application: inventory management.
- Continuous random variables.
- Normal distribution.

Continuous random variables

- Some random variables are continuous.
- The value of a continuous random variable is measured, not counted.
- E.g., the number of students in our classroom when then next lecture starts is discrete.
- E.g., the temperature of our classroom at that time is continuous.
- For a continuous RV, its possible values typically lie in an interval.
- Let X be the temperature (in Celsius) of our classroom when the next lecture starts. Then $X \in[0,50]$.
- We are interested in knowing the following quantities:
- $\operatorname{Pr}(X=20), \operatorname{Pr}(18 \leq X \leq 22), \operatorname{Pr}(X \geq 30), \operatorname{Pr}(X \leq 12)$, etc.

Continuous random variables

- As another example, consider the number of courses taken by a student in this semester.
- Let's label students in this class as $1,2, \ldots$, and n.
- Let X_{i} be the number of courses taken by student i.
- Obviously, X_{i} is discrete.
- However, their mean $\bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ is (approximately) continuous!
- Especially when n is large.
- In statistics, the understanding of continuous random variables is much more important than that of discrete ones.

Continuous probability distribution

- Consider the task of randomly generating a value in $[0,6]$ again.
- Let the outcome be X.
- All values in $[0,6]$ are equally likely to be observed.
- What is the probability of getting $X=2$?
- Because all the values ($0,1,2.4,3.657432,4.44 \ldots, \pi$, $\sqrt{2}$, etc.) may be an outcome, the probability of getting exactly $X=2$ is zero.
- In general, $\operatorname{Pr}(X=a)=0$ for all $a \in \mathbb{R}$ as long as X is continuous.
- What is the probability of getting no greater than $2, \operatorname{Pr}(X \leq 2) ?^{1}$

[^0]
Continuous probability distribution

- Obviously, $\operatorname{Pr}(X \leq 2)=\frac{1}{3}$.
- Similarly, we have:
- $\operatorname{Pr}(X \leq 3)=\frac{1}{2}$.
- $\operatorname{Pr}(X \geq 4.5)=\frac{1}{4}$.
- $\operatorname{Pr}(3 \leq X \leq 4)=\frac{1}{6}$.
- For a continuous random variable:
- A single value has no probability.
- An interval has a probability!

Continuous probability distribution

- Let Y be a random variable within $[10,50]$. Suppose that all values occur with the same likelihood.
- Then we have:
- $\operatorname{Pr}(Y \leq 30)=\frac{1}{2}$.
- $\operatorname{Pr}(Y \geq 45)=\frac{50-45}{50-10}=\frac{1}{8}$.
- $\operatorname{Pr}(20 \leq Y \leq 30)=\frac{1}{4}$.
- $\operatorname{Pr}(Y \leq 5)=0$.
- In general, we have

$$
\operatorname{Pr}(a \leq Y \leq b)=\frac{b-a}{50-10}
$$

for all $10 \leq a \leq b \leq 50$.

Uniform distribution

- The random variables X and Y are very special:
- All possible values are equally likely to occur.
- For a continuous random variable of this property, we say it follows a (continuous) uniform distribution.
- When X is uniformly distributed in $[a, b]$, we write $X \sim \operatorname{Uni}(a, b)$.
- If a discrete random variable possesses this property (e.g., rolling a fair dice), we say it follows a discrete uniform distribution.
- When do we use a uniform random variable?
- When we want to draw one from a population fairly (i.e., randomly).
- When we sample from a population.

Non-uniform distribution

- Sometimes a continuous random variable is not uniform.
- Let X be the temperature of the classroom when the next lecture starts.
- We can say that $X \in[0,50]$.
- X is more likely to occur in [20,30] but less likely in [10, 20] and [30, 40].

It is almost impossible for X to be in $[0,10]$ and $[40,50]$.

- The likelihood of X in different intervals can be different.
- We use a probability density function (pdf) $f(x)$ to describe the likelihood of each possible value. Larger $f(x)$ means higher likelihood.
- For X, let its pdf be

$$
f(x)= \begin{cases}0.005 & \text { if } x<10 \\ 0.02 & \text { if } 10 \leq x<20 \\ 0.05 & \text { if } 20 \leq x<30 \\ 0.02 & \text { if } 30 \leq x<40 \\ 0.005 & \text { if } 40 \leq x\end{cases}
$$

Non-uniform distribution

- Given the pdf $f(x)$, the probability for X to be smaller than any given value $x>0$ is

$$
\operatorname{Pr}(X \leq x)=\int_{0}^{x} f(v) d v
$$

That is, the area below the pdf from 0 to x.

- The "sum" of the likelihood of all values between 0 to x is the probability.
- E.g., $\operatorname{Pr}(X \leq 30)=10 \times 0.005+10 \times 0.02+10 \times 0.05=0.75$.

Non-uniform distribution

- E.g., $\operatorname{Pr}(X \leq 18)=10 \times 0.005+8 \times 0.02=0.21$.

- $\operatorname{Pr}(X \leq 18)=0.21<\frac{18}{30} \operatorname{Pr}(X \leq 30)=\frac{18}{30}(0.75)=0.45$. This is because X is more likely to be within $[20,30]$.

Cumulative distribution functions

- We call $F(x)=\operatorname{Pr}(X \leq x)$ the cumulative distribution function (cdf) of X.
- It is the cumulative probability up to the give value x.
- For any given region $[a, b]$, we then have

$$
\operatorname{Pr}(a \leq X \leq b)=\operatorname{Pr}(X \leq b)-\operatorname{Pr}(X \leq a)=F(b)-F(a)
$$

- E.g., $\operatorname{Pr}(18 \leq X \leq 30)=F(30)-F(18)=0.75-0.21=0.54$.

Density and distribution functions

- Continuous random variables are important in inferential statistics.
- Because many statistics, e.g., the sample mean \bar{x}, are continuous random variables.
- To infer a parameter (e.g., the population mean μ), we rely on the distribution of a statistic.
- The concepts of density and distribution functions (i.e., pdf and cdf) are important.
- A pdf describes the likelihood of each possible value.
- A cdf are used to calculate the probability of being within a region.
- In most cases, statistical software do the calculations.
- But we need to know what to calculate.

Road map

- Application: inventory management.
- Continuous random variables.
- Normal distribution.

Central tendency

- In practice, typically data do not spread uniformly.
- Values tend to be close to the center.
- Natural variables: heights of people, weights of dogs, lengths of leaves, temperature of a city, etc.
- Performance: number of cars crossing a bridge, sales made by salespeople, consumer demands, student grades, etc.
- All kinds of errors: estimation errors for consumer demand, differences from a manufacturing standard, etc.
- We need a distribution with such a central tendency.

Normal distribution

- The normal distribution is the most important distribution in statistics (and many other fields).
- If a random variable follows the normal distribution, most of its "normal values" will be close to the center.
- It is symmetric and bell-shaped.

Normal distribution

- Mathematically, a random variable X follows a normal distribution with mean μ and standard deviation σ if its pdf is

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad \text { for all } x \in(-\infty, \infty)
$$

- Well... Anyway, you know there is a definition.
- We write $X \sim \mathrm{ND}(\mu, \sigma)$.
- Some important properties of the normal distribution:
- Its peak locates at its mean (expected value).
- Its mean equals its median.
- The larger the standard deviation, the flatter the curve.

Altering normal distributions

- Increasing the expected value μ shifts the curve to the right.
- Increasing the standard deviation σ makes the curve flatter.

Classroom temperature

- Let X be the room temperature when the next lecture starts.
- Suppose that $X \sim \mathrm{ND}(25,5)$.
- Suppose that the lecture must be canceled if $X<15$ or $X>35$.
- The probability for the lecture to be canceled is

$$
\begin{aligned}
\operatorname{Pr}(X<15 \text { or } X>35) & =\operatorname{Pr}(X<15)+\operatorname{Pr}(X>35) \\
& =2 \operatorname{Pr}(X<15) \approx 5 \% .
\end{aligned}
$$

Standard normal distributions

- The standard normal distribution, sometimes denoted as $\phi(x)$, is a normal distribution with $\mu=0$ and $\sigma=1$.
- All normal distributions can be transformed to the standard normal distribution.

$$
\begin{aligned}
& \text { Proposition } 1 \\
& \text { If } X \sim \mathrm{ND}(\mu, \sigma) \text {, then } \\
& Z=\frac{X-\mu}{\sigma} \sim \mathrm{ND}(0,1) .
\end{aligned}
$$

- This transformation is called
 standardization.

Standard normal distributions

- Consider a set of data.
- For a value x, we define its z-score as $z=\frac{x-\mu}{\sigma}$.
- It measures how far this value is from the mean, using the standard deviation as the unit of measurement.
- E.g., if $z=2$, the value is 2 standard deviations above the mean.
- Is two σ s away from the mean normal or not?
- Recall our classroom temperature example:
- $X \sim \mathrm{ND}(25,5)$ and $\operatorname{Pr}(X<15)+\operatorname{Pr}(X>35) \approx 5 \%$.
- For a normally distributed random variable, it will be two σ s away from mean with probability 5%.
- Recall our " 3σ " rule for detecting outliers.
- We also have $\operatorname{Pr}(X<10)+\operatorname{Pr}(X>40) \approx 0.25 \%$.
- That is why the distance of three σ s is suggested.

Quality control and "six sigma"

- As long as the distribution is normal:

Quality standard	Probability
One σ	68%
Two σ	95%
Three σ	99.7%
Six σ	99.9997%

- The calculations of these probabilities depends on cdf.

[^0]: ${ }^{1}$ Because $\operatorname{Pr}(X=2)=0$, we have $\operatorname{Pr}(X \leq 2)=\operatorname{Pr}(X<2)$. In other words, "less than" and "no greater than" are the same regarding probabilities.

