Statistics and Data Analysis Distributions and Sampling (1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction

- ▶ We have learned two separate topics.
 - Descriptive statistics: visualization and summarization of **existing data** to understand the data.
 - Probability: using assumed probability distributions (for, e.g., inventory management).
- ▶ Now it is time to connect them.
- ▶ This lecture:
 - ► We will study how to **estimate the distribution** of a random variable from existing data.
 - We will study how to **sample** from a population.
- ▶ The next lecture:
 - ▶ We will study **sampling distribution**: the distribution of a sample.

Road map

• Estimating probability distributions.

- When the sample space is small.
- When the sample space is large.
- Sampling techniques.

Estimating probability distributions

• Given a random variable, how to know its **probability distribution**?

- Given a coin, what will be the outcome of tossing it?
- Given a room and a time point, what will be the temperature?
- ► Given a population of people, what will be the age of a randomly selected person?
- ▶ Given a potential customer, will she/he buy my product?
- Given a web page and a time horizon, how many visitors will we have?
- Given a batch of products, how many will pass a given quality standard?
- ▶ We want more than one value; we want a **distribution**.
 - ▶ For each possible value, how likely it will be realized.
 - We may plan our inventory level only if we have a demand distribution.
- ► To do the estimation, we **do experiments** or **collect past data**.

Estimating probability distributions

- ▶ Given a random variable, how to know its probability distribution?
 - Given a random variable X, how to get $F(x) = \Pr(X \le x)$?
- Given a coin, how to know whether it is fair?
 - Let X be the outcome of tossing a coin.
 - Let X = 1 if the outcome is a head or 0 otherwise.

• Let
$$\Pr(X = 1) = p = 1 - \Pr(X = 0)$$
.

▶ Is
$$p = 0.5$$
?

Frequency and probability distributions

- ► The most straightforward way: Use a **frequency distribution** to be the **probability distribution**.
 - We may flip the coin for 100 times.
 - ▶ Suppose we see 46 heads and 54 tails.
 - We may "estimate" that p = 0.46.
- ▶ A frequency distribution and a probability distribution are different.
 - ► A frequency distribution is what we observe. It is an outcome of investigating a **sample**.
 - ► A probability distribution is what governs the random variable. It is a property of a **population**.
- ▶ We may never know whether we are right. Technically speaking, we will never be "right."
 - ▶ However, this is the most practical way.
 - ▶ This is "approximately right" if we have enough data.
 - "To what degree we are wrong" will be discussed in further lectures.

Estimating a discrete distribution

- Consider a discrete random variable whose number of possible values are not too many.
 - ▶ Tossing a coin: 2 possible values. Rolling a dice: 6 possible values.
 - ▶ The gender of a randomly selected student: 2 (or more) possible values.
 - ▶ The district that a randomly selected Taipei resident lives in: 12.
 - ▶ Tomorrow's weather situation: sunny, cloudy, raining, snowing.
 - ▶ The daily sales quantity of cars at the small car dealer: 0, 1, ..., 10.
- Let X be the random variable and S be the sample space.
 - ▶ We are saying that S does not contain too many values.
- We want to know $Pr(X = x) = p_x$ for any $x \in S$.
- ▶ In this case, let $\{x_i\}_{i=1,...,n}$ be our observed sample data. Given a value $x \in S$, we will simply use the **proportion**

 $\frac{\text{number of } x_i \text{s that is } x}{\text{number of } x_i \text{s}}$

to be our estimated p_x .

When the sample space is small: example

- ▶ A data set records the daily weather for the 731 days in two years.
 - ▶ 1 for sunny or partly cloudy, 2 for misty and cloudy, 3 for light snow or light rain, and 4 for heavy snow or thunderstorm.
- Let X be the daily weather for any given day in the future.
- We have $S = \{1, 2, 3, 4\}$.
- ▶ By looking at the data set, we obtain

x	Frequency	Proportion
1	463	0.633
2	247	0.338
3	21	0.029
4	0	0

• Let $p_i = \Pr(X = i)$, we then estimate that $p_1 = 0.633$, $p_2 = 0.338$, $p_3 = 0.029$, and $p_4 = 0$.

Manually adjusting an estimation

• The estimated probability distribution of X is

$$p_1 = 0.633$$
, $p_2 = 0.338$, $p_3 = 0.029$, and $p_4 = 0$.

• We know that this estimation is just based on a sample.

- ▶ It is never "right."
- ▶ Manual adjustments based on experiences or knowledge are allowed.
- E.g., we may adjust it to

$$p_1 = 0.65, p_2 = 0.3, p_3 = 0.03, and p_4 = 0.02.$$

Refining an estimation

 \blacktriangleright The estimated probability distribution of X is

 $p_1 = 0.633, p_2 = 0.338, p_3 = 0.029, and p_4 = 0.$

- ▶ We may refine the estimation by considering **more information**.
- ▶ Suppose that we know the day of interest is on December.
 - ▶ For the 62 days in December in our sample, we have

x	Frequency	Proportion
1	32	0.516
2	27	0.436
3	3	0.048
4	0	0

▶ We may adjust it (again with manual adjustments) to

$$p_1 = 0.5, p_2 = 0.4, p_3 = 0.06, and p_4 = 0.04.$$

When the sample space is large

- ▶ When the sample space is large, this method is not very helpful.
 - E.g., a data set records the daily bike rentals in 731 days.
 - Let X be the daily bike rental.
 - \blacktriangleright X is discrete. Its sample space contains more than 8000 values.
 - The naive counting for frequencies does not help.
- ▶ In this case, we rely on **frequency distributions** to estimate the probability for the value to be **within a class**.
 - We may use the **class midpoint** to represent values in the class.
 - We may generate a **uniform distribution** for each class.

When the sample space is large: example

- Let X be the daily bike rental for a given day in the future.
- ▶ A data set contains the daily bike rentals in 731 days.
- ▶ We obtain the frequency distribution of daily bike rentals:

x	Frequency	Proportion
[0, 1000)	18	0.025
[1000, 2000)	80	0.109
[2000, 3000)	74	0.101
[3000, 4000)	107	0.146
[4000, 5000)	166	0.227
[5000, 6000)	106	0.145
[6000, 7000)	86	0.118
[7000, 8000)	82	0.112
[8000, 9000)	12	0.016

Proportion 0.025 0.109 0.101 0.146 0.227 0.145 0.118 0.112 0.016

Using class midpoints as representatives

► We now create an artificial sample space	x
$S = \{500, 1500, \dots, 8500\}.$	[0, 1000)
• We estimate that $Pr(X = 500) = 0.025$,	[1000, 2000)
Pr(X = 1500) = 0.109,, and	[2000, 3000)
$\Pr(X = 8500) = 0.016.$	[3000, 4000)
▶ This probability distribution can help us	[4000, 5000)
predict daily bike rentals in the future.	[5000, 6000)
► We may of course manually adjust or	[6000, 7000) [7000, 8000)
refine the estimated probabilities.	[7000, 8000) [8000, 9000)
remit the commated probabilities.	[0000, 3000]

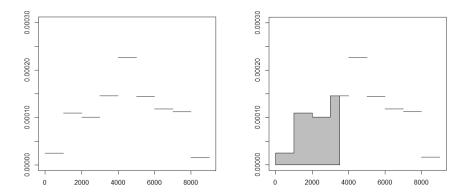
Generating uniform distributions for classes

- For each class, we create a uniform distribution so that its total probability is the observed proportion.
- Let f(x) be the pdf of X for $x \in [0, 9000)$.
- ▶ Within [0, 1000), the area below the pdf should be 0.025. This implies that $f(x) = \frac{0.025}{1000} = 0.000025$ for $x \in [0, 1000)$.
- Similarly, we have f(x) = 0.000109 for $x \in [1000, 2000)$.
- We repeat this process to all classes.

x	Proportion
[0, 1000)	0.025
[1000, 2000)	0.109
[2000, 3000)	0.101
[3000, 4000)	0.146
[4000, 5000)	0.227
[5000, 6000)	0.145
[6000, 7000)	0.118
[7000, 8000)	0.112
[8000, 9000)	0.016

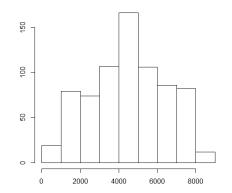
Generating uniform distributions for classes

▶ The pdf f(x) can be depicted: ▶ The cdf F(x) can be constructed:



Estimating a continuous random variable

- ► A continuous random variable "is" a discrete random variable with **extremely many** possible values in the sample space.
 - E.g., it is common in practice to approximate the daily bike rentals as a continuous random variable.
- We still start from a frequency distribution.
- The **histogram** now suggests us a continuous distribution.
 - Naturally, it looks similar to the pdf made by generating uniform distributions.

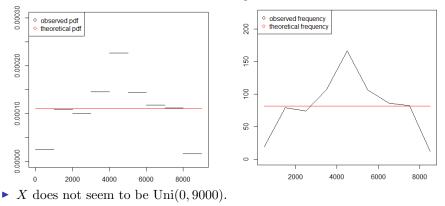


Fitting a distribution to a histogram

- We want to **fit** a distribution to a histogram.
- ▶ To do so, we select a distribution (by investigation and some experiences), find the theoretical frequency for each class following the distribution, and then plot the two sequences of frequencies together.
 - **Observed frequencies** are from the histogram.
 - **Theoretical frequencies** are from the assumed distribution.
 - ▶ If the two sequences are "close to each other," the fitting is appropriate.
- ▶ Equivalently, we may draw the pdf of the assumed distribution and the discrete distribution made by multiple uniform distributions together.
- ▶ We may try a few assumed distributions and select the best one.

Fitting a uniform distribution to a histogram

- ▶ Consider the daily bike rental example again.
- If we assume $X \sim \text{Uni}(0,9000)$, we have $f(x) = \frac{1}{9000}$ for $x \in [0,9000]$.
 - Or the theoretical frequencies are all $\frac{731}{9}$ in all classes.



Fitting a normal distribution to a histogram

- ▶ Let's try to fit a normal distribution to the histogram.
- ▶ We need to choose a mean and a standard deviation to construct the normal curve.
 - People may use their judgment.
 - ▶ A typical way: Use the sample mean and sample standard deviation.
 - For the 731 values, we have $\bar{x} \approx 4504$ and $s \approx 1937$.
- \blacktriangleright Let's fit ND(4504, 1937) to the histogram.
- If $X \sim ND(4504, 1937)$, we have:

[l,u)	$\Pr(l \le X < u)$	Theoretical frequency
[0, 1000)	0.035	25.75
[1000, 2000)	0.063	45.92
	• • •	
[8000, 9000)	0.025	18.59

Fitting a normal distribution to a histogram

• If we assume $X \sim ND(4504, 1937)$:



▶ ND(4504, 1937) seems to fit the observed data better.

▶ Further trials and adjustments are always possible.

Summary

- ▶ We want to estimate the probability distribution of a random variable.
- When the sample space is small:
 - Use the relative frequency of each possible value to be its probability.
- ▶ When the sample space is large:
 - Construct a frequency distribution.
 - Use the relative frequency of each class to be its probability.
 - ▶ In each class, either put all the probability on the class midpoint or spread it to all values.
- When the sample space is extremely large:
 - ▶ Look at a histogram and guess which probability distribution fits it.
 - ▶ Find the theoretical frequency for each class.
 - ▶ Compare the two sequences of observed and theoretical frequencies.
 - ▶ Stop when the overall difference is "small."¹
- ▶ Human judgments may be needed.

¹How to define "small" will be discussed in further lectures.

- Estimating probability distributions.
- ► Sampling techniques.

Random vs. nonrandom sampling

- ► Sampling is the process of selecting a **subset** of entities from the whole population.
- Sampling can be **random** or **nonrandom**.
- ▶ If random, whether an entity is selected is **probabilistic**.
 - ▶ Randomly select 1000 phone numbers on the telephone book and then call them.
- ▶ If nonrandom, it is **deterministic**.
 - ▶ Ask all your classmates for their preferences on iOS/Android.
- Most statistical methods are **only** for random sampling.
- ▶ Some popular random sampling techniques:
 - Simple random sampling.
 - Stratified random sampling.
 - Cluster (or area) random sampling.

- ▶ In simple random sampling, each entity has **the same probability** of being selected.
- Each entity is assigned a label (from 1 to N). Then a sequence of n random numbers, each between 1 and N, are generated.
- One needs a random number generator.
 - E.g., RAND() and RANDBETWEEN() in MS Excel.

- ▶ Suppose we want to study all students graduated from NTU IM regarding the number of units they took before their graduation.
 - ► N = 1000.
 - ▶ For each student, whether she/he double majored, the year of graduation, and the number of units are recorded.

i	1	2	3	4	5	6	7	 1000
Double major	Yes	No	No	No	Yes	No	No	Yes
Class	1997	1998	2002	1997	2006	2010	1997	 2011
Unit	198	168	172	159	204	163	155	171

• Suppose we want to sample n = 200 students.

- ▶ To run simple random sampling, we first generate a sequence of 200 random numbers:
 - ▶ Suppose they are 2, 198, 7, 268, 852, ..., 93, and 674.
 - Sampling with or without replacement?
- ▶ Then the corresponding 200 students will be sampled. Their information will then be collected.

i	1	2	3	4	5	6	7	 1000
Double major	Yes	No	No	No	Yes	No	No	Yes
Class	1997	1998	2002	1997	2006	2010	1997	 2011
Unit	198	168	172	159	204	163	155	171

▶ We may then calculate the sample mean, sample variance, etc.

- The good part of simple random sampling is **simple**.
- ► However, it may result in **nonrepresentative** samples.
- ▶ In simple random sampling, there are some possibilities that too much data we sample fall in the same stratum.
 - ▶ They have the same property.
 - ▶ For example, it is possible that all 200 students in our sample did not double major.
 - ▶ The sample is thus nonrepresentative.

- ▶ As another example, suppose we want to sample 1000 voters in Taiwan regarding their preferences on two candidates. If we use simple random sampling, what may happen?
 - \blacktriangleright It is possible that 65% of the 1000 voters are men while in Taiwan only around 51% voters are men.
 - ▶ It is possible that 40% of the 1000 voters are from Taipei while in Taiwan only around 28% voters live in Taipei.
- How to fix this problem?

Stratified random sampling

- We may apply **stratified random sampling**.
- ▶ We first split the whole population into several **strata**.
 - ► Data in **one** stratum should be (relatively) **homogeneous**.
 - ► Data in **different** strata should be (relatively) **heterogeneous**.
- We then use simple random sampling for each stratum.
- Suppose 100 students double majored, then we can split the whole population into two strata:

Stratum	Strata size
Double major	100
No double major	900

Stratified random sampling

- ▶ Now we want to sample 200 students.
- If we sample $200 \times \frac{100}{1000} = 20$ students from the double-major stratum and 180 ones from the other stratum, we have adopted **proportionate** stratified random sampling.

Stratum	Strata size	Number of samples		
Double major No double major	100 900	$\begin{array}{c} 20\\ 180 \end{array}$		

▶ If the opinions in some strata are more important, we may adopt **disproportionate** stratified random sampling.

• E.g., opening a nuclear power station at a particular place.

Stratified random sampling

- We may further split the population into more strata.
 - Double major: Yes or no.
 - ▶ Class: 1994-1998, 1999-2003, 2004-2008, or 2009-2012.
 - ▶ This stratification makes sense **only if** students in different classes tend to take different numbers of units.
- ► Stratified random sampling is good in **reducing sample error**.
- ▶ But it can be hard to identify a reasonable stratification.
- ► It is also more **costly** and **time-consuming**.

Cluster (or area) random sampling

- ▶ Imagine that you are going to introduce a new product into all the retail stores in Taiwan.
- ▶ If the product is actually unpopular, an introduction with a large quantity will incur a huge lost.
- ▶ How to get an idea about the popularity?
- ▶ Typically we first try to introduce the product **in a small area**. We put the product on the shelves only in those stores in the specified area.
- ▶ This is the idea of cluster (or area) random sampling.
 - ▶ Those consumers in the area form a sample.

Cluster (or area) random sampling

- ▶ In stratified random sampling, we define strata.
- ▶ Similarly, in cluster random sampling, we define **clusters**.
- ▶ However, instead of doing simple random sampling in each strata, we will only choose **one or some clusters** and then collect **all** the data in these clusters.
 - ► If a cluster is too large, we may further split it into multiple second-stage clusters.
- ► Therefore, we want data in a cluster to be **heterogeneous**, and data across clusters somewhat **homogeneous**.

Cluster (or area) random sampling

- ▶ In practice, the main application of cluster random sampling is to understand the popularity of **new products**. Those chosen cities (counties, states, etc.) are called **test market cities** (counties, states, etc.).
- People use cluster random sampling in this case because of its feasibility and convenience.
- ▶ We should select test market cities whose population profiles are similar to that of the entire country.

Nonrandom sampling

- ▶ Sometimes we do **nonrandom sampling**.
- Convenience sampling.
 - ▶ The researcher sample data that are easy to sample.
- ▶ Judgment sampling.
 - ▶ The researcher decides who to ask or what data to collect.
- Quota sampling.
 - ▶ In each stratum, we use whatever method that is easy to fill the quota, a predetermined number of samples in the stratum.
- Snowball sampling.
 - Once we ask one person, we ask her/him to suggest others.
- Nonrandom sampling cannot be analyzed by the statistical methods we introduce in this course.