Statistics and Data Analysis
 Distributions and Sampling (1)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Introduction

- We have learned two separate topics.
- Descriptive statistics: visualization and summarization of existing data to understand the data.
- Probability: using assumed probability distributions (for, e.g., inventory management).
- Now it is time to connect them.
- This lecture:
- We will study how to estimate the distribution of a random variable from existing data.
- We will study how to sample from a population.
- The next lecture:
- We will study sampling distribution: the distribution of a sample.

Road map

- Estimating probability distributions.
- When the sample space is small.
- When the sample space is large.
- Sampling techniques.

Estimating probability distributions

- Given a random variable, how to know its probability distribution?
- Given a coin, what will be the outcome of tossing it?
- Given a room and a time point, what will be the temperature?
- Given a population of people, what will be the age of a randomly selected person?
- Given a potential customer, will she/he buy my product?
- Given a web page and a time horizon, how many visitors will we have?
- Given a batch of products, how many will pass a given quality standard?
- We want more than one value; we want a distribution.
- For each possible value, how likely it will be realized.
- We may plan our inventory level only if we have a demand distribution.
- To do the estimation, we do experiments or collect past data.

Estimating probability distributions

- Given a random variable, how to know its probability distribution?
- Given a random variable X, how to get $F(x)=\operatorname{Pr}(X \leq x)$?
- Given a coin, how to know whether it is fair?
- Let X be the outcome of tossing a coin.
- Let $X=1$ if the outcome is a head or 0 otherwise.
- Let $\operatorname{Pr}(X=1)=p=1-\operatorname{Pr}(X=0)$.
- Is $p=0.5$?

Frequency and probability distributions

- The most straightforward way: Use a frequency distribution to be the probability distribution.
- We may flip the coin for 100 times.
- Suppose we see 46 heads and 54 tails.
- We may "estimate" that $p=0.46$.
- A frequency distribution and a probability distribution are different.
- A frequency distribution is what we observe. It is an outcome of investigating a sample.
- A probability distribution is what governs the random variable. It is a property of a population.
- We may never know whether we are right. Technically speaking, we will never be "right."
- However, this is the most practical way.
- This is "approximately right" if we have enough data.
" "To what degree we are wrong" will be discussed in further lectures.

Estimating a discrete distribution

- Consider a discrete random variable whose number of possible values are not too many.
- Tossing a coin: 2 possible values. Rolling a dice: 6 possible values.
- The gender of a randomly selected student: 2 (or more) possible values.
- The district that a randomly selected Taipei resident lives in: 12.
- Tomorrow's weather situation: sunny, cloudy, raining, snowing.
- The daily sales quantity of cars at the small car dealer: $0,1, \ldots, 10$.
- Let X be the random variable and S be the sample space.
- We are saying that S does not contain too many values.
- We want to know $\operatorname{Pr}(X=x)=p_{x}$ for any $x \in S$.
- In this case, let $\left\{x_{i}\right\}_{i=1, \ldots, n}$ be our observed sample data. Given a value $x \in S$, we will simply use the proportion

$$
\frac{\text { number of } x_{i} \mathrm{~s} \text { that is } x}{\text { number of } x_{i} \mathrm{~S}}
$$

to be our estimated p_{x}.

When the sample space is small: example

- A data set records the daily weather for the 731 days in two years.
- 1 for sunny or partly cloudy, 2 for misty and cloudy, 3 for light snow or light rain, and 4 for heavy snow or thunderstorm.
- Let X be the daily weather for any given day in the future.
- We have $S=\{1,2,3,4\}$.
- By looking at the data set, we obtain

x	Frequency	Proportion
1	463	0.633
2	247	0.338
3	21	0.029
4	0	0

- Let $p_{i}=\operatorname{Pr}(X=i)$, we then estimate that $p_{1}=0.633, p_{2}=0.338$, $p_{3}=0.029$, and $p_{4}=0$.

Manually adjusting an estimation

- The estimated probability distribution of X is

$$
p_{1}=0.633, p_{2}=0.338, p_{3}=0.029, \text { and } p_{4}=0 .
$$

- We know that this estimation is just based on a sample.
- It is never "right."
- Manual adjustments based on experiences or knowledge are allowed.
- E.g., we may adjust it to

$$
p_{1}=0.65, p_{2}=0.3, p_{3}=0.03, \text { and } p_{4}=0.02 .
$$

Refining an estimation

- The estimated probability distribution of X is

$$
p_{1}=0.633, p_{2}=0.338, p_{3}=0.029, \text { and } p_{4}=0 .
$$

- We may refine the estimation by considering more information.
- Suppose that we know the day of interest is on December.
- For the 62 days in December in our sample, we have

x	Frequency	Proportion
1	32	0.516
2	27	0.436
3	3	0.048
4	0	0

- We may adjust it (again with manual adjustments) to

$$
p_{1}=0.5, p_{2}=0.4, p_{3}=0.06, \text { and } p_{4}=0.04
$$

When the sample space is large

- When the sample space is large, this method is not very helpful.
- E.g., a data set records the daily bike rentals in 731 days.
- Let X be the daily bike rental.
- X is discrete. Its sample space contains more than 8000 values.
- The naive counting for frequencies does not help.
- In this case, we rely on frequency distributions to estimate the probability for the value to be within a class.
- We may use the class midpoint to represent values in the class.
- We may generate a uniform distribution for each class.

When the sample space is large: example

- Let X be the daily bike rental for a given day in the future.
- A data set contains the daily bike rentals in 731 days.
- We obtain the frequency distribution of daily bike rentals:

x	Frequency	Proportion
$[0,1000)$	18	0.025
$[1000,2000)$	80	0.109
$[2000,3000)$	74	0.101
$[3000,4000)$	107	0.146
$[4000,5000)$	166	0.227
$[5000,6000)$	106	0.145
$[6000,7000)$	86	0.118
$[7000,8000)$	82	0.112
$[8000,9000)$	12	0.016

Using class midpoints as representatives

- We now create an artificial sample space $S=\{500,1500, \ldots, 8500\}$.
- We estimate that $\operatorname{Pr}(X=500)=0.025$, $\operatorname{Pr}(X=1500)=0.109, \ldots$, and $\operatorname{Pr}(X=8500)=0.016$.
- This probability distribution can help us predict daily bike rentals in the future.
- We may of course manually adjust or refine the estimated probabilities.

x	Proportion
$[0,1000)$	0.025
$[1000,2000)$	0.109
$[2000,3000)$	0.101
$[3000,4000)$	0.146
$[4000,5000)$	0.227
$[5000,6000)$	0.145
$[6000,7000)$	0.118
$[7000,8000)$	0.112
$[8000,9000)$	0.016

Generating uniform distributions for classes

- For each class, we create a uniform distribution so that its total probability is the observed proportion.
- Let $f(x)$ be the pdf of X for $x \in[0,9000)$.
- Within $[0,1000)$, the area below the pdf should be 0.025 . This implies that $f(x)=\frac{0.025}{1000}=0.000025$ for $x \in[0,1000)$.
- Similarly, we have $f(x)=0.000109$ for $x \in[1000,2000)$.
- We repeat this process to all classes.

x	Proportion
$[0,1000)$	0.025
$[1000,2000)$	0.109
$[2000,3000)$	0.101
$[3000,4000)$	0.146
$[4000,5000)$	0.227
$[5000,6000)$	0.145
$[6000,7000)$	0.118
$[7000,8000)$	0.112
$[8000,9000)$	0.016

Generating uniform distributions for classes

- The pdf $f(x)$ can be depicted:

- The cdf $F(x)$ can be constructed:

Estimating a continuous random variable

- A continuous random variable "is" a discrete random variable with extremely many possible values in the sample space.
- E.g., it is common in practice to approximate the daily bike rentals as a continuous random variable.
- We still start from a frequency distribution.
- The histogram now suggests us a continuous distribution.
- Naturally, it looks similar to the pdf made by generating uniform
 distributions.

Fitting a distribution to a histogram

- We want to fit a distribution to a histogram.
- To do so, we select a distribution (by investigation and some experiences), find the theoretical frequency for each class following the distribution, and then plot the two sequences of frequencies together.
- Observed frequencies are from the histogram.
- Theoretical frequencies are from the assumed distribution.
- If the two sequences are "close to each other," the fitting is appropriate.
- Equivalently, we may draw the pdf of the assumed distribution and the discrete distribution made by multiple uniform distributions together.
- We may try a few assumed distributions and select the best one.

Fitting a uniform distribution to a histogram

- Consider the daily bike rental example again.
- If we assume $X \sim \operatorname{Uni}(0,9000)$, we have $f(x)=\frac{1}{9000}$ for $x \in[0,9000]$.
- Or the theoretical frequencies are all $\frac{731}{9}$ in all classes.

- X does not seem to be Uni(0,9000).

Fitting a normal distribution to a histogram

- Let's try to fit a normal distribution to the histogram.
- We need to choose a mean and a standard deviation to construct the normal curve.
- People may use their judgment.
- A typical way: Use the sample mean and sample standard deviation.
- For the 731 values, we have $\bar{x} \approx 4504$ and $s \approx 1937$.
- Let's fit ND $(4504,1937)$ to the histogram.
- If $X \sim \mathrm{ND}(4504,1937)$, we have:

$[l, u)$	$\operatorname{Pr}(l \leq X<u)$	Theoretical frequency
$[0,1000)$	0.035	25.75
$[1000,2000)$	0.063	45.92
	\vdots	
$[8000,9000)$	0.025	18.59

Fitting a normal distribution to a histogram

- If we assume $X \sim \mathrm{ND}(4504,1937)$:

- ND $(4504,1937)$ seems to fit the observed data better.
- Further trials and adjustments are always possible.

Summary

- We want to estimate the probability distribution of a random variable.
- When the sample space is small:
- Use the relative frequency of each possible value to be its probability.
- When the sample space is large:
- Construct a frequency distribution.
- Use the relative frequency of each class to be its probability.
- In each class, either put all the probability on the class midpoint or spread it to all values.
- When the sample space is extremely large:
- Look at a histogram and guess which probability distribution fits it.
- Find the theoretical frequency for each class.
- Compare the two sequences of observed and theoretical frequencies.
- Stop when the overall difference is "small." ${ }^{1}$
- Human judgments may be needed.

[^0]
Road map

- Estimating probability distributions.
- Sampling techniques.

Random vs. nonrandom sampling

- Sampling is the process of selecting a subset of entities from the whole population.
- Sampling can be random or nonrandom.
- If random, whether an entity is selected is probabilistic.
- Randomly select 1000 phone numbers on the telephone book and then call them.
- If nonrandom, it is deterministic.
- Ask all your classmates for their preferences on iOS/Android.
- Most statistical methods are only for random sampling.
- Some popular random sampling techniques:
- Simple random sampling.
- Stratified random sampling.
- Cluster (or area) random sampling.

Simple random sampling

- In simple random sampling, each entity has the same probability of being selected.
- Each entity is assigned a label (from 1 to N). Then a sequence of n random numbers, each between 1 and N, are generated.
- One needs a random number generator.
- E.g., RAND() and RANDBETWEEN() in MS Excel.

Simple random sampling

- Suppose we want to study all students graduated from NTU IM regarding the number of units they took before their graduation.
- $N=1000$.
- For each student, whether she/he double majored, the year of graduation, and the number of units are recorded.

i	1	2	3	4	5	6	7	\ldots	1000
Double major	Yes	No	No	No	Yes	No	No		Yes
Class	1997	1998	2002	1997	2006	2010	1997	\ldots	2011
Unit	198	168	172	159	204	163	155		171

- Suppose we want to sample $n=200$ students.

Simple random sampling

- To run simple random sampling, we first generate a sequence of 200 random numbers:
- Suppose they are $2,198,7,268,852, \ldots, 93$, and 674 .
- Sampling with or without replacement?
- Then the corresponding 200 students will be sampled. Their information will then be collected.

i	1	$\mathbf{2}$	3	4	5	6	$\mathbf{7}$	\ldots	1000
Double major	Yes	No	No	No	Yes	No	No		Yes
Class	1997	$\mathbf{1 9 9 8}$	2002	1997	2006	2010	$\mathbf{1 9 9 7}$	\ldots	2011
Unit	198	$\mathbf{1 6 8}$	172	159	204	163	$\mathbf{1 5 5}$		171

- We may then calculate the sample mean, sample variance, etc.

Simple random sampling

- The good part of simple random sampling is simple.
- However, it may result in nonrepresentative samples.
- In simple random sampling, there are some possibilities that too much data we sample fall in the same stratum.
- They have the same property.
- For example, it is possible that all 200 students in our sample did not double major.
- The sample is thus nonrepresentative.

Simple random sampling

- As another example, suppose we want to sample 1000 voters in Taiwan regarding their preferences on two candidates. If we use simple random sampling, what may happen?
- It is possible that 65% of the 1000 voters are men while in Taiwan only around 51% voters are men.
- It is possible that 40% of the 1000 voters are from Taipei while in Taiwan only around 28% voters live in Taipei.
- How to fix this problem?

Stratified random sampling

- We may apply stratified random sampling.
- We first split the whole population into several strata.
- Data in one stratum should be (relatively) homogeneous.
- Data in different strata should be (relatively) heterogeneous.
- We then use simple random sampling for each stratum.
- Suppose 100 students double majored, then we can split the whole population into two strata:

Stratum	Strata size
Double major	100
No double major	900

Stratified random sampling

- Now we want to sample 200 students.
- If we sample $200 \times \frac{100}{1000}=20$ students from the double-major stratum and 180 ones from the other stratum, we have adopted proportionate stratified random sampling.

Stratum	Strata size	Number of samples
Double major	100	20
No double major	900	180

- If the opinions in some strata are more important, we may adopt disproportionate stratified random sampling.
- E.g., opening a nuclear power station at a particular place.

Stratified random sampling

- We may further split the population into more strata.
- Double major: Yes or no.
- Class: 1994-1998, 1999-2003, 2004-2008, or 2009-2012.
- This stratification makes sense only if students in different classes tend to take different numbers of units.
- Stratified random sampling is good in reducing sample error.
- But it can be hard to identify a reasonable stratification.
- It is also more costly and time-consuming.

Cluster (or area) random sampling

- Imagine that you are going to introduce a new product into all the retail stores in Taiwan.
- If the product is actually unpopular, an introduction with a large quantity will incur a huge lost.
- How to get an idea about the popularity?
- Typically we first try to introduce the product in a small area. We put the product on the shelves only in those stores in the specified area.
- This is the idea of cluster (or area) random sampling.
- Those consumers in the area form a sample.

Cluster (or area) random sampling

- In stratified random sampling, we define strata.
- Similarly, in cluster random sampling, we define clusters.
- However, instead of doing simple random sampling in each strata, we will only choose one or some clusters and then collect all the data in these clusters.
- If a cluster is too large, we may further split it into multiple second-stage clusters.
- Therefore, we want data in a cluster to be heterogeneous, and data across clusters somewhat homogeneous.

Cluster (or area) random sampling

- In practice, the main application of cluster random sampling is to understand the popularity of new products. Those chosen cities (counties, states, etc.) are called test market cities (counties, states, etc.).
- People use cluster random sampling in this case because of its feasibility and convenience.
- We should select test market cities whose population profiles are similar to that of the entire country.

Nonrandom sampling

- Sometimes we do nonrandom sampling.
- Convenience sampling.
- The researcher sample data that are easy to sample.
- Judgment sampling.
- The researcher decides who to ask or what data to collect.
- Quota sampling.
- In each stratum, we use whatever method that is easy to fill the quota, a predetermined number of samples in the stratum.
- Snowball sampling.
- Once we ask one person, we ask her/him to suggest others.
- Nonrandom sampling cannot be analyzed by the statistical methods we introduce in this course.

[^0]: ${ }^{1}$ How to define "small" will be discussed in further lectures.

