Statistics and Data Analysis

Distributions and Sampling (2)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Introduction

- When we cannot examine the whole population, we study a sample.
- One needs to choose among different sampling techniques.
- What will be contained in a random sample is unpredictable.
- We need to know the probability distribution of a sample so that we may connect the sample with the population.
- The probability distribution of a sample is a sampling distribution.

Introduction

- A factory produce bags of candies. Ideally, each bag should weigh 2 kg . As the production process cannot be perfect, a bag of candies should weigh between 1.8 and 2.2 kg .
- Let X be the weight of a bag of candies. Let μ and σ be its expected value and standard deviation.
- Is $\mu=2$?
- Is $1.8<\mu<2.2$?
- How large is σ ?
- Let's sample:
- In a random sample of 1 bag of candies, suppose it weighs 2.1 kg . May we conclude that $1.8<\mu<2.2$?
- What if the average weight of 5 bags in a random sample is 2.1 kg ?
- What if the sample size is 10,50 , or 100 ?
- What if the mean is 2.3 kg ?
- We need to know the sampling distribution of those statistics (sample mean, sample standard deviation, etc.).

Road map

- Sample means.
- Distributions of sample means.
- Sample proportions.

Sample means

- The sample mean is one of the most important statistics.

Definition 1

Let $\left\{X_{i}\right\}_{i=1, \ldots, n}$ be a sample from a population, then

$$
\bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

is the sample mean.

- Sometimes we write \bar{x}_{n} to emphasize that the sample size is n.
- Let's assume that X_{i} and X_{j} are independent for all $i \neq j$.
- This is fine if $n \ll N$, i.e., we sample a few items from a large population.
- In practice, we require $n \leq 0.05 N$.

Means and variances of sample means

- Suppose the population mean and variance are μ and σ^{2}, respectively.
- These two numbers are fixed.
- A sample mean \bar{x} is a random variable.
- It has its expected value $\mathbb{E}[\bar{x}]$, variance $\operatorname{Var}(\bar{x})$, and standard deviation $\sqrt{\operatorname{Var}(\bar{x})}$. These numbers are all fixed
- They are also denoted as $\mu_{\bar{x}}, \sigma_{\bar{x}}^{2}$, and $\sigma_{\bar{x}}$, respectively.
- For any population, we have the following theorem:

Proposition 1 (Mean and variance of a sample mean)

Let $\left\{X_{i}\right\}_{i=1, \ldots, n}$ be a size-n random sample from a population with mean μ and variance σ^{2}, then we have

$$
\mu_{\bar{x}}=\mu, \quad \sigma_{\bar{x}}^{2}=\frac{\sigma^{2}}{n}, \quad \text { and } \quad \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

Means and variances of sample means

- Do the terms confuse you?
- The sample mean vs. the mean of the sample mean.
- The sample variance vs. the variance of the sample mean.
- By definition, they are:
- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$; a random variable.
- $\mathbb{E}[\bar{x}] ;$ a constant.
- $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{x}\right)^{2}$; a random variable.
- $\operatorname{Var}(\bar{x})$; a constant.
- The sample variance also has its mean and variance.

Example 1: Dice rolling

- Let X be the outcome of rolling a fair dice.
- We have $\operatorname{Pr}(X=x)=\frac{1}{6}$ for all $x=1,2, \ldots, 6$.
- We have

$$
\begin{aligned}
\mu & =\sum_{x=1}^{6} x \operatorname{Pr}(X=x)=3.5 \\
\sigma^{2} & =\sum_{x=1}^{6}(x-\mu)^{2} \operatorname{Pr}(X=x) \approx 2.917, \text { and } \\
\sigma & =\sqrt{\sigma^{2}} \approx 1.708
\end{aligned}
$$

x	$\operatorname{Pr}(X=x)$	$(x-\mu)^{2}$
1	0.167	6.25
2	0.167	2.25
3	0.167	0.25
4	0.167	0.25
5	0.167	2.25
6	0.167	6.25
	$\mu=3.5$	$\sigma^{2} \approx 2.917$

Example 1: Dice rolling

- Suppose now we roll the dice twice and get X_{1} and X_{2} as the outcomes.
- Let $\bar{x}_{2}=\frac{X_{1}+X_{2}}{2}$ be the sample mean.
- The theorem says that $\mu_{\bar{x}_{2}}=\mu=3.5$ and $\sigma_{\bar{x}_{2}}=\frac{\sigma}{\sqrt{n}} \approx \frac{1.708}{1.414}=1.208$.
- $\mu_{\bar{x}_{2}}=\mu$: We expect \bar{x} to be around 3.5 , just like X.
- The expected value of each outcome is 3.5. So the average is still 3.5.
- $\sigma_{\bar{x}_{2}}=\frac{\sigma}{\sqrt{2}}<\sigma$: The variability of \bar{x}_{2} is smaller than that of X.
- For $X, \operatorname{Pr}(X \geq 5)=\frac{1}{3}$.
- For \bar{x}_{2},

$$
\begin{aligned}
\operatorname{Pr}\left(\bar{x}_{2} \geq 5\right) & =\operatorname{Pr}\left(\left(X_{1}, X_{2}\right) \in\{(4,6),(5,5),(6,4),(5,6),(6,5),(6,6)\}\right) \\
& =\frac{1}{6}
\end{aligned}
$$

- To have a large value of \bar{x}_{2}, we need both values to be large.

Example 1: Dice rolling

- Let $\bar{x}_{4}=\frac{\sum_{i=1}^{4} X_{i}}{4}$ be the sample mean of rolling the dice four times.
- The theorem says that $\mu_{\bar{x}_{4}}=\mu=3.5$ and $\sigma_{\bar{x}_{4}}=\frac{\sigma}{\sqrt{n}} \approx \frac{1.708}{2}=0.854$.
- We have

$$
\sigma_{\bar{x}_{4}}=\frac{\sigma}{\sqrt{4}}<\sigma_{\bar{x}_{2}}=\frac{\sigma}{\sqrt{2}}<\sigma .
$$

The variability of \bar{x}_{4} is even smaller than that of \bar{x}_{2}.

- To have a large \bar{x}_{4}, we need most of the four values to be large.

Proposition 2

For two random samples of size n and m from the same population, let \bar{x}_{n} and \bar{x}_{m} be their sample means. Then we have

$$
\sigma_{\bar{x}_{n}}<\sigma_{\bar{x}_{m}} \quad \text { if } \quad n>m
$$

Example 2: Quality inspection

- The weight of a bag of candies follow a normal distribution with mean $\mu=2$ and standard deviation $\sigma=0.2$.
- Suppose the quality control officer decides to sample 4 bags and calculate the sample mean \bar{x}. She will punish me if $\bar{x} \notin[1.8,2.2]$.
- Note that my production process is actually "good:" $\mu=2$.
- Unfortunately, it is not perfect: $\sigma>0$.
- We may still be punished (if we are unlucky) even though $\mu=2$.
- What is the probability that I will be punished?
- We want to calculate $1-\operatorname{Pr}(1.8<\bar{x}<2.2)$.
- We know that $\mu_{\bar{x}}=\mu=2$ and $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{4}}=0.1$.
- But we do not know the probability distribution of \bar{x} !

Experiments for estimating the probabilities

- Let's do an experiment.
- Generate the weights of 4 bags of candies following $\mathrm{ND}(2,0.2)$.
- Calculate \bar{x}.
- Repeat this for 5000 times.
- Draw a histogram for these $5000 \bar{x}$ s.
- The result of my experiment:
- The mean of the $5000 \bar{x}$ is 1.993741 .
- The standard deviation of the $5000 \bar{x}$ is 0.1002187 .
- It looks like a normal distribution.
- The proportion of \bar{x} s above 2.2 or below 1.8 is 4.68%.

- Is $\bar{x} \sim \mathrm{ND}(2,0.1)$?

Experiments for estimating the probabilities

- If $\bar{x} \sim \mathrm{ND}(2,0.1)$:
- $\operatorname{Pr}(\bar{x}>2)=0.5$.
- $\operatorname{Pr}(\bar{x}<1.8)+\operatorname{Pr}(\bar{x}>2.2) \approx 0.0455$.
- Our experiments only give us sample outcomes. However, our outcomes should be close to the theoretical outcomes.
- If we do multiple rounds of this experiment:

Round	Mean	Standard deviation	Proportion of $\bar{x}>2$	Proportion of $\bar{x}<1.8$ and $\bar{x}>2.2$
1	1.994	0.100	0.473	0.047
2	2.006	0.100	0.530	0.047
3	2.003	0.104	0.513	0.058
4	1.996	0.104	0.486	0.054

- It seems that $\bar{x} \sim \mathrm{ND}(2,0.1)$ is true. Is it?

Road map

- Sample means.
- Distributions of sample means.
- Sample proportions.

Sampling from a normal population

- If the population is normal, the sample mean is also normal!

Proposition 3

Let $\left\{X_{i}\right\}_{i=1, \ldots, n}$ be a size-n random sample from a normal population with mean μ and standard deviation σ. Then

$$
\bar{x} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right) .
$$

- We already know that $\mu_{\bar{x}}=\mu$ and $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$. This is true regardless of the population distribution.
- When the population is normal, the sample mean will also be normal.

Example 2 revisited: Quality inspection

- The weight of a bag of candies follow a normal distribution with mean $\mu=2$ and standard deviation $\sigma=0.2$.
- Suppose the quality control officer decides to sample 4 bags and calculate the sample mean \bar{x}. She will punish me if $\bar{x} \notin[1.8,2.2]$.
- What is the probability that I will be punished?
- the distribution of the sample mean \bar{x} is $\mathrm{ND}(2,0.1)$.
- $\operatorname{Pr}(\bar{x}<1.8)+\operatorname{Pr}(\bar{x}>2.2) \approx 0.045$.

Adjusting the standard deviation

- When the population is $\mathrm{ND}(\mu=2, \sigma=0.2)$ and the sample size is $n=4$, the probability of punishment is 0.045 .
- If we adjust our standard deviation σ (by paying more or less attention to the production process), the probability will change.
- Reducing σ reduces the probability of being punished. With the sampling distribution of \bar{x}, we may optimize σ.
- An improvement from 0.2 to 0.15
 is helpful; from 0.15 to 0.1 is not.

Adjusting the sample size

- When the population is $\mathrm{ND}(2,0.2)$ and the sample size is $n=4$, the probability of punishment is 0.045 .
- If the quality control officer increases the sample size n, the probability will decrease.
- $\mu=2$ is actually ideal. A larger sample size makes the officer less likely to make a mistake.

Distribution of the sample mean

- So now we have one general conclusion: When we sample from a normal population, the sample mean is also normal.
- And its mean and standard deviation are μ and $\frac{\sigma}{\sqrt{n}}$, respectively.
- What if the population is non-normal?
- Fortunately, we have a very powerful theorem, the central limit theorem, which applies to any population.

Central limit theorem

- The theorem says that a sample mean is approximately normal when the sample size is large enough.

Proposition 4 (Central limit theorem)

Let $\left\{X_{i}\right\}_{i=1, \ldots, n}$ be a size-n random sample from a population with mean μ and standard deviation σ. Let \bar{x}_{n} be the sample mean. If $\sigma<\infty$, then \bar{x}_{n} converges to $\mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ as $n \rightarrow \infty$.

- Obviously, we will not try to prove it.
- Let's get the idea with experiments.

Experiments on the central limit theorem

- Consider our wholesale data again. Let the "Fresh" variable to be our population.
- This population is definitely not normal.
- It is highly skewed to the right (positively skewed).

Experiments on the central limit theorem

- When the sample size n is small, the sample mean does not look like normal.
- When the sample size n is large enough, the sample mean is approximately normal.

$n=2$

$n=20$

Experiments on the central limit theorem

- When the population is uniform, the sample mean still becomes normal when n is large enough.
- Those values in
"Fresh" that are less than 10000 .
- We only need a small n for the sample mean to be normal.

mu.xbar

Timing for central limit theorem

- In short, the central limit theorem says that, for any population, the sample mean will be approximately normally distributed as long as the sample size is large enough.
- With the distribution of the sample mean, we may then calculate all the probabilities of interests.
- How large is "large enough"?
- In practice, typically $n \geq 30$ is believed to be large enough.

Road map

- Sample means.
- Distributions of sample means.
- Sample proportions.

Means vs. proportions

- For interval or ratio data, we have defined sample means.
- We have studied the distributions of sample means.
- For ordinal or nominal data, there is no sample mean.
- Instead, there are sample proportions.

Population proportions

- How to know the proportions of girls and boys in NTU?
- We first label girls as 0 and boys as 1 .
- Let $X_{i} \in\{0,1\}$ be the sex of student $i, i=1, \ldots, N$.
- Then the population proportion of boys is defined as

$$
p=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

- The population proportion of girls is $1-p$.

Sample proportions

- Let $\left\{X_{i}\right\}_{i=1, \ldots, N}$ be the population.
- With a sample size n, let $\left\{X_{i}\right\}_{i=1, \ldots, n}$ be a sample. Suppose X_{i} and X_{j} are independent for all $i \neq j$.
- E.g., 100 randomly selected students.
- Then the sample proportion is defined as

$$
\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
$$

- The population proportion p is deterministic (though unknown) while the sample proportion \hat{p} is random.
- We are interested in the distribution of \hat{p}.

Bernoulli random variables

- A random variable X whose sample space is $\{0,1\}$ is a binary variable.
- Let $p=\operatorname{Pr}(X=1)$ be the success probability.
- We say X follows a Bernoulli distribution with probability p.
- Denoted as $X \sim \operatorname{Ber}(p)$.
- We may calculate its expected value:

$$
\mu_{X}=p \times 1+(1-p) \times 0=p
$$

- We may calculate its standard deviation:

$$
\begin{aligned}
& \sigma_{X}^{2}=p(1-p)^{2}+(1-p)(0-p)^{2}=p(1-p), \text { and } \\
& \sigma_{X}=\sqrt{p(1-p)}
\end{aligned}
$$

Distributions of sample proportions

- What is the distribution of the sample proportion

$$
\hat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i} ?
$$

- Note that the sample proportion is a special type of sample mean!
- It is special as $X_{i} \in\{0,1\}$.
- However, it is still a sample mean. The arithmetic average does have a physical meaning: the proportion.
- We may apply the central limit theorem:
- If $n \geq 30$, the sample proportion is approximately normally distributed.
- Its mean and standard deviations are

$$
\mu_{\hat{p}}=\mu=p \quad \text { and } \quad \sigma_{\hat{p}}=\frac{\sigma}{\sqrt{n}}=\sqrt{\frac{p(1-p)}{n}}
$$

Sample proportions: An example

- In 2011, there are 19756 boys and 13324 girls in NTU.
- The population proportion of boys is

$$
p=\frac{19756}{33080} \approx 0.597 .
$$

- Let's sample 100 students and find the sample proportion \hat{p}.
- What is the distribution of \hat{p} ?
- What is the probability that to see fewer boys than girls?

Sample proportions: An example

- What is the distribution of \hat{p} ?
- As $n \geq 30$, it follows a normal distribution.
- Its mean is $p \approx 0.597$.
- Its standard deviation is $\sqrt{\frac{p(1-p)}{n}} \approx 0.049$.
- The probability that $\hat{p}<0.5$ is

$$
\operatorname{Pr}(\hat{p}<0.5) \approx 0.024
$$

- Summary:
- A sample proportion "is" a sample mean of qualitative data.
- It is normal when the sample size is large enough.
- Thanks to the central limit theorem.

