Statistics and Data Analysis Distributions and Sampling (2)

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction

▶ When we cannot examine the whole population, we study a **sample**.

- ▶ One needs to choose among different **sampling techniques**.
- ▶ What will be contained in a random sample is unpredictable.
- We need to know the **probability distribution** of a sample so that we may connect the sample with the population.

▶ The probability distribution of a sample is a **sampling distribution**.

Introduction

- ► A factory produce bags of candies. Ideally, each bag should weigh 2 kg. As the production process cannot be perfect, a bag of candies should weigh between 1.8 and 2.2 kg.
- Let X be the weight of a bag of candies. Let μ and σ be its expected value and standard deviation.
 - Is $\mu = 2?$
 - ▶ Is 1.8 < µ < 2.2?</p>
 - How large is σ ?
- ▶ Let's sample:
 - ▶ In a random sample of 1 bag of candies, suppose it weighs 2.1 kg. May we conclude that $1.8 < \mu < 2.2$?
 - ▶ What if the average weight of 5 bags in a random sample is 2.1 kg?
 - ▶ What if the sample size is 10, 50, or 100?
 - What if the mean is 2.3 kg?
- ▶ We need to know the sampling distribution of those statistics (sample mean, sample standard deviation, etc.).

Road map

► Sample means.

- Distributions of sample means.
- ▶ Sample proportions.

Sample means

▶ The sample mean is one of the most important statistics.

Definition 1 Let $\{X_i\}_{i=1,...,n}$ be a sample from a population, then $\bar{x} = \frac{\sum_{i=1}^{n} X_i}{n}$

is the sample mean.

- Sometimes we write \bar{x}_n to emphasize that the sample size is n.
- Let's assume that X_i and X_j are independent for all $i \neq j$.
 - ▶ This is fine if $n \ll N$, i.e., we sample a few items from a large population.
 - In practice, we require $n \leq 0.05N$.

Means and variances of sample means

- ▶ Suppose the population mean and variance are μ and σ^2 , respectively.
 - These two numbers are fixed.
- A sample mean \bar{x} is a **random variable**.
 - ▶ It has its expected value $\mathbb{E}[\bar{x}]$, variance $\operatorname{Var}(\bar{x})$, and standard deviation $\sqrt{\operatorname{Var}(\bar{x})}$. These numbers are all fixed
 - They are also denoted as $\mu_{\bar{x}}$, $\sigma_{\bar{x}}^2$, and $\sigma_{\bar{x}}$, respectively.
- ▶ For any population, we have the following theorem:

Proposition 1 (Mean and variance of a sample mean)

Let $\{X_i\}_{i=1,...,n}$ be a size-n random sample from a population with mean μ and variance σ^2 , then we have

$$\mu_{\bar{x}} = \mu, \quad \sigma_{\bar{x}}^2 = \frac{\sigma^2}{n}, and \quad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}.$$

Means and variances of sample means

- ▶ Do the terms confuse you?
 - ▶ The sample mean vs. the mean of the sample mean.
 - ▶ The sample variance vs. the variance of the sample mean.
- ▶ By definition, they are:
 - $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} X_i$; a random variable.
 - $\mathbb{E}[\bar{x}]$; a constant.
 - $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{x})^2$; a random variable.
 - $\operatorname{Var}(\bar{x})$; a constant.
- ▶ The sample variance also has its mean and variance.

Example 1: Dice rolling

- ► Let X be the outcome of rolling a fair dice.
 - We have $Pr(X = x) = \frac{1}{6}$ for all x = 1, 2, ..., 6.
 - ▶ We have

$$\mu = \sum_{x=1}^{6} x \Pr(X = x) = 3.5,$$

$$\sigma^2 = \sum_{x=1}^{6} (x - \mu)^2 \Pr(X = x) \approx 2.917, \text{ and}$$

$$\sigma = \sqrt{\sigma^2} \approx 1.708.$$

x	$\Pr(X = x)$	$(x-\mu)^2$
1	0.167	6.25
2	0.167	2.25
3	0.167	0.25
4	0.167	0.25
5	0.167	2.25
6	0.167	6.25
	$\mu = 3.5$	$\sigma^2\approx 2.917$

Example 1: Dice rolling

- ▶ Suppose now we roll the dice **twice** and get X₁ and X₂ as the outcomes.
- Let $\bar{x}_2 = \frac{X_1 + X_2}{2}$ be the sample mean.
- ▶ The theorem says that $\mu_{\bar{x}_2} = \mu = 3.5$ and $\sigma_{\bar{x}_2} = \frac{\sigma}{\sqrt{n}} \approx \frac{1.708}{1.414} = 1.208$.
- $\mu_{\bar{x}_2} = \mu$: We expect \bar{x} to be **around** 3.5, just like X.
 - ▶ The expected value of each outcome is 3.5. So the average is still 3.5.
- $\sigma_{\bar{x}_2} = \frac{\sigma}{\sqrt{2}} < \sigma$: The variability of \bar{x}_2 is smaller than that of X.
 - For X, $\Pr(X \ge 5) = \frac{1}{3}$.
 - ▶ For \bar{x}_2 ,

$$\Pr(\bar{x}_2 \ge 5) = \Pr\left((X_1, X_2) \in \left\{ (4, 6), (5, 5), (6, 4), (5, 6), (6, 5), (6, 6) \right\} \right)$$
$$= \frac{1}{6}.$$

• To have a large value of \bar{x}_2 , we need **both** values to be large.

Example 1: Dice rolling

- Let $\bar{x}_4 = \frac{\sum_{i=1}^4 X_i}{4}$ be the sample mean of rolling the dice four times.
- The theorem says that $\mu_{\bar{x}_4} = \mu = 3.5$ and $\sigma_{\bar{x}_4} = \frac{\sigma}{\sqrt{n}} \approx \frac{1.708}{2} = 0.854$.
- ► We have

$$\sigma_{\bar{x}_4} = \frac{\sigma}{\sqrt{4}} < \sigma_{\bar{x}_2} = \frac{\sigma}{\sqrt{2}} < \sigma.$$

The variability of \bar{x}_4 is **even smaller** than that of \bar{x}_2 .

• To have a large \bar{x}_4 , we need most of the four values to be large.

Proposition 2

For two random samples of size n and m from the same population, let \bar{x}_n and \bar{x}_m be their sample means. Then we have

$$\sigma_{\bar{x}_n} < \sigma_{\bar{x}_m} \quad if \quad n > m.$$

Example 2: Quality inspection

- The weight of a bag of candies follow a normal distribution with mean $\mu = 2$ and standard deviation $\sigma = 0.2$.
- Suppose the quality control officer decides to sample 4 bags and calculate the sample mean \bar{x} . She will punish me if $\bar{x} \notin [1.8, 2.2]$.
 - Note that my production process is actually "good:" $\mu = 2$.
 - Unfortunately, it is not perfect: $\sigma > 0$.
 - We may still be punished (if we are unlucky) even though $\mu = 2$.
- ▶ What is the probability that I will be punished?
 - We want to calculate $1 \Pr(1.8 < \bar{x} < 2.2)$.
 - We know that $\mu_{\bar{x}} = \mu = 2$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{4}} = 0.1$.
 - But we do not know the **probability** distribution of \bar{x} !

Experiments for estimating the probabilities

- ▶ Let's do an experiment.
 - Generate the weights of 4 bags of candies following ND(2, 0.2).
 - Calculate \bar{x} .
 - Repeat this for 5000 times.
 - Draw a histogram for these 5000 $\bar{x}s$.
- ▶ The result of my experiment:
 - The mean of the 5000 \bar{x} is 1.993741.
 - The standard deviation of the 5000 \bar{x} is 0.1002187.
 - ▶ It looks like a normal distribution.
 - ► The proportion of x̄ s above 2.2 or below 1.8 is 4.68%.
- Is $\bar{x} \sim \text{ND}(2, 0.1)$?

Experiments for estimating the probabilities

- If $\bar{x} \sim \text{ND}(2, 0.1)$:
 - ▶ $\Pr(\bar{x} > 2) = 0.5.$
 - $\Pr(\bar{x} < 1.8) + \Pr(\bar{x} > 2.2) \approx 0.0455.$
- ▶ Our experiments only give us sample outcomes. However, our outcomes should be close to the theoretical outcomes.
- ▶ If we do multiple rounds of this experiment:

Round	Mean	Standard deviation	Proportion of $\bar{x} > 2$	Proportion of $\bar{x} < 1.8$ and $\bar{x} > 2.2$
1	1.994	0.100	0.473	0.047
2	2.006	0.100	0.530	0.047
3	2.003	0.104	0.513	0.058
4	1.996	0.104	0.486	0.054

• It seems that $\bar{x} \sim ND(2, 0.1)$ is true. Is it?

Road map

- ▶ Sample means.
- Distributions of sample means.
- ▶ Sample proportions.

Sampling from a normal population

▶ If the population is normal, the sample mean is also **normal**!

Proposition 3

Let $\{X_i\}_{i=1,...,n}$ be a size-n random sample from a normal population with mean μ and standard deviation σ . Then

$$\bar{x} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right).$$

- We already know that $\mu_{\bar{x}} = \mu$ and $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$. This is true regardless of the population distribution.
- ▶ When the population is normal, the sample mean will also be normal.

Example 2 revisited: Quality inspection

- ► The weight of a bag of candies follow a normal distribution with mean $\mu = 2$ and standard deviation $\sigma = 0.2$.
- ▶ Suppose the quality control officer decides to sample 4 bags and calculate the sample mean \bar{x} . She will punish me if $\bar{x} \notin [1.8, 2.2]$.
- ▶ What is the probability that I will be punished?
 - the distribution of the sample mean \bar{x} is ND(2, 0.1).
 - $\Pr(\bar{x} < 1.8) + \Pr(\bar{x} > 2.2) \approx 0.045.$

Sample proportions 00000000

Adjusting the standard deviation

- When the population is $ND(\mu = 2, \sigma = 0.2)$ and the sample size is n = 4, the probability of punishment is 0.045.
- If we adjust our standard deviation

 σ (by paying more or less attention
 to the production process), the
 probability will change.
- Reducing σ reduces the probability of being punished. With the sampling distribution of x̄, we may optimize σ.
 - ► An improvement from 0.2 to 0.15 is helpful; from 0.15 to 0.1 is not.

Adjusting the sample size

- When the population is ND(2, 0.2)and the sample size is n = 4, the probability of punishment is 0.045.
- ▶ If the quality control officer increases the sample size *n*, the probability will decrease.
- ▶ µ = 2 is actually ideal. A larger sample size makes the officer less likely to make a mistake.

Distribution of the sample mean

- ▶ So now we have one general conclusion: When we sample from a normal population, the sample mean is also normal.
 - And its mean and standard deviation are μ and $\frac{\sigma}{\sqrt{n}}$, respectively.
- What if the population is **non-normal**?
- ► Fortunately, we have a very powerful theorem, the **central limit theorem**, which applies to **any** population.

Central limit theorem

► The theorem says that a sample mean is **approximately normal** when the sample size is **large enough**.

Proposition 4 (Central limit theorem)

Let $\{X_i\}_{i=1,...,n}$ be a size-*n* random sample from a population with mean μ and standard deviation σ .Let \bar{x}_n be the sample mean. If $\sigma < \infty$, then \bar{x}_n converges to $ND(\mu, \frac{\sigma}{\sqrt{n}})$ as $n \to \infty$.

- Obviously, we will not try to prove it.
- Let's get the idea with experiments.

Experiments on the central limit theorem

- Consider our wholesale data again. Let the "Fresh" variable to be our population.
- This population is definitely not normal.
- It is highly skewed to the right (positively skewed).

Experiments on the central limit theorem

- ▶ When the sample size *n* is small, the sample mean does not look like normal.
- When the sample size n is large enough, the sample mean is approximately normal.

Distributions of sample means 00000000000

Sample proportions 00000000

Experiments on the central limit theorem

- ▶ When the population is **uniform**, the sample mean still becomes normal when *n* is large enough.
 - Those values in "Fresh" that are less than 10000.
- We only need a small *n* for the sample mean to be normal.

Timing for central limit theorem

- ▶ In short, the central limit theorem says that, for any population, the sample mean will be approximately normally distributed as long as the sample size is large enough.
 - ▶ With the distribution of the sample mean, we may then calculate all the probabilities of interests.
- ▶ How large is "large enough"?
- In practice, typically $n \ge 30$ is believed to be large enough.

Road map

- ▶ Sample means.
- Distributions of sample means.
- ► Sample proportions.

Means vs. proportions

- ▶ For interval or ratio data, we have defined sample means.
 - We have studied the distributions of sample means.
- ► For ordinal or nominal data, there is no sample mean.
 - Instead, there are sample **proportions**.

Population proportions

- ▶ How to know the **proportions** of girls and boys in NTU?
- We first **label** girls as 0 and boys as 1.
- Let $X_i \in \{0, 1\}$ be the sex of student i, i = 1, ..., N.
- ▶ Then the **population proportion** of boys is defined as

$$p = \frac{1}{N} \sum_{i=1}^{N} X_i$$

• The population proportion of girls is 1 - p.

Sample proportions

- Let $\{X_i\}_{i=1,\dots,N}$ be the population.
- ▶ With a sample size n, let $\{X_i\}_{i=1,...,n}$ be a sample. Suppose X_i and X_j are independent for all $i \neq j$.
 - ▶ E.g., 100 randomly selected students.
- Then the **sample proportion** is defined as

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- ▶ The population proportion p is deterministic (though unknown) while the sample proportion \hat{p} is random.
- We are interested in the distribution of \hat{p} .

Bernoulli random variables

- A random variable X whose sample space is $\{0, 1\}$ is a **binary** variable.
- Let $p = \Pr(X = 1)$ be the success probability.
- We say X follows a **Bernoulli distribution** with probability p.
 - Denoted as $X \sim \text{Ber}(p)$.
- We may calculate its expected value:

$$\mu_X = p \times 1 + (1 - p) \times 0 = p.$$

▶ We may calculate its standard deviation:

$$\sigma_X^2 = p(1-p)^2 + (1-p)(0-p)^2 = p(1-p)$$
, and
 $\sigma_X = \sqrt{p(1-p)}$.

Distributions of sample proportions

▶ What is the distribution of the sample proportion

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i?$$

- ▶ Note that the sample proportion is a special type of **sample mean**!
 - It is special as $X_i \in \{0, 1\}$.
 - ▶ However, it is still a sample mean. The arithmetic average does have a physical meaning: the proportion.
- We may apply the **central limit theorem**:
 - If $n \ge 30$, the sample proportion is approximately normally distributed.
 - Its mean and standard deviations are

$$\mu_{\hat{p}} = \mu = p$$
 and $\sigma_{\hat{p}} = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{p(1-p)}{n}}.$

Sample proportions: An example

- \blacktriangleright In 2011, there are 19756 boys and 13324 girls in NTU.
- ▶ The population proportion of boys is

$$p = \frac{19756}{33080} \approx 0.597.$$

- Let's sample 100 students and find the sample proportion \hat{p} .
 - What is the distribution of \hat{p} ?
 - ▶ What is the probability that to see fewer boys than girls?

Sample proportions: An example

- What is the distribution of \hat{p} ?
 - As $n \ge 30$, it follows a normal distribution.
 - Its mean is $p \approx 0.597$.
 - Its standard deviation is $\sqrt{\frac{p(1-p)}{n}} \approx 0.049$.
- The probability that $\hat{p} < 0.5$ is

 $\Pr(\hat{p} < 0.5) \approx 0.024.$

- Summary:
 - ▶ A sample proportion "is" a sample mean of qualitative data.
 - ▶ It is normal when the sample size is large enough.
 - ▶ Thanks to the central limit theorem.