Statistics and Data Analysis Statistical Estimation

Ling-Chieh Kung

Department of Information Management National Taiwan University

► Statistical estimation.

- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Example: average daily consumers

- ▶ A retail chain of 3000 stores is going to have a special discount on the next Monday.
 - ▶ In the past, the average daily number of consumers on Monday was 700.
 - ▶ The marketing manager promises that the average will be above 850 with the discount.
 - ► The manager wants to know the **average number of daily consumers** entering the stores on that day.
- ▶ She decides to do a survey on the next Monday.
 - ▶ On that day, there will be some consumers entering each store.
 - For store i, i = 1, ..., 3000, let x_i be the number of consumers.
 - It is too costly to collect all x_i s and calculate $\mu = \frac{\sum_{i=1}^{3000} x_i}{3000}$.
 - This is a task of **estimating** a **parameter**.
- ▶ Her budget is enough for hiring 7 temporary workers to count the number of consumers throughout the day.
 - She decides to randomly draw 7 stores and calculate $\bar{x} = \frac{\sum_{i=1}^{7} x_i}{7}$.
 - ▶ We assume that the daily demands of all stores follow the same (population) distribution.

Example: average daily consumers

- ▶ On that day, she gets the following sample data:
 - ▶ She gets 1026, 932, 852, 1212, 844, 822, and 1032 consumers.
 - The sample mean is $\bar{x} = 960$.
- ▶ Intuitively, she will think that the population mean μ is "around" 960.
- ▶ Suppose she concludes that " μ is within 950 and 970," how much confidence may she have?
- ▶ In general, is it okay to conclude that $\mu \in [\bar{x} 10, \bar{x} + 10]$?

Estimations

- One of the most important statistical tasks is **estimation**.
 - ► For unknown population **parameters**, we estimate them through **statistics** obtained from samples.
 - ▶ For example, when the population mean is unknown, we use sample mean as an estimate.
- We want to go beyond intuitions and conjectures.
 - ▶ We need some knowledge about the **sampling distributions**.
 - E.g., we know $\overline{X} \sim \text{ND}(\mu, \frac{\sigma}{\sqrt{n}})$.
- ▶ In statistics, we use **confidence intervals** to estimate parameters.
- We will introduce how to estimate the population mean.
 - Estimating other parameters basically follows the same logic.

Notation and terminology

- We have the **population mean** and **sample mean**.
 - ▶ The population mean is fixed but unknown.
 - ▶ E.g., the average daily demand of the 3000 stores.
 - The sample mean is random.
 - ▶ E.g., the average daily demand of the 7 randomly selected stores.
- The population mean is denoted as μ .
- The sample mean is denoted as \overline{X} and \overline{x} :
 - Before we observe the outcome, the sample mean is **random** and denoted as \overline{X} .
 - After we observe the outcome, the realized value of the sample mean is fixed and denoted as \bar{x} .
 - \overline{X} is a random variable; \overline{x} is a realized value.

- Interval estimation.
- ▶ Estimating population mean with known variance.
- ▶ Estimating population mean with unknown variance.

Drawbacks of point estimation

- We may use the sample mean \bar{x} to estimate the population mean μ .
 - " μ should somewhat be close to \bar{x} ."
 - This is called a **point estimation**.
- ▶ However, there are some drawbacks of point estimation:
 - We know that μ is close to \bar{x} . But how close?
 - More precisely, what is $|\mu \bar{x}|$?
 - As μ is unknown, we will never know the answer!
- ▶ Instead of suggesting a number, we will suggest an **interval**.
 - Then we measure how good the suggested interval is.
 - More precisely, we measure **how** likely the interval contains μ .

Interval estimation: the first illustration

- ▶ Consider a population with unknown μ . For simplicity, let's assume:
 - The population variance σ^2 is known.
 - ▶ The population follows a **normal** distribution.
- Let the sample mean \overline{X} be the **estimator**.
 - \overline{X} as an estimator is random; \overline{x} as a realized value is a constant.
- Suppose that $\sigma^2 = 16$ and the sample size n = 8.
- ▶ Based on \overline{X} , we will choose a leg length b and claim that μ lies in the interval $[\overline{X} b, \overline{X} + b]$.
 - We may be either right or wrong.
 - \blacktriangleright When b increases, we are more confident that we will be right.
 - ▶ However, a larger interval means that the estimation is less accurate.
 - What is the **probability** that we are right?

The sampling distribution

• Question: For any given t, find

 $\Pr(\overline{X} - b \le \mu \le \overline{X} + b).$

▶ As the population is normal:

$$\overline{X} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}} = \frac{4}{\sqrt{8}} = \sqrt{2}\right).$$

Suppose someone proposes to set $b = \sqrt{2}$, then the interval will be

$$\left[\overline{X} - \sqrt{2}, \overline{X} + \sqrt{2}\right].$$

How good the interval is?

How good an interval is?

- ▶ If, luckily, \bar{x} is close enough to μ , $[\bar{x} \sqrt{2}, \bar{x} + \sqrt{2}]$ covers μ .
- ▶ If, unluckily, \bar{x} is far from μ , $[\bar{x} \sqrt{2}, \bar{x} + \sqrt{2}]$ does not cover μ .

How good an interval is?

- ► The probability that "we are lucky" can be calculated!
- No matter where μ is, we have

$$\Pr\left(\overline{X} - \sqrt{2} \le \mu \le \overline{X} + \sqrt{2}\right)$$
$$= \Pr\left(\mu - \sqrt{2} \le \overline{X} \le \mu + \sqrt{2}\right)$$
$$= 0.6827.$$

- ► To calculate this, we rely on the fact that $\overline{X} \sim \text{ND}(\mu, \sqrt{2})$.
- This is the probability for a normal random variable to be within one standard deviation from its mean.

A short summary

- Given any realization \bar{x} , $[\bar{x} \sqrt{2}, \bar{x} + \sqrt{2}]$ may or may not covers μ .
- ▶ Regarding the random \overline{X} , we know $[\overline{X} \sqrt{2}, \overline{X} + \sqrt{2}]$ covers μ with probability 0.6827.
 - This level of confidence can be calculated as we know $\overline{X} \sim \text{ND}(\mu, \sqrt{2})$.
- The calculation obviously depends on $\frac{\sigma}{\sqrt{n}}$.
 - This quantity $\frac{\sigma}{\sqrt{n}}$ is called the **standard error** of the estimation.
- Instead of having $\sqrt{2}$ as the leg length, let's try $2\sqrt{2}$.

A larger interval

▶ The probability that "we are lucky" now becomes 0.9545!

$$\Pr\left(\overline{X} - 2\sqrt{2} \le \mu \le \overline{X} + 2\sqrt{2}\right) = \Pr\left(\mu - 2\sqrt{2} \le \overline{X} \le \mu + 2\sqrt{2}\right) = 0.9545.$$

Confidence levels and confidence intervals

- ▶ We made two attempts:
 - $[\overline{X} \sqrt{2}, \overline{X} + \sqrt{2}]$ results in a covering probability 0.6827.
 - $[\overline{X} 2\sqrt{2}, \overline{X} + 2\sqrt{2}]$ results in another covering probability 0.9545.
- ▶ In statistics, when we do interval estimation:
 - ► Such a "covering probability" is called **confidence level**.
 - ► These intervals are called **confidence intervals** (CI).
- ▶ How to choose the interval length?
 - ▶ A larger confidence interval results in a higher confidence.
 - ▶ There is a **trade-off** between accurate estimation and high confidence.

Confidence levels vs. interval lengths

▶ To find the relationship:

•
$$\Pr(\mu - \sqrt{2} \le \overline{X} \le \mu + \sqrt{2}) = 0.68$$
. $\Pr(\mu - 2\sqrt{2} \le \overline{X} \le \mu + 2\sqrt{2}) = 0.95$.

• Given b > 0, we calculate $1 - 2 \Pr(\overline{X} \le \mu - b)$ based on $\overline{X} \sim ND(\mu, \frac{\sigma}{\sqrt{n}})$.

Statistical	Estimation
Statistical	Estimation

Population mean: known variance 00000000000000000

Population mean: unknown variance 0000000000

How to choose the interval length?

- In practice, we choose a confidence level first and then the smallest interval that achieves this level.
 - We typically denote the error probability as α.
 - The confidence level is thus 1α .
 - ► Common confidence levels: 90%, 95%, and 99%.
- How to calculate the leg length b?

• 90%:
$$1 - 2 \Pr(\overline{X} \le \mu - b) = 0.9$$
, i.e.,

$$\Pr(\overline{X} \le \mu - b) = 0.05.$$

• For a given α , find b such that

$$\Pr(\overline{X} \le \mu - b) = \frac{\alpha}{2}.$$

Example revisited: average daily consumers

- ▶ Recall that we have 3000 stores, each with a number of consumers on a given day.
 - ▶ The population consists of 3000 numbers.
 - There is a population mean μ , which is unknown.
- We collected data from 7 stores:
 - ▶ The sample data: 1026, 932, 852, 1212, 844, 822, and 1032.
 - The realized sample mean is $\bar{x} = 960$.
- ▶ How to do interval estimation with this sample?

Conducting the estimation

- We must know the population variance σ^2 .
 - Let's assume that $\sigma = 120$.
- ▶ We need either the population is normal or the sample size is large.
 - Let's assume that the population is normal.
- ▶ Now we are ready to construct a confidence interval. Let's construct three intervals for $1 \alpha = 0.9, 0.95$, and 0.99.
 - Step 1: $\bar{x} = 960$.
 - Step 2: The standard deviation of the sample mean is $\frac{\sigma}{\sqrt{n}} = 45.356$.
 - ▶ Step 3: The leg lengths are 74.604, 88.896, and 116.829.
 - ▶ Step 4: The interval with 90% confidence level is

$$[960 - 74.604, 960 + 74.604] = [885.39, 1034.60].$$

The other two intervals are [871.10, 1048.90] and [843.17, 1076.82].

Interpreting the estimation

- ► Consider the interval with 95% confidence level: [871.10, 1048.90].
 - The realized sample mean is $\bar{x} = 960$. The leg length is 88.896.
- What is the business implication?
 - ▶ We will claim that the true average daily consumers for all the 3000 stores is within 870 and 1050.
 - ▶ We are 95% confident. It is quite unlikely for us to be wrong.
- ▶ Recall that the marketing manager has promised that "the average daily consumers will be at least 850."
 - ▶ Now we have a strong evidence showing that the target is really achieved.
 - ▶ We are 95% confident that this is achieved.
 - ▶ Note that the 99% confidence interval is [843.17, 1076.82].
 - ▶ We are not 99% confident.
- ▶ We will never be 100% confident. However, we now are able to measure how confident we are.

Summary

- ► Facing an unknown population mean μ (with a known population variance σ^2), we may construct a confidence interval:
 - Centered at the to-be-realized sample mean \overline{X} .
 - Will cover μ with a predetermined probability.
- ▶ Use the desired confidence level 1α and the standard error $\frac{\sigma}{\sqrt{n}}$ to calculate the leg length *b*.
 - Our "plan" is to suggest the interval $[\overline{X} b, \overline{X} + b]$.
 - Our suggested interval is $[\bar{x} b, \bar{x} + b]$.
- We need one of the following:
 - ▶ The population follows a normal distribution.
 - The sample size $n \ge 30$.

- Interval estimation.
- Estimating population mean with known variance.
- ▶ Estimating population mean with unknown variance.

Estimation without the population variance

- ► Sometimes (actually for most of the time) we **do not** know the population variance σ^2 .
- Then we cannot calculate the standard error $\frac{\sigma}{\sqrt{n}}$.
- In this case, intuitively we may try to replace σ by s, the **sample** standard deviation.
 - ► As an example, for the 7 numbers of consumers 1026, 932, 852, 1212, 844, 822, and 1032, we have

$$s = \sqrt{\frac{(1026 - 960)^2 + \dots + (1032 - 960)^2}{7 - 1}} = 140.233.$$

- We then use $\frac{s}{\sqrt{n}}$ to construct an interval.
- However, $\overline{X} \sim \text{ND}(\mu, \frac{s}{\sqrt{n}})$ is not right!
- ▶ In particular, s can vary from sample to sample.
- ▶ We need some adjustments.

The t distribution

- Let S be the sample standard deviation (which is random before sampling) and s be its realization.
- When we replace σ by S, we rely on the following fact:

Proposition 1

For a normal population, the quantity $T_{n-1} = \frac{\overline{X} - \mu}{S/\sqrt{n}}$ follows the t distribution with degree of freedom n-1.

- We know the sampling distribution of T_{n-1} (when the population is normal). We call it **the** t **distribution**.
- ▶ Its probability density function is known (but we do not care about it). Relevant probabilities may be calculated with software.
- The only parameter is the **degree of freedom**, which is n 1.
- If X follows a t distribution with degree of freedom n-1, we denote this as $X \sim t(n-1)$.

The t distributions

- ► The *t* distribution is **symmetric**, **centered at 0**, and **bell-shaped**.
- \blacktriangleright When n goes up, it approaches the standard normal distribution.

Applying the t distribution

- Before sampling, we know we will get the sample mean \overline{X} and sample standard deviation S.
- ► For any *b*, we construct an interval $[\overline{X} b, \overline{X} + b]$. We want to know $\Pr(\overline{X} b \le \mu \le \overline{X} + b)$.
- ▶ Now we do not know the distribution of \overline{X} ; we only know the distribution of $T_{n-1} = \frac{\overline{X} \mu}{S/\sqrt{n}}$. Therefore:

$$\Pr\left(\overline{X} - b \le \mu \le \overline{X} + b\right) = \Pr\left(\mu - b \le \overline{X} \le \mu + b\right)$$
$$= \Pr\left(\frac{-b}{S/\sqrt{n}} \le \frac{\overline{X} - \mu}{S/\sqrt{n}} \le \frac{b}{S/\sqrt{n}}\right) = \Pr\left(\frac{-b}{S/\sqrt{n}} \le T \le \frac{b}{S/\sqrt{n}}\right).$$

 \blacktriangleright Once we obtain s, we may calculate the probability.

Applying the t distribution

- ▶ Consider the example of estimating average daily consumers again.
- Suppose we do not know the population variance σ^2 .
 - We know $\bar{x} = 960$ and s = 140.233.
- Suppose we propose the interval [860, 1060] with b = 100.
 - ▶ We calculate

$$\Pr\left(\frac{-b}{S/\sqrt{n}} \le T_6 \le \frac{b}{S/\sqrt{n}}\right) = \Pr\left(\frac{-100}{140.233/\sqrt{7}} \le T_6 \le \frac{100}{140.233/\sqrt{7}}\right)$$
$$= \Pr(-1.887 \le T_6 \le 1.887) = 0.892,$$

where the last step can be done with any statistical software.

▶ We are 89.2% confident that the average number of daily consumers lies within 860 and 1060.

From a confidence level to an interval

- ▶ How to construct an interval $[\overline{X} b, \overline{X} + b]$ for us to be 95% confident?
- ▶ We have the t distribution; given any value t, we know $Pr(T_{n-1} \leq t)$.
 - When the degree of freedom is 6, $Pr(T_{n-1} \leq -2.447) = 0.025$.
 - ▶ Statistical software can help us find 2.447.
- ▶ Moreover, we have

$$\Pr(T_{n-1} \le t) = \Pr\left(\frac{\overline{X} - \mu}{S/\sqrt{n}} \le t\right) = \Pr\left(\mu \ge \overline{X} - t\frac{S}{\sqrt{n}}\right).$$

► The leg length is calculated to be $-t\frac{s}{\sqrt{n}} = 2.447 \times \frac{140.233}{\sqrt{7}} = 129.694.$

- The multiplier $\frac{s}{\sqrt{n}}$ will always be used.
- ▶ The desired interval is

$$[960 - 129.694, 960 + 129.694] = [885.40, 1034.60].$$

Finding a confidence interval

- If σ is known, given \bar{x} , n, and α , we construct the confidence interval in the following steps:
 - We know $\overline{X} \sim \text{ND}(\mu, \frac{\sigma}{\sqrt{n}})$, i.e., $Z = \frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim \text{ND}(0, 1)$.
 - Step 1: Calculate the multiplier $\frac{\sigma}{\sqrt{n}}$.
 - Step 2: Calculate the **critical value** z^* such that $\Pr(Z \leq -z^*) = \frac{\alpha}{2}$.
 - ▶ Step 3: The product of the critical z^* and multiplier $\frac{\sigma}{\sqrt{n}}$ is the leg length.
 - Step 4: The interval is $[\bar{x} z^* \frac{\sigma}{\sqrt{n}}, \bar{x} + z^* \frac{\sigma}{\sqrt{n}}]$.
- If σ is unknown, given \bar{x} , s, n, and α , we construct the confidence interval in the following steps:
 - We know $T_{n-1} = \frac{\overline{X} \mu}{S/\sqrt{n}} \sim t(n-1).$
 - Step 1: Calculate the multiplier $\frac{s}{\sqrt{n}}$.
 - Step 2: Calculate the **critical value** t^* such that $\Pr(T_{n-1} \leq -t^*) = \frac{\alpha}{2}$.
 - ▶ Step 3: The product of the critical t^* and multiplier $\frac{s}{\sqrt{n}}$ is the leg length.
 - ▶ Step 4: The interval is $[\bar{x} t^* \frac{s}{\sqrt{n}}, \bar{x} + t^* \frac{s}{\sqrt{n}}].$

Remarks

- If the population is normal, the sample size n does not matter.
 - We may use the t distribution anyway.
- If the population is **non-normal** and the sample size is large $(n \ge 30)$:
 - \blacktriangleright The population is non-normal, so we cannot use the t distribution.
 - ► The sample size is large, so according to the **central limit theorem**, the sample mean is normal.
 - For $n \ge 30$, t(n-1) is very close to ND(0, 1).
 - Using the t distribution as an approximation is acceptable.
- If the population is non-normal and the sample size is small (n < 30), using t distribution for estimation is inaccurate.
 - ▶ However, the *t* distribution for estimating the population mean is **robust** to the normal population assumption: Having nonnormal population does not harm a lot.
 - We still suggest one not to use the t distribution in this case.

Summary

• To estimate the population mean μ :

σ^2	Sample size	Population distribution	
		Normal	Nonnormal
Known	$\begin{array}{l} n \geq 30 \\ n < 30 \end{array}$	$z \\ z$	zNonparametric
Unknown	$\begin{array}{l} n \geq 30 \\ n < 30 \end{array}$	$\begin{array}{c}t \text{ (or } z)\\t\end{array}$	t (or z) Nonparametric

▶ Nonparametric methods are beyond the scope of this course.