Statistics and Data Analysis

Statistical Estimation

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Road map

- Statistical estimation.
- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Example: average daily consumers

- A retail chain of 3000 stores is going to have a special discount on the next Monday.
- In the past, the average daily number of consumers on Monday was 700.
- The marketing manager promises that the average will be above 850 with the discount.
- The manager wants to know the average number of daily consumers entering the stores on that day.
- She decides to do a survey on the next Monday.
- On that day, there will be some consumers entering each store.
- For store $i, i=1, \ldots, 3000$, let x_{i} be the number of consumers.
- It is too costly to collect all $x_{i} \mathrm{~s}$ and calculate $\mu=\frac{\sum_{i=1}^{300} x_{i}}{3000}$.
- This is a task of estimating a parameter.
- Her budget is enough for hiring 7 temporary workers to count the number of consumers throughout the day.
- She decides to randomly draw 7 stores and calculate $\bar{x}=\frac{\sum_{i=1}^{7} x_{i}}{7}$.
- We assume that the daily demands of all stores follow the same (population) distribution.

Example: average daily consumers

- On that day, she gets the following sample data:
- She gets $1026,932,852,1212,844,822$, and 1032 consumers.
- The sample mean is $\bar{x}=960$.
- Intuitively, she will think that the population mean μ is "around" 960 .
- Suppose she concludes that " μ is within 950 and 970 ," how much confidence may she have?
- In general, is it okay to conclude that $\mu \in[\bar{x}-10, \bar{x}+10]$?

Estimations

- One of the most important statistical tasks is estimation.
- For unknown population parameters, we estimate them through statistics obtained from samples.
- For example, when the population mean is unknown, we use sample mean as an estimate.
- We want to go beyond intuitions and conjectures.
- We need some knowledge about the sampling distributions.
- E.g., we know $\bar{X} \sim \operatorname{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.
- In statistics, we use confidence intervals to estimate parameters.
- We will introduce how to estimate the population mean.
- Estimating other parameters basically follows the same logic.

Notation and terminology

- We have the population mean and sample mean.
- The population mean is fixed but unknown.
- E.g., the average daily demand of the 3000 stores.
- The sample mean is random.
- E.g., the average daily demand of the 7 randomly selected stores.
- The population mean is denoted as μ.
- The sample mean is denoted as \bar{X} and \bar{x} :
- Before we observe the outcome, the sample mean is random and denoted as \bar{X}.
- After we observe the outcome, the realized value of the sample mean is fixed and denoted as \bar{x}.
- \bar{X} is a random variable; \bar{x} is a realized value.

Road map

- Interval estimation.
- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Drawbacks of point estimation

- We may use the sample mean \bar{x} to estimate the population mean μ.
- " μ should somewhat be close to \bar{x}."
- This is called a point estimation.
- However, there are some drawbacks of point estimation:
- We know that μ is close to \bar{x}. But how close?
- More precisely, what is $|\mu-\bar{x}|$?
- As μ is unknown, we will never know the answer!
- Instead of suggesting a number, we will suggest an interval.
- Then we measure how good the suggested interval is.
- More precisely, we measure how likely the interval contains μ.

Interval estimation: the first illustration

- Consider a population with unknown μ. For simplicity, let's assume:
- The population variance σ^{2} is known.
- The population follows a normal distribution.
- Let the sample mean \bar{X} be the estimator.
- \bar{X} as an estimator is random; \bar{x} as a realized value is a constant.
- Suppose that $\sigma^{2}=16$ and the sample size $n=8$.
- Based on \bar{X}, we will choose a leg length b and claim that μ lies in the interval $[\bar{X}-b, \bar{X}+b]$.
- We may be either right or wrong.
- When b increases, we are more confident that we will be right.
- However, a larger interval means that the estimation is less accurate.
- What is the probability that we are right?

The sampling distribution

- Question: For any given t, find

$$
\operatorname{Pr}(\bar{X}-b \leq \mu \leq \bar{X}+b) .
$$

- As the population is normal:

$$
\bar{X} \sim \operatorname{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}=\frac{4}{\sqrt{8}}=\sqrt{2}\right) .
$$

- Suppose someone proposes to set $b=\sqrt{2}$, then the interval will be

$$
[\bar{X}-\sqrt{2}, \bar{X}+\sqrt{2}] .
$$

How good the interval is?

How good an interval is?

- If, luckily, \bar{x} is close enough to $\mu,[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ covers μ.
- If, unluckily, \bar{x} is far from $\mu,[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ does not cover μ.

How good an interval is?

- The probability that "we are lucky" can be calculated!
- No matter where μ is, we have

$$
\begin{aligned}
& \operatorname{Pr}(\bar{X}-\sqrt{2} \leq \mu \leq \bar{X}+\sqrt{2}) \\
= & \operatorname{Pr}(\mu-\sqrt{2} \leq \bar{X} \leq \mu+\sqrt{2}) \\
= & 0.6827 .
\end{aligned}
$$

- To calculate this, we rely on the fact that $\bar{X} \sim \mathrm{ND}(\mu, \sqrt{2})$.
- This is the probability for a normal random variable to be
 within one standard deviation from its mean.

A short summary

- Given any realization $\bar{x},[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ may or may not covers μ.
- Regarding the random \bar{X}, we know $[\bar{X}-\sqrt{2}, \bar{X}+\sqrt{2}]$ covers μ with probability 0.6827 .
- This level of confidence can be calculated as we know $\bar{X} \sim \mathrm{ND}(\mu, \sqrt{2})$.
- The calculation obviously depends on $\frac{\sigma}{\sqrt{n}}$.
- This quantity $\frac{\sigma}{\sqrt{n}}$ is called the standard error of the estimation.
- Instead of having $\sqrt{2}$ as the leg length, let's try $2 \sqrt{2}$.

A larger interval

- The probability that "we are lucky" now becomes 0.9545 !
- $\operatorname{Pr}(\bar{X}-2 \sqrt{2} \leq \mu \leq \bar{X}+2 \sqrt{2})=\operatorname{Pr}(\mu-2 \sqrt{2} \leq \bar{X} \leq \mu+2 \sqrt{2})=0.9545$.

Confidence levels and confidence intervals

- We made two attempts:
- $[\bar{X}-\sqrt{2}, \bar{X}+\sqrt{2}]$ results in a covering probability 0.6827 .
- $[\bar{X}-2 \sqrt{2}, \bar{X}+2 \sqrt{2}]$ results in another covering probability 0.9545 .
- In statistics, when we do interval estimation:
- Such a "covering probability" is called confidence level.
- These intervals are called confidence intervals (CI).
- How to choose the interval length?
- A larger confidence interval results in a higher confidence.
- There is a trade-off between accurate estimation and high confidence.

Confidence levels vs. interval lengths

- To find the relationship:
- $\operatorname{Pr}(\mu-\sqrt{2} \leq \bar{X} \leq \mu+\sqrt{2})=0.68 . \operatorname{Pr}(\mu-2 \sqrt{2} \leq \bar{X} \leq \mu+2 \sqrt{2})=0.95$.
- Given $b>0$, we calculate $1-2 \operatorname{Pr}(\bar{X} \leq \mu-b)$ based on $\bar{X} \sim \operatorname{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

How to choose the interval length?

- In practice, we choose a confidence level first and then the smallest interval that achieves this level.
- We typically denote the error probability as α.
- The confidence level is thus $1-\alpha$.
- Common confidence levels: 90%, 95%, and 99%.
- How to calculate the leg length b ?
- 90% : $1-2 \operatorname{Pr}(\bar{X} \leq \mu-b)=0.9$, i.e.,

$$
\operatorname{Pr}(\bar{X} \leq \mu-b)=0.05
$$

- For a given α, find b such that

$$
\operatorname{Pr}(\bar{X} \leq \mu-b)=\frac{\alpha}{2}
$$

Example revisited: average daily consumers

- Recall that we have 3000 stores, each with a number of consumers on a given day.
- The population consists of 3000 numbers.
- There is a population mean μ, which is unknown.
- We collected data from 7 stores:
- The sample data: $1026,932,852,1212,844,822$, and 1032.
- The realized sample mean is $\bar{x}=960$.
- How to do interval estimation with this sample?

Conducting the estimation

- We must know the population variance σ^{2}.
- Let's assume that $\sigma=120$.
- We need either the population is normal or the sample size is large.
- Let's assume that the population is normal.
- Now we are ready to construct a confidence interval. Let's construct three intervals for $1-\alpha=0.9,0.95$, and 0.99 .
- Step 1: $\bar{x}=960$.
- Step 2: The standard deviation of the sample mean is $\frac{\sigma}{\sqrt{n}}=45.356$.
- Step 3: The leg lengths are 74.604, 88.896, and 116.829.
- Step 4: The interval with 90% confidence level is

$$
[960-74.604,960+74.604]=[885.39,1034.60] .
$$

The other two intervals are [871.10, 1048.90] and [843.17, 1076.82].

Interpreting the estimation

- Consider the interval with 95% confidence level: [871.10, 1048.90].
- The realized sample mean is $\bar{x}=960$. The leg length is 88.896 .
- What is the business implication?
- We will claim that the true average daily consumers for all the 3000 stores is within 870 and 1050 .
- We are 95% confident. It is quite unlikely for us to be wrong.
- Recall that the marketing manager has promised that "the average daily consumers will be at least 850 ."
- Now we have a strong evidence showing that the target is really achieved.
- We are 95% confident that this is achieved.
- Note that the 99% confidence interval is [843.17, 1076.82].
- We are not 99% confident.
- We will never be 100% confident. However, we now are able to measure how confident we are.

Summary

- Facing an unknown population mean μ (with a known population variance σ^{2}), we may construct a confidence interval:
- Centered at the to-be-realized sample mean \bar{X}.
- Will cover μ with a predetermined probability.
- Use the desired confidence level $1-\alpha$ and the standard error $\frac{\sigma}{\sqrt{n}}$ to calculate the leg length b.
- Our "plan" is to suggest the interval $[\bar{X}-b, \bar{X}+b]$.
- Our suggested interval is $[\bar{x}-b, \bar{x}+b]$.
- We need one of the following:
- The population follows a normal distribution.
- The sample size $n \geq 30$.

Road map

- Interval estimation.
- Estimating population mean with known variance.
- Estimating population mean with unknown variance.

Estimation without the population variance

- Sometimes (actually for most of the time) we do not know the population variance σ^{2}.
- Then we cannot calculate the standard error $\frac{\sigma}{\sqrt{n}}$.
- In this case, intuitively we may try to replace σ by s, the sample standard deviation.
- As an example, for the 7 numbers of consumers 1026, 932, 852, 1212, 844,822 , and 1032 , we have

$$
s=\sqrt{\frac{(1026-960)^{2}+\cdots+(1032-960)^{2}}{7-1}}=140.233
$$

- We then use $\frac{s}{\sqrt{n}}$ to construct an interval.
- However, $\bar{X} \sim \operatorname{ND}\left(\mu, \frac{s}{\sqrt{n}}\right)$ is not right!
- In particular, s can vary from sample to sample.
- We need some adjustments.

The t distribution

- Let S be the sample standard deviation (which is random before sampling) and s be its realization.
- When we replace σ by S, we rely on the following fact:

Proposition 1

For a normal population, the quantity $T_{n-1}=\frac{\bar{X}-\mu}{S / \sqrt{n}}$ follows the t distribution with degree of freedom $n-1$.

- We know the sampling distribution of T_{n-1} (when the population is normal). We call it the t distribution.
- Its probability density function is known (but we do not care about it). Relevant probabilities may be calculated with software.
- The only parameter is the degree of freedom, which is $n-1$.
- If X follows a t distribution with degree of freedom $n-1$, we denote this as $X \sim t(n-1)$.

The t distributions

- The t distribution is symmetric, centered at 0 , and bell-shaped.
- When n goes up, it approaches the standard normal distribution.

Applying the t distribution

- Before sampling, we know we will get the sample mean \bar{X} and sample standard deviation S.
- For any b, we construct an interval $[\bar{X}-b, \bar{X}+b]$. We want to know $\operatorname{Pr}(\bar{X}-b \leq \mu \leq \bar{X}+b)$.
- Now we do not know the distribution of \bar{X}; we only know the distribution of $T_{n-1}=\frac{\bar{X}-\mu}{S / \sqrt{n}}$. Therefore:

$$
\begin{aligned}
& \operatorname{Pr}(\bar{X}-b \leq \mu \leq \bar{X}+b)=\operatorname{Pr}(\mu-b \leq \bar{X} \leq \mu+b) \\
= & \operatorname{Pr}\left(\frac{-b}{S / \sqrt{n}} \leq \frac{\bar{X}-\mu}{S / \sqrt{n}} \leq \frac{b}{S / \sqrt{n}}\right)=\operatorname{Pr}\left(\frac{-b}{S / \sqrt{n}} \leq T \leq \frac{b}{S / \sqrt{n}}\right) .
\end{aligned}
$$

- Once we obtain s, we may calculate the probability.

Applying the t distribution

- Consider the example of estimating average daily consumers again.
- Suppose we do not know the population variance σ^{2}.
- We know $\bar{x}=960$ and $s=140.233$.
- Suppose we propose the interval $[860,1060]$ with $b=100$.
- We calculate

$$
\begin{aligned}
& \operatorname{Pr}\left(\frac{-b}{S / \sqrt{n}} \leq T_{6} \leq \frac{b}{S / \sqrt{n}}\right)=\operatorname{Pr}\left(\frac{-100}{140.233 / \sqrt{7}} \leq T_{6} \leq \frac{100}{140.233 / \sqrt{7}}\right) \\
= & \operatorname{Pr}\left(-1.887 \leq T_{6} \leq 1.887\right)=0.892,
\end{aligned}
$$

where the last step can be done with any statistical software.

- We are 89.2% confident that the average number of daily consumers lies within 860 and 1060 .

From a confidence level to an interval

- How to construct an interval $[\bar{X}-b, \bar{X}+b]$ for us to be 95% confident?
- We have the t distribution; given any value t, we know $\operatorname{Pr}\left(T_{n-1} \leq t\right)$.
- When the degree of freedom is $6, \operatorname{Pr}\left(T_{n-1} \leq-2.447\right)=0.025$.
- Statistical software can help us find 2.447.
- Moreover, we have

$$
\operatorname{Pr}\left(T_{n-1} \leq t\right)=\operatorname{Pr}\left(\frac{\bar{X}-\mu}{S / \sqrt{n}} \leq t\right)=\operatorname{Pr}\left(\mu \geq \bar{X}-t \frac{S}{\sqrt{n}}\right) .
$$

- The leg length is calculated to be $-t \frac{s}{\sqrt{n}}=2.447 \times \frac{140.233}{\sqrt{7}}=129.694$.
- The multiplier $\frac{s}{\sqrt{n}}$ will always be used.
- The desired interval is

$$
[960-129.694,960+129.694]=[885.40,1034.60]
$$

Finding a confidence interval

- If σ is known, given \bar{x}, n, and α, we construct the confidence interval in the following steps:
- We know $\bar{X} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$, i.e., $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{ND}(0,1)$.
- Step 1: Calculate the multiplier $\frac{\sigma}{\sqrt{n}}$.
- Step 2: Calculate the critical value z^{*} such that $\operatorname{Pr}\left(Z \leq-z^{*}\right)=\frac{\alpha}{2}$.
- Step 3: The product of the critical z^{*} and multiplier $\frac{\sigma}{\sqrt{n}}$ is the leg length.
- Step 4: The interval is $\left[\bar{x}-z^{*} \frac{\sigma}{\sqrt{n}}, \bar{x}+z^{*} \frac{\sigma}{\sqrt{n}}\right]$.
- If σ is unknown, given \bar{x}, s, n, and α, we construct the confidence interval in the following steps:
- We know $T_{n-1}=\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t(n-1)$.
- Step 1: Calculate the multiplier $\frac{s}{\sqrt{n}}$.
- Step 2: Calculate the critical value t^{*} such that $\operatorname{Pr}\left(T_{n-1} \leq-t^{*}\right)=\frac{\alpha}{2}$.
- Step 3: The product of the critical t^{*} and multiplier $\frac{s}{\sqrt{n}}$ is the leg length.
- Step 4: The interval is $\left[\bar{x}-t^{*} \frac{s}{\sqrt{n}}, \bar{x}+t^{*} \frac{s}{\sqrt{n}}\right]$.

Remarks

- If the population is normal, the sample size n does not matter.
- We may use the t distribution anyway.
- If the population is non-normal and the sample size is large ($n \geq 30$):
- The population is non-normal, so we cannot use the t distribution.
- The sample size is large, so according to the central limit theorem, the sample mean is normal.
- For $n \geq 30, t(n-1)$ is very close to $\mathrm{ND}(0,1)$.
- Using the t distribution as an approximation is acceptable.
- If the population is non-normal and the sample size is small $(n<30)$, using t distribution for estimation is inaccurate.
- However, the t distribution for estimating the population mean is robust to the normal population assumption: Having nonnormal population does not harm a lot.
- We still suggest one not to use the t distribution in this case.

Summary

- To estimate the population mean μ :

σ^{2}	Sample size	Population distribution	
		Normal	Nonnormal
Known	$n \geq 30$	z	z
	$n<30$	z	Nonparametric
Unknown	$n \geq 30$	$t($ or $z)$	t (or $z)$
	$n<30$	t	Nonparametric

- Nonparametric methods are beyond the scope of this course.

