Statistics and Data Analysis Hypothesis testing (1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

Introduction

- ▶ How do scientists (physicists, chemists, etc.) do research?
 - Observe phenomena.
 - Make hypotheses.
 - Test the hypotheses through experiments (or other methods).
 - Make conclusions about the hypotheses.
- ► In the business world, business researchers do the same thing with **hypothesis testing**.
 - One of the most important technique of statistical inference.
 - A technique for (statistically) **proving** things.
 - Again relies on **sampling distributions**.

Basic ideas ●000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 000000000

Road map

► Basic ideas of hypothesis testing.

- ▶ The first example.
- \blacktriangleright The p-value.

Basic ideas 0●00000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

People ask questions

- ▶ In the business (or social science) world, people ask questions:
 - Are older workers more loyal to a company?
 - ▶ Does the newly hired CEO enhance our profitability?
 - ▶ Is one candidate preferred by more than 50% voters?
 - ▶ Do teenagers eat fast food more often than adults?
 - ► Is the quality of our products stable enough?
- ▶ How should we answer these questions?
- Statisticians suggest:
 - First make a **hypothesis**.
 - Then **test** it with samples and statistical methods.

Basic ideas 00●0000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 0000000000

Statistical hypotheses

- ► A statistical hypothesis is a formal way of stating a hypothesis.
 - ▶ Typically it is a mathematical description of parameters to test.
- ▶ It contains two parts:
 - The **null hypothesis** (denoted as H_0).
 - ▶ The alternative hypothesis (denoted as H_a or H₁).
- ▶ The alternative hypothesis is:
 - The thing that we want (need) to prove.
 - ▶ The conclusion that can be made only if we have a strong evidence.
- ▶ The null hypothesis corresponds to a **default** position.
 - We first **assume** that the null hypothesis is correct.
 - ▶ Then we collect sample data.
 - If under the null hypothesis it is **quite unlikely** to see our observed result, we claim that the null hypothesis is wrong.

Basic ideas 000●000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

- ▶ In our factory, we produce packs of candy whose average weight should be 1 kg.
- ▶ One day, a consumer told us that his pack only weighs 900 g.
- ▶ We need to know whether this is just a rare event or our production system is out of control.
- ▶ If (we believe) the system is out of control, we need to shutdown the machine and spend two days for inspection and maintenance. This will cost us at least \$100,000.
- ▶ So we should not to believe that our system is out of control just because of one complaint. What should we do?

Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
000000000	000000000	000000	0000000000

- ▶ We first state a hypothesis: "Our production system is under control."
- ► Then we ask: Is there a strong enough evidence showing that the hypothesis is **wrong**, i.e., the system is out of control?
 - ▶ Initially, we assume that our system is under control.
 - ▶ Then we do a survey to see if we have a strong enough evidence.
 - ▶ We shutdown machines **only if** we can "prove" that the system is indeed out of control.
- Let μ be the average weight, the **statistical hypothesis** is

 $H_0: \mu = 1$ $H_a: \mu \neq 1.$

Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
000000000	000000000	000000	0000000000

- ▶ In our society, we adopt the presumption of innocence.
 - One is considered **innocent** until proven **guilty**.
- ▶ So when there is a person who probably stole some money:

 H_0 : The person is innocent

 $\mathrm{H}_{\mathrm{a}}\colon$ The person is guilty.

- ▶ There are two possible errors:
 - One is guilty but we think she/he is innocent.
 - One is innocent but we think she/he is guilty.
- ▶ Which one is more critical?
 - ▶ It is unacceptable that an innocent person is considered guilty.
 - We will say one is guilty **only if** there is a strong evidence.

Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
0000000000	000000000	000000	0000000000

- ▶ Consider the following hypothesis: "The candidate is preferred by more than 50% voters."
- ▶ As we need a default position, and the percentage that we care about is 50%, we will choose our null hypothesis as

$$H_0: p = 0.5.$$

- ▶ *p* is the **population proportion** of voters preferring the candidate.
- More precisely, let $X_i = 1$ if voter *i* prefers this candidate and 0 otherwise, i = 1, ..., N, then $p = \frac{\sum_{i=1}^{N} X_i}{N}$.
- ▶ How about the alternative hypothesis? Should it be

$$H_a: p > 0.5$$
 or $H_a: p < 0.5$?

Basic ideas 0000000●00	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

- ► The choice of the alternative hypothesis depends on the related decisions or actions to make.
- Suppose one will go for the election only if she thinks she will win (i.e., p > 0.5), the alternative hypothesis will be

 $H_a: p > 0.5.$

▶ Suppose one tends to participate in the election and will give up only if the chance is slim, the alternative hypothesis will be

 $\mathrm{H_a} \colon p < 0.5.$

▶ The alternative hypothesis is "the thing we want (need) to prove."

Basic ideas 00000000●0	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 000000000

Remarks

- ▶ For setting up a statistical hypothesis:
 - Our default position will be put in the null hypothesis.
 - ▶ The thing we want to prove (i.e., the thing that needs a strong evidence) will be put in the alternative hypothesis.
- ▶ For writing the mathematical statement:
 - ► The equal sign (=) will always be put in the null hypothesis.
 - ► The alternative hypothesis contains an unequal sign or strict inequality: ≠, >, or <.</p>
- ▶ The direction of the alternative hypothesis, when it is an inequality, depends on the business context.

Basic ideas 000000000●	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

One-tailed tests and two-tailed tests

- ► If the alternative hypothesis contains an unequal sign (≠), the test is a two-tailed test.
- ▶ If it contains a strict inequality (> or <), the test is a **one-tailed** test.
- ▶ Suppose we want to test the value of the population mean.
 - ▶ In a two-tailed test, we test whether the population mean significantly deviates from a hypothesized value. We do not care whether it is larger than or smaller than.
 - ▶ In a one-tailed test, we test whether the population mean significantly deviates from a hypothesized value in a specific direction.

asic ideas 000000000	The first example: Two-tailed •000000000	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

Road map

- Basic ideas of hypothesis testing.
- ► The first example.
 - A two-tailed test.
 - ▶ A one-tailed test.
- \blacktriangleright The p-value.

Basic ideas 0000000000	The first example: Two-tailed $0 \oplus 000000000$	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

The first example: a two-tailed

- ▶ Now we will demonstrate the process of hypothesis testing.
- ▶ Suppose we test the average weight (in g) of our products.

 $H_0: \mu = 1000$ $H_a: \mu \neq 1000.$

- The variance of the product weights is $\sigma^2 = 40000 \text{ g}^2$.
 - The case with unknown σ^2 will be discussed in the next lecture.
- A random sample has been collected.
 - Suppose the sample size n = 100.
 - Suppose the sample mean $\bar{x} = 963$.
- ▶ How to make a conclusion?

Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
000000000	00000000	000000	0000000000

Controlling the error probability

- All we can do is to collect a **random** sample and make our conclusion based on the observed sample.
- It is natural that we may be wrong when we claim $\mu \neq 1000$.
 - It is possible that $\mu = 1000$ but we unluckily get a sample mean $\bar{x} = 812$.
- We want to **control the error probability**.
 - Let α be the maximum probability for us to make this error.
 - α is called the **significance level**.
 - 1α is called the **confidence level**.
 - Target: If $\mu = 1000$, our sampling and testing process will make us claim that $\mu \neq 1000$ with probability at most α .

Basic ideas 0000000000	The first example: Two-tailed $000 \bullet 000000$	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

Rejection rule

- ▶ Now let's test with the significance level $\alpha = 0.05$.
- ▶ Intuitively, if \overline{X} deviates from 1000 a lot, we should reject the null hypothesis and believe that $\mu \neq 1000$.
 - If $\mu = 1000$, it is so unlikely to observe such a large deviation.
 - ▶ So such a large deviation provides a **strong evidence**.
- ▶ So we start by sampling and calculating the **sample mean**.
- ▶ We want to construct a **rejection rule**: If $|\overline{X} 1000| > d$, we reject H₀. We need to calculate *d*.

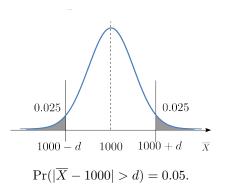
Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
0000000000	00000000	000000	0000000000

Rejection rule

▶ We want a distance d such that if H₀ is true, the probability of rejecting H₀ is 5%, i.e.,

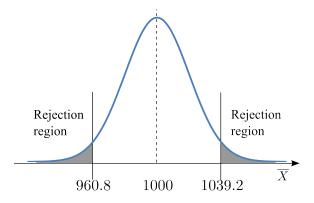
$$\Pr\left(|\overline{X} - 1000| > d \Big| \mu = 1000\right) = 0.05.$$

- People typically hide the condition $\mu = 1000$ and directly write $\Pr(|\overline{X} 1000| > d).$
- Consider \overline{X} :
 - We know $\sigma = 200$ and n = 100.
 - We **assume** that $\mu = 1000$.
 - ▶ Thanks to the central limit theorem, $\overline{X} \sim \text{ND}(1000, 20)$.



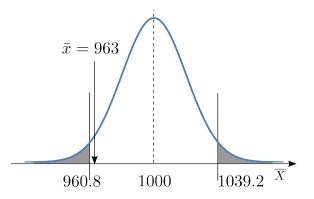
Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
0000000000	000000000	000000	0000000000

- According to X̄ ~ ND(1000, 20), Pr(|X̄ − 1000| > 39.2) = 0.05. The rejection region is R = (-∞, 960.8) ∪ (1039.2, ∞).
- If \overline{X} falls in the rejection region, we reject H_0 .



Basic ideas 0000000000	The first example: Two-tailed $000000000000000000000000000000000000$	The first example: One-tailed 000000	The <i>p</i> -value 0000000000

- Because $\bar{x} = 963 \notin R$, we cannot reject \mathbf{H}_0 .
 - ▶ The deviation from 1000 is not large enough.
 - The evidence is not strong enough.



Hypothesis	testing	(1)
------------	---------	-----

Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
0000000000	0000000000	000000	0000000000

- ▶ In this example, the two values 960.8 and 1039.2 are the **critical values** for rejection.
 - If the sample mean is more extreme than one of the critical values, we reject H_0 .
 - Otherwise, we do not reject H_0 .
- ▶ $\bar{x} = 963$ is not strong enough to support H_a: $\mu \neq 1000$.
- ► Concluding statement:
 - ► Because the sample mean does not lie in the rejection region, we **cannot** reject H₀.
 - ▶ With a 95% confidence level, there is **no** strong evidence showing that the average weight **is not** 1000 g.
 - ▶ Therefore, we **should not** shutdown machines to do an inspection.

Basic ideas 0000000000	The first example: Two-tailed $000000000000000000000000000000000000$	The first example: One-tailed 000000	The p -value 0000000000

Summary

- ▶ We want to know whether the machine is out of control.
 - ▶ If the machine is actually good, we do not want to reach a conclusion that requires an inspection and maintenance.
 - ▶ We will do the inspection **only if** we have a strong evidence suggesting that $\mu \neq 1000$.
- We want to know whether H_0 is false, i.e., $\mu \neq 1000$.
- We control the probability of making a wrong conclusion.
 - ▶ We should not reject H₀ if it is true,
 - We limit the probability at $\alpha = 5\%$.
- We will conclude that H_0 is false if \overline{X} falls in the rejection region.
 - ► The calculation of the the critical values is based on the normal distribution, which can always be transformed to the z distribution.
 - This is called a z test.

0000000000000000000000	Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
	0000000000	00000000	000000	0000000000

Not rejecting vs. accepting

- We should be careful in writing our conclusions:
 - ▶ Wrong: Because the sample mean does not lie in the rejection region, we accept H₀. With a 95% confidence level, there is a strong evidence showing that the average weight is 1000 g.
 - ▶ Right: Because the sample mean does not lie in the rejection region, we cannot reject H₀. With a 95% confidence level, there is no strong evidence showing that the average weight is not 1000 g.
 - ▶ Unable to prove one thing is false does not mean it is true!

Basic ideas	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value
000000000	000000000	●00000	0000000000

Road map

- Basic ideas of hypothesis testing.
- ► The first example.
 - ▶ A two-tailed test.
 - ► A one-tailed test.
- \blacktriangleright The *p*-value.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 0000000000

The first example (part 2)

▶ Suppose that we modify the hypothesis into a directional one:¹

 $H_0: \mu = 1000.$ $H_a: \mu < 1000.$

We still have $\sigma^2 = 40000$, n = 100, and $\alpha = 0.05$.

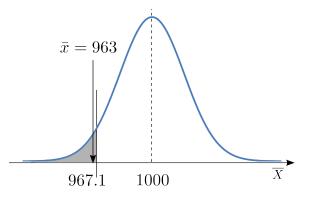
- ► This is a **one-tailed test**.
- Once we have a strong evidence supporting H_a , we will claim that $\mu < 1000$.
- We need to find a distance d such that

$$\Pr\left(1000 - \overline{X} > d \middle| \mu = 1000\right) = 0.05.$$

¹Some researchers write $\mu \ge 1000$ in this case.

Basic ideas 0000000000	The first example: Two-tailed	The first example: One-tailed	The <i>p</i> -value 0000000000

- For $0.05 = \Pr(1000 \overline{X} > d)$, we have d = 32.9.
- As the observed sample mean $\bar{x} = 963 \in (-\infty, 967.1)$, we reject \mathbf{H}_0 .
 - ▶ The deviation from 1000 is large enough.
 - ▶ The evidence is strong enough.



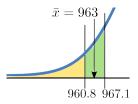
Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

- ▶ In this example, 967.1 is the critical values for rejection.
 - If the sample mean is more extreme than (in this case, below) the critical value, we reject H_0 .
 - ▶ Otherwise, we do not reject H₀.
- There is a strong evidence supporting H_a : $\mu < 1000$.
- Concluding statement:
 - Because the sample mean lies in the rejection region, we reject H_0 . With a 95% confidence level, there is a strong evidence showing that the average weight is less than 1000 g.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed $0000 \bullet 0$	The <i>p</i> -value 000000000

One-tailed tests vs. two-tailed tests

- ▶ When should we use a two-tailed test?
 - ▶ We use a two-tailed test when we are lack of the direction information.
 - E.g., we suspect that the population mean has changed, but we have no idea about whether it becomes larger or smaller.
- ► If we know or believe that the change is possible only in one direction, we may use a one-tailed test.
- ▶ Having more information (i.e., knowing the direction of change) makes rejection "easier,", i.e., easier to find a strong enough evidence.



Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed $00000 \bullet$	The <i>p</i> -value 000000000

Summary

- ▶ Distinguish the following pairs:
 - ▶ One- and two-tailed tests.
 - ▶ No evidence showing H₀ is false and having evidence showing H₀ is true.
 - ▶ Not rejecting H₀ and accepting H₀.
 - Using = and using \geq or \leq in the null hypothesis.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value •000000000

Road map

- Basic ideas of hypothesis testing.
- ▶ The first example.
- ► The *p*-value.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value $0 \bullet 000000000$

The *p*-value

▶ The *p*-value is an important, meaningful, and widely-adopted tool for hypothesis testing.

Definition 1

In a hypothesis testing, for an observed value of the statistic, the *p*-value is the probability of observing a value that is at least as extreme as the observed value under the assumption that the null hypothesis is true.

- ► Calculated based on an **observed** value of the statistic.
- ► Is the **tail probability** of the observed value.
- Assuming that the null hypothesis is true.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

The *p*-value

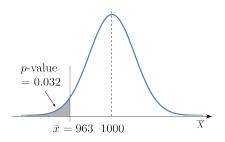
- ► Mathematically:
 - Suppose we test a population mean μ with a one-tailed test

 $H_0: \mu = 1000$ $H_a: \mu < 1000.$

• Given an observed \bar{x} , the *p*-value is defined as

$$\Pr(\overline{X} \le \bar{x}).$$

- In the previous example, $\sigma = 200$, n = 100, $\alpha = 0.05$, and $\bar{x} = 963$.
 - If H₀ is true, i.e., μ = 1000, we have Pr(X ≤ 963) = 0.032.
 - The *p*-value of \bar{x} is 0.032.



Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 000000000

How to use the *p*-value?

- ▶ The *p*-value can be used for constructing a **rejection rule**.
- ▶ For a one-tailed test:
 - If the *p*-value is **smaller** than α , we **reject** H₀.
 - If the *p*-value is greater than α , we do not reject H₀.
- ▶ In our example, the one-tailed test is

 $H_0: \mu = 1000$ $H_a: \mu < 1000.$

- We have $\alpha = 0.05$.
- Because the *p*-value 0.032 < 0.05, we reject H₀.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

p-values vs. critical values

- ▶ Using the *p*-value is **equivalent** to using the critical values.
 - ▶ The rejection-or-not decision we make will be the same based on the two methods.



Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

The benefit of using the *p*-value

- In calculating the *p*-value, we do not need α .
- After the *p*-value is calculated, we compare it with α .
- The *p*-value, which needs to be calculated **only once**, allows us to know whether the difference is significant under various values of α.
- ▶ In our example:

α	0.1	0.05	0.01
Rejecting H_0 ?	Yes $(0.032 < 0.1)$	Yes $(0.032 < 0.05)$	No $(0.032 > 0.01)$

• If we use the critical-value method, we need to calculate the critical value for three times, one for each value of α .

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

The benefit of using the *p*-value

- In many studies, researchers do not determine the significance level α before a test is conducted.
- ► They calculate the *p*-value and then mark the significance of the result with stars.
- One typical way of assigning stars:

p-value	Significant?	Mark
(0,0.01]	Highly significant	***
(0.01, 0.05]	Moderately significant	**
(0.05, 0.1]	Slightly significant	*
(0.1, 1)	Insignificant	(Empty)

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 000000000000000000000000000000000000

The benefit of using the *p*-value

- ▶ As an example, suppose one is testing whether people at different ages sleep for at least eight hours per day in average.
 - ▶ Age groups: [10, 15), [15, 20), [20, 35), etc.
 - For group *i*, a one-tailed test is conducted. $H_a: \mu_i > 8$.
 - The result may be presented in a table:

Group	Age group	p-value
1	[10, 15)	0.0002***
2	[15,20)	0.2
3	[20, 25)	0.06^{*}
4	[25, 30)	0.04^{**}
5	[30, 35)	0.03**

- ► A smaller *p*-value does NOT mean a larger deviation!
 - We cannot conclude that $\mu_5 > \mu_4$, $\mu_1 > \mu_3$, etc.
 - ▶ There are other tests for the difference between two population means.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The p -value 0000000000

The *p*-value for two-tailed tests

▶ How to construct the rejection rule for a **two-tailed** test?

- If the *p*-value is smaller than $\frac{\alpha}{2}$, we reject H₀.
- If the *p*-value is greater than $\frac{\alpha}{2}$, we do not reject H₀.

Consider the two-tailed test

 $H_0: \mu = 1000.$ $H_a: \mu \neq 1000.$

• We have $\alpha = 0.05$.

• Because the *p*-value $0.032 > \frac{\alpha}{2} = 0.025$, we do not reject H₀.

Basic ideas 0000000000	The first example: Two-tailed 0000000000	The first example: One-tailed 000000	The <i>p</i> -value 00000000

Summary

- ▶ The *p*-value is the tail probability of the realized value of a statistics assuming the null hypothesis is true.
- ▶ The *p*-value method is an alternative way of forming the rejection rule.
 - ▶ It is equivalent to the critical-value method.
- The *p*-value is related to the probability for H_0 to be false.
- ▶ It does not measure the magnitude of the deviation.