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Road map

I Introduction.

I Least square approximation

I Model validation.

I Variable transformation and selection.
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Correlation and prediction

I We often try to find correlation among variables.

I For example, prices and sizes of houses:

House 1 2 3 4 5 6

Size (m2) 75 59 85 65 72 46
Price ($1000) 315 229 355 261 234 216

House 7 8 9 10 11 12

Size (m2) 107 91 75 65 88 59
Price ($1000) 308 306 289 204 265 195

I We may calculate their correlation coefficient as r = 0.729.

I Now given a house whose size is 100 m2, may we predict its price?
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Correlation among more than two variables

I Sometimes we have more than two variables:

I For example, we may also know the number of bedrooms in each house:

House 1 2 3 4 5 6

Size (m2) 75 59 85 65 72 46
Price ($1000) 315 229 355 261 234 216

Bedroom 1 1 2 2 2 1

House 7 8 9 10 11 12

Size (m2) 107 91 75 65 88 59
Price ($1000) 308 306 289 204 265 195

Bedroom 3 3 2 1 3 1

I How to summarize the correlation among the three variables?

I How to predict house price based on size and number of bedrooms?
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Regression analysis

I Regression is the solution!

I As one of the most widely used tools in Statistics, it discovers:
I Which variables affect a given variable.
I How they affect the target.

I In general, we will predict/estimate one dependent variable by one
or multiple independent variables.
I Independent variables: Potential factors that may affect the outcome.
I Dependent variable: The outcome.
I Independent variables are explanatory variables; the dependent variable

is the response variable.

I As another example, suppose we want to predict the number of arrival
consumers for tomorrow:
I Dependent variable: Number of arrival consumers.
I Independent variables: Weather, holiday or not, promotion or not, etc.
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Regression analysis

I There are multiple types of regression analysis.

I Based on the number of independent variables:
I Simple regression: One independent variable.
I Multiple regression: More than one independent variables.

I Independent variables may be quantitative or qualitative.
I In this lecture, we introduce the way of including quantitative

independent variables. Qualitative independent variables will be
introduced in a future lecture.

I We only talk about ordinary regression, which has a quantitative
dependent variable.
I If the dependent variable is qualitative, advanced techniques (e.g.,

logistic regression) are required.
I Make sure that your dependent variable is quantitative!
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Basic principle
I Consider the price-size relationship again. In the sequel, let xi be the

size and yi be the price of house i, i = 1, ..., 12.

Size Price
(in m2) (in $1000)

46 216
59 229
59 195
65 261
65 204
72 234
75 315
75 289
85 355
88 265
91 306
107 308

I How to relate sizes and prices “in the best way?”
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Linear estimation

I If we believe that the relationship between the two variables is linear,
we will assume that

yi = β0 + β1xi + εi.

I β0 is the intercept of the equation.
I β1 is the slope of the equation.
I εi is the random noise for estimating record i.

I Somehow there is such a formula, but we do not know β0 and β1.
I β0 and β1 are the parameter of the population.
I We want to use our sample data (e.g., the information of the twelve

houses) to estimate β0 and β1.
I We want to form two statistics β̂0 and β̂1 as our estimates of β0 and β1.
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Linear estimation

I Given the values of β̂0 and β̂1, we will use ŷi = β̂0 + β̂1xi as our
estimate of yi.

I Then we have
yi = β̂0 + β̂1xi + εi,

where εi is now interpreted as the estimation error.

I For example, if we choose β̂0 = 100 and β̂1 = 2, we have

xi 46 59 59 65 65 72 75 75 85 88 91 107
yi 216 229 195 261 204 234 315 289 355 265 306 308

100 + 2xi 192 218 218 230 230 244 250 250 270 276 282 314
εi 24 11 −23 31 −26 −10 65 39 85 −11 24 −6

I xi and yi are given.
I 100 + 2xi is calculated from xi and our assumed β̂0 = 100 and β̂1 = 2.
I The estimation error εi is calculated as yi − (100 + 2xi).
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Linear estimation
I Graphically, we are using a straight line to “pass through” those points:

xi 46 59 59 65 65 72 75 75 85 88 91 107
yi 216 229 195 261 204 234 315 289 355 265 306 308

100 + 2xi 192 218 218 230 230 244 250 250 270 276 282 314
εi 24 11 −23 31 −26 −10 65 39 85 −11 24 −6
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Better estimation

I Is (β̂0, β̂1) = (100, 2) good? How about (β̂0, β̂1) = (100, 2.4)?

I We need a way to define the “best” estimation!
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Least square approximation

I ŷi = β̂0 + β̂1xi is our estimate of yi.
I We hope εi = yi − ŷi to be as small as possible.

I For all data points, let’s minimize the sum of squared errors (SSE):

n∑
i=1

ε2i = (yi − ŷi)2 =

n∑
i=1

[
(yi − (β̂0 + β̂1xi)

]2
.

I The solution of

min
β̂0,β̂1

n∑
i=1

[
(yi − (β̂0 + β̂1xi)

]2
is our least square approximation (estimation) of the given data.
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Least square approximation

I For (β̂0, β̂1) = (100, 2), SSE = 16667.

xi 46 59 59 · · · 91 107

yi 216 229 195 · · · 306 308

ŷi 192 218 218 · · · 282 314

ε2i 576 121 529 · · · 576 36

I For (β̂0, β̂1) = (100, 2.4), SSE = 15172.76. Better!

xi 46 59 59 · · · 91 107

yi 216 229 195 · · · 306 308

ŷi 210.4 241.6 241.6 · · · 318.4 356.8

ε2i 31.36 158.76 2171.56 · · · 153.76 2381.44

I What are the values of the best (β̂0, β̂1)?
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Least square approximation
I The least square approximation problem

min
β̂0,β̂1

n∑
i=1

[
(yi − (β̂0 + β̂1xi)

]2
has a closed-form formula for the best (β̂0, β̂1):

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
and β̂0 = ȳ − β̂1x̄.

I We do not care about the formula.
I To calculate the least square coefficients, we use statistical software.

I For our house example, we will get (β̂0, β̂1) = (102.717, 2.192).
I Its SSE is 13118.63.
I We will never know the true values of β0 and β1. However, according to

our sample data, the best (least square) estimate is (102.717, 2.192).
I We tend to believe that β0 = 102.717 and β1 = 2.192.
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Interpretations

I Our regression model is

y = 102.717 + 2.192x.

I Interpretation: When the house
size increases by 1 m2, the price is
expected to increase by $2, 192.

I (Bad) interpretation: For a house
whose size is 0 m2, the price is
expected to be $102,717.
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Linear multiple regression

I In most cases, more than one independent variable may be used to
explain the outcome of the dependent variable.

I For example, consider the number of bedrooms.

I We may take both variables as
independent variables to do linear
multiple regression:

yi = β0 + β1x1,i + β2x2,i + εi.

I yi is the house price (in $1000).
I x1,i is the house size (in m2).
I x2,i is the number of bedrooms.
I εi is the random noise.

I Our (least square) estimate is

(β̂0, β̂1, β̂2) = (82.737, 2.854,−15.789).

Price Size
Bedroom

(in $1000) (in m2)

315 75 1
229 59 1
355 85 2
261 65 2
234 72 2
216 46 1
308 107 3
306 91 3
289 75 2
204 65 1
265 88 3
195 59 1
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Interpretations
I Our regression model is

y = 82.737 + 2.854x1 − 15.789x2.

I When the house size increases by 1 m2 (and all other independent
variables are fixed), we expect the price to increase by $2, 854.

I When there is one more bedroom (and all other independent variables
are fixed), we expect the price to decrease by $15, 789.

I One must interpret the results and determine whether the result is
meaningful by herself/himself.
I The number of bedrooms may not be a good indicator of house price.
I At least not in a linear way.

I We need more than finding coefficients:
I We need to judge the overall quality of a given regression model.
I We may want to compare multiple regression models.
I We must test the significance of regression coefficients.
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Road map

I Introduction.

I Least square approximation.

I Model validation.

I Variable transformation and selection.
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Estimation with no model

I For the price-size regression model

y = 102.717 + 2.192x,

how good is it?

I In general, for a given regression model

y = β̂0 + β̂1x1 + · · · β̂kxk,

how to evaluate its overall quality?

I Suppose that we do not do regression. Instead, we (very naively)

estimate yi by ȳ =
∑12
i=1 yi
12 , the average of yis.

I We cannot do worse than that; it can be done without a model.

I How much does our regression model do better than it?
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SSE, SST, and R2

I Without a model, the sum of squared total errors (SST) is

SST =

n∑
i=1

(yi − ȳ)2.

I With out regression model, the sum of squared errors (SSE) is

SSE =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

[
(yi − (β̂0 + β̂1xi)

]2
.

I The proportion of total variability that is explained by the regression
model is1

R2 = 1− SSE

SST
.

The larger R2, the better the regression model.
1Note that 0 ≤ R2 ≤ 1. Why?
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Obtaining R2 in R

I Whenever we find the estimated coefficients, we have R2.

I Statistical software includes R2 in the regression report.

I For the regression model y = 102.717 + 2.192x, we have R2 = 0.5315:
I Around 53% of a house price is determined by its house size.

I If (and only if) there is only one independent variable, then R2 = r2,
where r is the correlation coefficient between the dependent and
independent variables.
I −1 ≤ r ≤ 1.
I 0 ≤ r2 = R2 ≤ 1.
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Comparing regression models

I Now we have a way to compare regression models.

I For our example:

Size only Bedroom only Size and bedroom

R2 0.5315 0.29 0.5513

I Using prices only is better than using numbers of bedrooms only.
I Is using prices and bedrooms better?

I In general, adding more variables always increases R2!
I In the worst case, we may set the corresponding coefficients to 0.
I Some variables may actually be meaningless.

I To perform a “fair” comparison and identify those meaningful factors,
we need to adjust R2 based on the number of independent variables.
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Adjusted R2

I The standard way to adjust R2 to adjusted R2 is

R2
adj = 1−

(
n− 1

n− k − 1

)
(1−R2).

I n is the sample size and k is the number of independent variables used.

I For our example:

Size only Bedroom only Size and bedroom

R2 0.5315 0.290 0.5513
R2

adj 0.4846 0.219 0.4516

I Actually using sizes only results in the best model!
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Testing coefficient significance

I Another important task for validating a regression model is to test the
significance of each coefficient.

I Recall our model with two independent variables

y = 82.737 + 2.854x1 − 15.789x2.

I Note that 2.854 and −15.789 are solely calculated based on the sample.
We never know whether β1 and β2 are really these two values!

I In fact, we cannot even be sure that β1 and β2 are not 0. We need to
test them:

H0 : βi = 0

Ha : βi 6= 0.

I We look for a strong enough evidence showing that βi 6= 0.
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Testing coefficient significance by R
I The testing results are provided in regression reports.

I Statistical software tells us:

Coefficients Standard Error t Stat p-value

Intercept 82.737 59.873 1.382 0.200
Size 2.854 1.247 2.289 0.048 **
Bedroom −15.789 25.056 −0.630 0.544

I These p-values have been multiplied by 2 in a typical report. Simply
compare them with α!

I At a 95% confidence level, we believe that β1 6= 0. House size really has
some impact on house price.

I At a 95% confidence level, we have no evidence for β2 6= 0. We cannot
conclude that the number of bedrooms has an impact on house price.

I If we use only size as an independent variable, its p-value will be
0.00714. We will be quite confident that it has an impact.
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House age

I The age of a house may also affect its price.

Price Size
Bedroom

Age
(in $1000) (in m2) (in years)

315 75 1 16
229 59 1 20
355 85 2 16
261 65 2 15
234 72 2 21
216 46 1 16
308 107 3 15
306 91 3 15
289 75 2 14
204 65 1 21
265 88 3 15
195 59 1 26

I Let’s add age as an independent variable in explaining house prices.
I Because the number of bedroom seems to be unhelpful, let’s ignore it.
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House age

I For house i, let yi be its price, x1,i be its size, and x3,i be its age. We
assume the following linear relationship:

yi = β0 + β1x1,i + β2x3,i + εi.

I Software gives us the following regression report:

Coefficients Standard Error t Stat p-value

Intercept 262.882 83.632 3.143 0.012
Size 1.533 0.628 2.443 0.037 **
Age −6.368 2.881 −2.211 0.054 *

R2 = 0.696, R2
adj = 0.629

I R2 goes up from 0.485 (size only) to 0.629. Age is significant at a 10%
significance level. Seems good!
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Nonlinear relationship

I May we do better?

I By looking at the age-price scatter plot
(and our intuition), maybe the impact of
age on price is nonlinear:
I A new house’s value depreciates fast.
I The value depreciates slowly when the

house is old.
I At least this is true for a car.

I It is worthwhile to try a capture this
nonlinear relationship.

I For example, we may try to replace house
age by its reciprocal:

yi = β0 + β1x1,i + β2

(
1

x3,i

)
+ εi.
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Variable transformation

I To fit

yi = β0 + β1x1,i + β2

(
1

x3,i

)
+ εi.

to our sample data:
I Prepare a new column as 1

age
.

I Input these three columns to software.
I Read the report.

I We may consider any kind of nonlinear
relationship.

I This technique is called variable
transformation.

Price Size 1/Age
(in $1000) (in m2) (in 1/years)

315 75 0.063
229 59 0.05
355 85 0.063
261 65 0.067
234 72 0.048
216 46 0.063
308 107 0.067
306 91 0.067
289 75 0.071
204 65 0.048
265 88 0.067
195 59 0.038
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The reciprocal of house age
I Software gives us the following regression report:

Coefficients Standard Error t Stat p-value

Intercept 22.905 57.154 0.401 0.698
Size 1.524 0.647 2.356 0.043 **
1/Age 2185.575 1044.497 2.092 0.066 *

R2 = 0.685, R2
adj = 0.615

I Validation:
I Variables are both significant (at different significance level).
I Using size and 1

age
: R2 = 0.685 and R2

adj = 0.615.

I Using size and age: R2 = 0.696 and R2
adj = 0.629.

I Using size and age better explains house price (at least for the given
sample data).

I The intuition that house value depreciates at different speeds is not
supported by the data.
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A quadratic term
I There are many possible ways to transform a given variable.

I For example, a popular way to model a nonlinear relationship is to
include a quadratic term:

yi = β0 + β1x1,i + β2x3,i + β3x
2
3,i + εi.

I Software gives us the following regression report:

Coefficients Standard Error t Stat p-value

Intercept 250.746 324.022 0.774 0.461
Size 1.537 0.675 2.278 0.052 *
Age −5.113 32.376 −0.158 0.878
Age2 −0.032 0.818 −0.039 0.970

R2 = 0.696, R2
adj = 0.583

I Not a good idea for this data set.
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Typical ways of variable transformation
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Variable selection and model building

I In general, we may have a lot of candidate independent variables.
I Size, number of bedrooms, age, distance to a park, distance to a hospital,

safety in the neighborhood, etc.
I If we consider only linear relationships, for p candidate independent

variables, we have 2p − 1 combinations.
I For each variable, we have many ways to transform it.
I In the next lecture, we will introduce the way of modeling interaction

among independent variables.

I How to find the “best” regression model (if there is one)?
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Variable selection and model building
I There is no “best” model; there are “good” models.
I Some general suggestions:

I Take each independent variable one at a time and observe the
relationship between it and the dependent variable. A scatter plot
helps. Use this to consider variable transformation.

I For each pair of independent variables, check their relationship. If two
are highly correlated, quite likely one is not needed.

I Once a model is built, check the p-values. You may want to remove
insignificant variables (but removing a variable may change the
significance of other variables).

I Go back and forth to try various combinations. Stop when a good
enough one (with high R2 and R2

adj and small p-values) is found.
I Software can somewhat automate the process, but its power is limited

(e.g., it cannot decide transformation).
I We may need to find new independent variables.

I Intuitions and experiences may help (or hurt).
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Summary

I With a regression model, we try to identify how independent variables
affect the dependent variable.
I For a regression model, we adopt the least square criterion for estimating

the coefficients.

I Model validation:
I The overall quality of a regression model is decided by its R2 and R2

adj.
I We may test the significance of independent variables by their p-values.

I Modeling building:
I Variable transformation.
I Variable selection.

I More topics to introduce:
I How to deal with qualitative independent variables.
I How to model interaction among independent variables.
I How to avoid the endogeneity problem.
I How to apply residual analysis to further validate the model.
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