Statistics and Data Analysis

R Programming and Logistic Regression

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

• The R programming language.

- ▶ Regression in R.
- ▶ Logistic regression.

The R programming language

- ▶ **R** is a programming language for statistical computing and graphics.
- R is open source.
- ▶ R is powerful and flexible.
 - ▶ It is fast.
 - ▶ Most statistical methods have been implemented as packages.
 - One may write her own R programs to complete her own task.
- http://www.r-project.org/.
- ► To download, go to http://cran.csie.ntu.edu.tw/, choose your platform, then choose the suggested one (the current version is 3.2.3).

The programming environment

▶ When you run R, you should see this:

The R programming language 0000000000000	Regression in R 00000000000	Logistic regression 000000000000000000000000000000000000

Try it!

▶ Type some mathematical expressions!

```
> 1 + 2
[1] 3
> 6 * 9
[1] 54
> 3 * (2 + 3) / 4
[1] 3.75
> log(2.718)
[1] 0.9998963
> 10 ^ 3
[1] 1000
> sqrt(25)
[1] 5
```

Let's do statistics

- ▶ A wholesaler has 440 customers in Portugal:
 - ▶ 298 are "horeca"s (hotel/restaurant/café).
 - 142 are retails.
- ▶ These customers locate at different regions:
 - Lisbon: 77.
 - Oporto: 47.
 - ▶ Others: 316.
- ▶ Data source:

http://archive.ics.uci.edu/ml/ datasets/Wholesale+customers.

Let's do statistics

▶ The data:

Channel	Label	Fresh	Milk	Grocery	Frozen	D. & P.	Deli.
1	1	30624	7209	4897	18711	763	2876
1	1	11686	2154	6824	3527	592	697
				:			
2	3	14531	15488	30243	437	14841	1867

- ▶ The wholesaler records the annual amount each customer spends on six product categories:
 - ▶ Fresh, milk, grocery, frozen, detergents and paper, and delicatessen.
 - ▶ Amounts have been scaled to be based on "monetary unit."
- ▶ Channel: hotel/restaurant/café = 1, retailer = 2.
- Region: Lisbon = 1, Oporto = 2, others = 3.

Data in a TXT file

- ▶ The data are provided in an MS Excel worksheet "wholesale."
- ► Let's copy and paste the data to a TXT file "wholesale.txt."
- Copying data from Excel and pasting them to a TXT file will make data in columns separated by tabs.

ſ	data_w	holesale.txt	- 記事本					
	檔案(E)	編輯(E) 格	式(<u>O</u>) 檢視	₩ 説明(H)			
	Channel 1	Region 1	Fresh 30624	Milk 7209	Grocery 4897	Frozen 18711	D_Paper 763	Delicassen 2876
	1	1 1	11686 9670	2154 2280	6824 2112	3527 520	592 402	697 347
	1	1 1	25203 583	11487 685	9490 2216	5065 469	284 954	6854 18
	1	1 1	1956 6373	891 780	5226 950	1383 878	5 288	1328 285
	1	1	1537 18567	3748 1895	5838 1393	1859 1801	3381 244	806 2100

▶ DO NOT modify anything after pasting even if data are not aligned perfectly. Just copy and paste.

Reading data from a TXT file

- ► Let's put the TXT file to your **work directory**.
 - A file should be put in the work directory for R to read data from it.¹
- ▶ To find the default work directory:²
 - > getwd()
 [1] "C:/Users/user/Documents"
- To **read** the data into R, we execute:
 - > W <- read.table("wholesale.txt", header = TRUE)
 - ▶ W is a **data frame** that stores the data.
 - ▶ <- assigns the right-hand-side values to the variable at its left.

¹Or one may use setwd() to choose an existing folder as the work directory. ²The work directory on your computer may be different from mine.

R Programming and Logistic Regression

Browsing data

- ▶ To browse the data stored in a data frame:
 - > W
 - > head(W)
 - > tail(W)
- ▶ To extract a row or a column:
 - > W[1,]
 - > W\$Channel
 - > W[, 1]
- ▶ What is this?
 - > W[1, 2]

Basic statistics

- ▶ The mean, median, max, and min expenditure on milk:
 - > mean(W\$Milk)
 - > median(W\$Milk)
 - > max(W\$Milk)
 - > min(W\$Milk)
- ► The **sample standard deviation** of expenditure on milk:
 - > sd(W\$Milk)
- Counting:
 - > length(W[1,])
 - > length(W[, 1])

Basic statistics

- Correlation coefficient:
 - > cor(W\$Milk, W\$Grocery)
- In fact, you may simply do:
 - > W2 <- W[, 3:8]
 - > cor(W2)
 - ▶ 3:8 is a vector (3, 4, 5, 6, 7, 8).
 - ▶ W[, 3:8] is the third to the eighth columns of W.
 - cor(W2) is the correlation matrix for pairwise correlation coefficients among all columns of W2.

Basic graphs: Scatter plots

> plot(W\$Grocery, W\$Fresh)

> plot(W\$Grocery, W\$D_Paper)

Basic graphs: histograms

> hist(W\$Milk[which(W\$Region == 1)])

Writing scripts in a file

- ▶ It is suggested to **write scripts** (codes) in a **file**.
 - ▶ This makes the codes easily modified and reusable.
 - Multiple statements may be executed at the same time.
 - ▶ These codes can be stored for future uses.
- ▶ To do so, open a new script file in R and then write codes line by line.
 - ► Execute a line of codes by pressing "Ctrl + R" in Windows or "Command + return (enter)" in Mac.
 - ► Select **multiple lines of codes** and then execute all of them together in the same way.
- ▶ In your file, put **comments** (personal notes of your program) after **#**. Characters after **#** will be ignored when executing a line of codes.
- ▶ The saved .R files can be edit by any **plain text editor**.
 - ▶ E.g., Notepad in Windows.

Road map

- ▶ The R programming language.
- Regression in R.
- ▶ Logistic regression.

Regression in R

▶ Let's do regression in R. First, let's load the data:

- ▶ Copy all the data in the MS Excel worksheet "bike_day."
- ▶ Paste them into a TXT file with "bike.txt" as the file name.
- Put the file in the work directory.
- Execute

```
B <- read.table("bike_day.txt", header = TRUE)</pre>
```

```
► Take a look at B:
```

```
head(B)
mean(B$cnt)
cor(B$cnt, B$temp)
hist(B$cnt)
```

► Try them!

```
pairs(B)
pairs(B[, 10:16])
```

Simple regression

▶ Let's build a **simple regression** model by using the function lm():

```
fit <- lm(B$cnt ~ B$instant)
summary(fit)</pre>
```

- ▶ Put the dependent variable **before** the ~ operator.
- ▶ Put the independent variable **after** the ~ operator.
- ▶ We will obtain the regression report:

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2392.9613 111.6133 21.44 <2e-16 ***

B$instant 5.7688 0.2642 21.84 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1507 on 729 degrees of freedom Multiple R-squared: 0.3954, Adjusted R-squared: 0.3946 F-statistic: 476.8 on 1 and 729 DF, p-value: < 2.2e-16

Multiple regression

▶ Let's **add more variables** using the + operator:

```
fit <- lm(B$cnt ~ B$instant + B$workingday + B$temp)
summary(fit)</pre>
```

► The regression report:

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -280.3863 138.8325 -2.02 0.0438 *

B$instant 5.0197 0.1925 26.07 <2e-16 ***

B$workingday 145.3731 86.5121 1.68 0.0933 .

B$temp 140.2238 5.4246 25.85 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1086 on 727 degrees of freedom

Multiple R-squared: 0.6871, Adjusted R-squared: 0.6858
```

Interaction

▶ Let's consider **interaction** using the ***** operator:

```
fit <- lm(B$cnt ~ B$instant + B$workingday * B$temp)
summary(fit)</pre>
```

▶ The regression report:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)		
(Intercept)	-631.776	204.732	-3.086	0.00211	**	
B\$instant	5.026	0.192	26.183	< 2e-16	***	
B\$workingday	675.120	243.232	2.776	0.00565	**	
B\$temp	157.912	9.323	16.938	< 2e-16	***	
B\$workingday:B\$temp	-26.471	11.364	-2.329	0.02012	*	
Signif. codes: 0 **	** 0.001 [,]	** 0.01 * 0	.05 . 0.3	1 1		
Residual standard error: 1083 on 726 degrees of freedom						
Multiple R-squared: 0.6894, Adjusted R-squared: 0.6877						
F-statistic: 402.9	on 4 and 7	726 DF, p-v	value: <	2.2e-16		

Qualitative variables

► Let's add a non-binary qualitative variable (in a wrong way):

```
fit <- lm(B$cnt ~ B$instant + B$workingday * B$temp + B$season)
summary(fit)</pre>
```

▶ The regression report:

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-628.7340	208.7156	-3.012	0.00268	**
B\$instant	5.0324	0.2085	24.141	< 2e-16	***
B\$workingday	675.0576	243.3996	2.773	0.00569	**
B\$temp	158.0409	9.4807	16.670	< 2e-16	***
B\$season	-3.1710	41.5623	-0.076	0.93921	
B\$workingday:B\$temp	-26.4682	11.3722	-2.327	0.02022	*
Signif. codes: 0 *	** 0.001 **	• 0.01 * 0.0	05 . 0.1	1	

Residual standard error: 1083 on 725 degrees of freedom Multiple R-squared: 0.6894, Adjusted R-squared: 0.6873 F-statistic: 321.9 on 5 and 725 DF, p-value: < 2.2e-16

Qualitative variables

- To correctly include a qualitative variable, use the function factor():
 fit <- lm(B\$cnt ~ B\$instant + B\$workingday * B\$temp + factor(B\$season))
 summary(fit)</pre>
 - ▶ factor() tells the R program to interpret those values as categories even if they are numbers.
 - ▶ If the values are already non-numeric, there is no need to use factor().
- ▶ Let's read the regression report.

Qualitative variables

▶ The regression report:³

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)			
(Intercept)	-749.4834	209.3085	-3.581	0.000366	***		
B\$instant	5.1296	0.2015	25.459	< 2e-16	***		
B\$workingday	632.4411	233.8650	2.704	0.007006	**		
B\$temp	146.5942	11.7999	12.423	< 2e-16	***		
factor(B\$season)2	827.2798	143.1463	5.779	1.12e-08	***		
factor(B\$season)3	142.7658	188.6595	0.757	0.449454			
factor(B\$season)4	272.6144	126.7112	2.151	0.031770	*		
B\$workingday:B\$temp	-24.5086	10.9264	-2.243	0.025195	*		
Signif. codes: 0 *	** 0.001 **	* 0.01 * 0.0	05 . 0.1	1			
-							
Residual standard error: 1041 on 723 degrees of freedom							
Multiple R-squared: 0.7142, Adjusted R-squared: 0.7115							
F-statistic: 258.2	on 7 and 72	23 DF, p-va	alue: < 2	2.2e-16			

³To change the reference level, use relevel().

Transformation: method 1

• To add $temp^2$, there are two ways:

```
tempSq <- B$temp^2
fit <- lm(B$cnt ~ B$instant + B$workingday * (B$temp + tempSq))
summary(fit)</pre>
```

▶ The regression report:

Coefficients:

	Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)	-3313.2904	462.5027	-7.164	1.93e-12	***
B\$instant	4.7928	0.1874	25.576	< 2e-16	***
B\$workingday	1934.5264	578.2195	3.346	0.000863	***
B\$temp	482.5310	50.6541	9.526	< 2e-16	***
tempSq	-8.1197	1.2489	-6.501	1.48e-10	***
B\$workingday:B\$temp	-180.0186	62.5810	-2.877	0.004138	**
B\$workingday:tempSq	3.9116	1.5382	2.543	0.011200	*
Signif. codes: 0 **	** 0.001 **	0.01 * 0.05	5.0.1	1	

Transformation: method 2

- ▶ Alternatively, we may create the new variable as a **new column** in the MS Excel worksheet.
- ▶ Then copy and paste to update the content in the TXT file.
- ▶ Execute read.table() again to update the data frame B.
- Finally, redo lm() and summary().

Fitted values

▶ Once we execute

```
fit <- lm(B$cnt ~ B$instant + B$workingday)</pre>
```

the object fit contains more than the regression report.

• It contains the **fitted values** \hat{y}_i :

```
predict(fit)
plot(predict(fit))
points(B$cnt, col = "red")
```

- > plot() makes a scatter plot.
- points() add points onto an existing scatter plot.
- col = "red" makes red points.

Residuals

▶ We may also obtain **residuals**:

residuals(fit)

plot(residuals(fit))
hist(residuals(fit))

R Programming and Logistic Regression

Road map

- ▶ The R programming language.
- ▶ Regression in R.
- ► Logistic regression.

Logistic regression

- ► So far our regression models always have a **quantitative** variable as the **dependent** variable.
 - ► Some people call this type of regression ordinary regression.
- ► To have a **qualitative** variable as the dependent variable, ordinary regression does not work.
- One popular remedy is to use **logistic regression**.
 - ▶ In general, a logistic regression model allows the dependent variable to have multiple levels.
 - ▶ We will only consider **binary variables** in this lecture.
- ▶ Let's first illustrate why ordinary regression fails when the dependent variable is binary.

Example: survival probability

- ▶ 45 persons got trapped in a storm during a mountain hiking. Unfortunately, some of them died due to the storm.⁴
- ► We want to study how the survival probability of a person is affected by her/his gender and age.

Age	Gender	Survived	Age	Gender	Survived	Age	Gender	Survived
23	Male	No	23	Female	Yes	15	Male	No
40	Female	Yes	28	Male	Yes	50	Female	No
40	Male	Yes	15	Female	Yes	21	Female	Yes
30	Male	No	47	Female	No	25	Male	No
28	Male	No	57	Male	No	46	Male	Yes
40	Male	No	20	Female	Yes	32	Female	Yes
45	Female	No	18	Male	Yes	30	Male	No
62	Male	No	25	Male	No	25	Male	No
65	Male	No	60	Male	No	25	Male	No
45	Female	No	25	Male	Yes	25	Male	No
25	Female	No	20	Male	Yes	30	Male	No
28	Male	Yes	32	Male	Yes	35	Male	No
28	Male	No	32	Female	Yes	23	Male	Yes
23	Male	No	24	Female	Yes	24	Male	No
22	Female	Yes	30	Male	Yes	25	Female	Yes

 4 The data set comes from the textbook *The Statistical Sleuth* by Ramsey and Schafer. The story has been modified.

R Programming and Logistic Regression

Descriptive statistics

- Overall survival probability is $\frac{20}{45} = 44.4\%$.
- Survival or not seems to be affected by gender.

Group	Survivals	Group size	Survival probability
Male	10	30	$33.3\% \\ 66.7\%$
Female	10	15	

Survival or not seems to be affected by age.

Age class	Survivals	Group size	Survival probability
[10, 20)	2	3	66.7%
[21, 30)	11	22	50.0%
[31, 40)	4	8	50.0%
[41, 50)	3	7	42.9%
[51, 60)	0	2	0.0%
[61, 70)	0	3	0.0%

▶ May we do better? May we predict one's survival probability?

Ordinary regression is problematic

▶ Immediately we may want to construct a linear regression model

$$survival_i = \beta_0 + \beta_1 age_i + \beta_2 female_i + \epsilon_i.$$

where age is one's age, gender is 0 if the person is a male or 1 if female, and survival is 1 if the person is survived or 0 if dead.

► By running

```
d <- read.table("survival.txt", header = TRUE)
fitWrong <- lm(d$survival ~ d$age + d$female)
summary(fitWrong)</pre>
```

we may obtain the regression line

```
survival = 0.746 - 0.013 age + 0.319 female.
```

Though $R^2 = 0.1642$ is low, both variables are significant.

Ordinary regression is problematic

- The regression model gives us "predicted survival probability."
 - ► For a man at 80, the "probability" becomes $0.746-0.013 \times 80 = -0.294$, which is **unrealistic**.
- In general, it is very easy for an ordinary regression model to generate predicted "probability" not within 0 and 1.

Logistic regression

- ▶ The right way to do is to do **logistic regression**.
- Consider the age-survival example.
 - ▶ We still believe that the smaller age increases the survival probability.
 - ▶ However, not in a linear way.
 - ► It should be that when one is **young enough**, being younger does not help too much.
 - ► The marginal benefit of being younger should be decreasing.
 - ▶ The marginal loss of being older should also be decreasing.
- One particular functional form that exhibits this property is

$$y = \frac{e^x}{1+e^x} \quad \Leftrightarrow \quad \log\left(\frac{y}{1-y}\right) = x$$

- x can be anything in $(-\infty, \infty)$.
- y is limited in [0, 1].

Logistic regression

• We hypothesize that independent variables x_i s affect π , the probability for y to be 1, in the following form:⁵

$$\log\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p.$$

- ▶ The equation looks scaring. Fortunately, R is powerful.
- ▶ In R, all we need to do is to switch from lm() to glm() with an additional argument binomial.
 - ▶ 1m is the abbreviation of "linear model."
 - glm() is the abbreviation of "generalized linear model."

R Programming and Logistic Regression

⁵The logistic regression model searches for coefficients to make the curve fit the given data points in the best way. The details are far beyond the scope of this course.

Logistic regression in R

► By executing

```
fitRight <- glm(d$survival ~ d$age + d$female, binomial)
summary(fitRight)</pre>
```

we obtain the regression report.

▶ Some information is new, but the following is familiar:

```
Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.63312 1.11018 1.471 0.1413

d$age -0.07820 0.03728 -2.097 0.0359 *

d$female 1.59729 0.75547 2.114 0.0345 *

----

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Both variables are significant.
```

The Logistic regression curve

▶ The estimated curve is

$$\log\left(\frac{\pi}{1-\pi}\right) = 1.633 - 0.078 \, age + 1.597 female,$$

or equivalently,

$$\pi = \frac{\exp(1.633 - 0.078 age + 1.597 female)}{1 + \exp(1.633 - 0.078 age + 1.597 female)},$$

where $\exp(z)$ means e^z for all $z \in \mathbb{R}$.

The Logistic regression curve

- The curves can be used to do **prediction**.
- For a man at 80, π is

 $\tfrac{\exp(1.633-0.078\times 80)}{1+\exp(1.633-0.078\times 80)},$

which is 0.0097.

• For a woman at 60, π is

 $\frac{\exp(1.633 - 0.078 \times 60 + 1.597)}{1 + \exp(1.633 - 0.078 \times 60 + 1.597)},$

which is 0.1882.

 π is always in [0, 1]. There is no problem for interpreting π as a probability.

Regression in R 00000000000

Comparisons

Interpretations

▶ The estimated curve is

$$\log\left(\frac{\pi}{1-\pi}\right) = 1.633 - 0.078 \, age + 1.597 female.$$

Any implication?

- ▶ -0.078 age: Younger people will survive more likely.
- ▶ 1.597*female*: Women will survive more likely.
- ▶ In general:
 - ▶ Use the *p*-values to determine the significance of variables.
 - ▶ Use the **signs** of coefficients to give qualitative implications.
 - Use the **formula** to make predictions.

Model selection

- ▶ Recall that in ordinary regression, we use R^2 and adjusted R^2 to assess the usefulness of a model.
- ▶ In logistic regression, we do not have R^2 and adjusted R^2 .
- ▶ We have **deviance** instead.
 - ▶ In a regression report, the **null deviance** can be considered as the total estimation errors without using any independent variable.
 - ▶ The **residual deviance** can be considered as the total estimation errors by using the selected independent variables.
 - ▶ Ideally, the residual deviance should be small.⁶

R Programming and Logistic Regression

 $^{^6{\}rm To}$ be more rigorous, the residual deviance should also be close to its degree of freedom. This is beyond the scope of this course.

Deviances in the regression report

- ▶ The null and residual deviances are provided in the regression report.
- ▶ For glm(d\$survival ~ d\$age + d\$female, binomial), we have

Null deviance: 61.827 on 44 degrees of freedom Residual deviance: 51.256 on 42 degrees of freedom

▶ Let's try some models:

Independent variable(s)	Null deviance	Residual deviance
age	61.827	56.291
female	61.827	57.286
age,female	61.827	51.256
age, female, age imes female	61.827	47.346

- ▶ Using *age* only is better than using *female* only.
- ▶ How to compare models with different numbers of variables?

Deviances in the regression report

- ▶ Adding variables will **always reduce** the residual deviance.
- ► To take the number of variables into consideration, we may use Akaike Information Criterion (AIC).
- ▶ AIC is also included in the regression report:

Independent variable(s)	Null deviance	Residual deviance	AIC
age	61.827	56.291	60.291
female	61.827	57.286	61.291
age, female	61.827	51.256	57.256
age, female, age \times female	61.827	47.346	55.346

- ▶ AIC is only used to compare **nested** models.
 - ▶ Two models are nested if one's variables are form a subset of the other's.
 - ▶ Model 4 is better than model 3 (based on their AICs).
 - ▶ Model 3 is better than either model 1 or model 2 (based on their AICs).
 - ▶ Model 1 and 2 cannot be compared (based on their AICs).