Statistics and Data Analysis

The Dice Game

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Three investments

- Let Green, Red, and White be three hypothetical investments with the following probability distributions for their yearly gross returns.

Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
Green	0.8	0.9	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	3	3
White	0.95	1	1	1	1	1.1

Returns and risks

- For each investment, we may find its mean (expected value) and standard deviation.

Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	Mean	SD
Green	0.8	0.9	1.1	1.1	1.2	1.4	1.083	0.195
Red	0.06	0.2	1	3	3	3	1.710	1.323
White	0.95	1	1	1	1	1.1	1.008	0.045

The mean measures the expected return. The standard deviation measures the risk.

Returns and risks

- For each investment, we may find its mean (expected value) and standard deviation.

Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	Mean	SD
Green	0.8	0.9	1.1	1.1	1.2	1.4	1.083	0.195
Red	0.06	0.2	1	3	3	3	1.710	1.323
White	0.95	1	1	1	1	1.1	1.008	0.045

The mean measures the expected return. The standard deviation measures the risk.

- Which one do you prefer?

Investments and outcomes

- You have $\$ 1000$ invested in each of Green, Red, and White.
- The market uncertainty is determined by the outcome of rolling three dices.
- The outcome determines the annual returns of the investments.

Investments and outcomes

- You have $\$ 1000$ invested in each of Green, Red, and White.
- The market uncertainty is determined by the outcome of rolling three dices.
- The outcome determines the annual returns of the investments.
- Suppose the outcome is 2 for Green, 5 for Red, and 3 for White.

Die Value	1	2	3	4	5	6
Green	0.8	$\mathbf{0 . 9}$	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	$\mathbf{3}$	3
White	0.95	1	$\mathbf{1}$	1	1	1.1

Then the after-one-year values are $\$ 900, \$ 3000$, and $\$ 1000$, respectively.

Investments and outcomes

- You have $\$ 1000$ invested in each of Green, Red, and White.
- The market uncertainty is determined by the outcome of rolling three dices.
- The outcome determines the annual returns of the investments.
- Suppose the outcome is 2 for Green, 5 for Red, and 3 for White.

Die Value	1	2	3	4	5	6
Green	0.8	$\mathbf{0 . 9}$	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	$\mathbf{3}$	3
White	0.95	1	$\mathbf{1}$	1	1	1.1

Then the after-one-year values are $\$ 900, \$ 3000$, and $\$ 1000$, respectively.

- Suppose the outcome is 4 for Green, 2 for Red, and 6 for White. Then the after-two-year values are $\$ 990, \$ 600$, and $\$ 1100$, respectively.

On the worksheet

- On the worksheet, investment amounts and dice values can be recorded.

Year		Green	Red	White
1	Start	$1000(2)$	$1000(5)$	$1000(3)$
	End	900	3000	1000
2	Start	$900(4)$	$3000(2)$	$1000(6)$
	End	990	600	1100
3	Start			
	End			

Adjusting investments

- In practice, one may adjust the investments before a year starts.
- Suppose that we have adjusted the amounts at the end of year 1: $\$ 1600$ for Green, $\$ 1600$ for Red, and $\$ 1700$ for White.

Year		Green	Red	White
1	Start	$1000(2)$	$1000(5)$	$1000(3)$
	End	900	3000	1000
2	Start	$1600(4)$	$1600(2)$	$1700(6)$
	End	1760	320	1870
3	Start			
	End			

Adjusting investments

- In practice, one may adjust the investments before a year starts.
- Suppose that we have adjusted the amounts at the end of year 1: $\$ 1600$ for Green, $\$ 1600$ for Red, and $\$ 1700$ for White.

Year		Green	Red	White
1	Start	$1000(2)$	$1000(5)$	$1000(3)$
	End	900	3000	1000
2	Start	$1600(4)$	$1600(2)$	$1700(6)$
	End	1760	320	1870
3	Start			
	End			

- Objective: To maximize the total value at the end of year 8 .

Game procedure

- Form teams of 6 students.
- Start with $\$ 1000$ in each investment. Carry out the game for 8 years.
- The instructor will role the dices for all teams.
- Team members discuss together for amount redistribution.

Game procedure

- Form teams of 6 students.
- Start with $\$ 1000$ in each investment. Carry out the game for 8 years.
- The instructor will role the dices for all teams.
- Team members discuss together for amount redistribution.
- Roles for team members:
- Market: Write down the outcome of dice rolling and find the right gross return rates.
- Accountant: Calculate the values at the end of a year.

Game procedure

- Form teams of 6 students.
- Start with $\$ 1000$ in each investment. Carry out the game for 8 years.
- The instructor will role the dices for all teams.
- Team members discuss together for amount redistribution.
- Roles for team members:
- Market: Write down the outcome of dice rolling and find the right gross return rates.
- Accountant: Calculate the values at the end of a year.
- Green investor: Double check the Green account.
- Red investor: Double check the Red account.
- White investor: Double check the White account.

Game procedure

- Form teams of 6 students.
- Start with $\$ 1000$ in each investment. Carry out the game for 8 years.
- The instructor will role the dices for all teams.
- Team members discuss together for amount redistribution.
- Roles for team members:
- Market: Write down the outcome of dice rolling and find the right gross return rates.
- Accountant: Calculate the values at the end of a year.
- Green investor: Double check the Green account.
- Red investor: Double check the Red account.
- White investor: Double check the White account.
- CEO: Lead the team.

Let's start!

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

Year 8 (the final year)

End!

Discussions

- What is the best strategy in this game?

Discussions

- "Do not put all your eggs in one basket."

The "Pink" investment

- Consider the "Pink" investment (which is a portfolio):

$$
\text { Pink }=\frac{\text { Red }+ \text { White }}{2} .
$$

The "Pink" investment

- Consider the "Pink" investment (which is a portfolio):

$$
\text { Pink }=\frac{\text { Red }+ \text { White }}{2} .
$$

- The mean and standard deviation of Pink can be calculated:

Investment	Mean	SD
Green	1.083	0.195
Red	1.710	1.323
White	1.008	0.045
Pink	1.359	0.662

Note that $\mu_{\text {pink }}=\frac{1}{2} \mu_{\text {red }}+\frac{1}{2} \mu_{\text {white }}$ but $\sigma_{\text {pink }}<\frac{1}{2} \sigma_{\text {red }}+\frac{1}{2} \sigma_{\text {white }}$!

The "Pink" investment

- Consider the "Pink" investment (which is a portfolio):

$$
\text { Pink }=\frac{\text { Red }+ \text { White }}{2} .
$$

- The mean and standard deviation of Pink can be calculated:

Investment	Mean	SD
Green	1.083	0.195
Red	1.710	1.323
White	1.008	0.045
Pink	1.359	0.662

Note that $\mu_{\text {pink }}=\frac{1}{2} \mu_{\text {red }}+\frac{1}{2} \mu_{\text {white }}$ but $\sigma_{\text {pink }}<\frac{1}{2} \sigma_{\text {red }}+\frac{1}{2} \sigma_{\text {white }}$!

- As we will introduce later in this semester, $\sigma_{\text {pink }}=\sqrt{\frac{1}{4} \sigma_{\text {red }}^{2}+\frac{1}{4} \sigma_{\text {white }}^{2}}$.

Volatility-adjusted returns

- To compare two investments, we may compare their volatility-adjusted returns:

$$
\text { Volatility-adjusted return }=\mu-\frac{\sigma^{2}}{2}
$$

Investment	Mean	SD	Variance	Volatility-adjusted return
Green	1.083	0.195	0.038	1.064
Red	1.710	1.323	1.750	0.835
White	1.008	0.045	0.002	1.007
Pink	1.359	0.662	0.438	1.140

Volatility-adjusted returns

- To compare two investments, we may compare their volatility-adjusted returns:

$$
\text { Volatility-adjusted return }=\mu-\frac{\sigma^{2}}{2}
$$

Investment	Mean	SD	Variance	Volatility-adjusted return
Green	1.083	0.195	0.038	1.064
Red	1.710	1.323	1.750	0.835
White	1.008	0.045	0.002	1.007
Pink	1.359	0.662	0.438	1.140

- Finding the best way to combine some given investments is the portfolio optimization problem.

Lessons and warnings

- Lessons:
- Expected values (means) and standard deviations (or variances) are used to measure returns and risks.
- Diversification is a good idea to maximize long-term returns.
- To look for the best diversification, probability helps.

Lessons and warnings

- Lessons:
- Expected values (means) and standard deviations (or variances) are used to measure returns and risks.
- Diversification is a good idea to maximize long-term returns.
- To look for the best diversification, probability helps.
- Warnings:
- Knowing the probability distributions is hard.
- Performances of multiple investments may actually be dependent.

Lessons and warnings

- Lessons:
- Expected values (means) and standard deviations (or variances) are used to measure returns and risks.
- Diversification is a good idea to maximize long-term returns.
- To look for the best diversification, probability helps.
- Warnings:
- Knowing the probability distributions is hard.
- Performances of multiple investments may actually be dependent.
- Responses:
- Estimating the distributions is easier than predicting the outcome.
- There are methods to address dependency (through covariances).

