The Dice game	Let's start	Discussions
000000	000000000	00000

Statistics and Data Analysis

The Dice Game

Ling-Chieh Kung

Department of Information Management National Taiwan University

æ

・ロト ・日ト ・ヨト ・ヨト

The Dice game	Let's start	Discussions
00000	00000000	00000

Three investments

▶ Let Green, Red, and White be three hypothetical **investments** with the following probability distributions for their yearly **gross returns**.

Probability	1/6	1/6	1/6	1/6	1/6	1/6
Green	0.8	0.9	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	3	3
White	0.95	1	1	1	1	1.1

(日) (日) (日) (日) (日)

The Dice game	Let's start	Discussions
00000	00000000	00000

Returns and risks

► For each investment, we may find its **mean** (expected value) and **standard deviation**.

Probability	1/6	1/6	1/6	1/6	1/6	1/6	Mean	SD
Green	0.8	0.9	1.1	1.1	1.2	1.4	1.083	0.195
Red	0.06	0.2	1	3	3	3	1.710	1.323
White	0.95	1	1	1	1	1.1	1.008	0.045

The mean measures the expected **return**. The standard deviation measures the **risk**.

• Which one do you prefer?

・ロト ・四ト ・ヨト ・ヨ

The Dice game	Let's start	Discussions
00000	00000000	00000

Returns and risks

► For each investment, we may find its **mean** (expected value) and **standard deviation**.

Probability	1/6	1/6	1/6	1/6	1/6	1/6	Mean	SD
Green	0.8	0.9	1.1	1.1	1.2	1.4	1.083	0.195
Red	0.06	0.2	1	3	3	3	1.710	1.323
White	0.95	1	1	1	1	1.1	1.008	0.045

The mean measures the expected **return**. The standard deviation measures the **risk**.

• Which one do you prefer?

・ロト ・四ト ・ヨト ・ヨ

The Dice game 00●000	Let's start 000000000	Discussions 00000

Investments and outcomes

- ▶ You have \$1000 invested in each of Green, Red, and White.
- ► The **market uncertainty** is determined by the outcome of rolling three dices.
 - ▶ The outcome determines the annual returns of the investments.

▶ Suppose the outcome is 2 for Green, 5 for Red, and 3 for White.

Then the after-one-year values are \$900, \$3000, and \$1000, respectively.

▶ Suppose the outcome is 4 for Green, 2 for Red, and 6 for White. Then the after-two-year values are \$990, \$600, and \$1100, respectively.

・ロト ・雪ト ・ヨト ・ヨト

The Dice game 00●000	Let's start 000000000	Discussions 00000

Investments and outcomes

- ▶ You have \$1000 invested in each of Green, Red, and White.
- ► The **market uncertainty** is determined by the outcome of rolling three dices.
 - ▶ The outcome determines the annual returns of the investments.

▶ Suppose the outcome is 2 for Green, 5 for Red, and 3 for White.

Die Value	1	2	3	4	5	6
Green	0.8	0.9	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	3	3
White	0.95	1	1	1	1	1.1

Then the after-one-year values are \$900, \$3000, and \$1000, respectively.

▶ Suppose the outcome is 4 for Green, 2 for Red, and 6 for White. Then the after-two-year values are \$990, \$600, and \$1100, respectively.

・ロト ・四ト ・ヨト ・ヨト

ns
118

Investments and outcomes

- ▶ You have \$1000 invested in each of Green, Red, and White.
- ► The **market uncertainty** is determined by the outcome of rolling three dices.
 - ▶ The outcome determines the annual returns of the investments.

▶ Suppose the outcome is 2 for Green, 5 for Red, and 3 for White.

Die Value	1	2	3	4	5	6
Green	0.8	0.9	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	3	3
White	0.95	1	1	1	1	1.1

Then the after-one-year values are \$900, \$3000, and \$1000, respectively.

▶ Suppose the outcome is 4 for Green, 2 for Red, and 6 for White. Then the after-two-year values are \$990, \$600, and \$1100, respectively.

・ロト ・日ト ・ヨト

The Dice game 000●00	Let's start 0000000000	Discussions 00000

On the worksheet

▶ On the worksheet, investment amounts and dice values can be recorded.

	Year	Green	Red	White
1	Start	$1000\ (\ 2\)$	$1000\ (\ 5\)$	$1000\ (\ 3\)$
1	End	900	3000	1000
2	Start	900 (4)	$3000\ (\ 2\)$	1000 (6)
2	End	990	600	1100
2	Start			
5	End			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタペ

The Dice game	Let's start	Discussions
0000●0	0000000000	00000

Adjusting investments

- ▶ In practice, one may **adjust the investments** before a year starts.
- ▶ Suppose that we have adjusted the amounts at the end of year 1: \$1600 for Green, \$1600 for Red, and \$1700 for White.

	Year	Green	Red	White
1	Start	$1000\ (\ 2\)$	$1000\ (\ 5\)$	$1000\ (\ 3\)$
T	End	900	3000	1000
2	Start	1600 (4)	1600(2)	1700(6)
2	End	1760	320	1870
2	Start			
5	End			

• Objective: To **maximize the total value** at the end of year 8.

3

・ロト ・日ト ・ヨト ・ヨト

The Dice game	Let's start	Discussions
0000●0	0000000000	00000

Adjusting investments

- ▶ In practice, one may **adjust the investments** before a year starts.
- ▶ Suppose that we have adjusted the amounts at the end of year 1: \$1600 for Green, \$1600 for Red, and \$1700 for White.

	Year	Green	Red	White
1	Start	$1000\ (\ 2\)$	$1000\ (\ 5\)$	$1000\ (\ 3\)$
T	End	900	3000	1000
2	Start	1600 (4)	1600(2)	1700(6)
2	End	1760	320	1870
2	Start			
5	End			

▶ Objective: To **maximize the total value** at the end of year 8.

・ロト ・四ト ・ヨト ・

The Dice game 00000●	Let's start 000000000	Discussions 00000

- ▶ Form teams of 6 students.
- ▶ Start with \$1000 in each investment. Carry out the game for 8 years.
- ▶ The instructor will role the dices for all teams.
- ▶ Team members discuss together for amount redistribution.

Roles for team members:

- Market: Write down the outcome of dice rolling and find the right gross return rates.
- Accountant: Calculate the values at the end of a year.
- Green investor: Double check the Green account.
- ▶ Red investor: Double check the Red account.
- White investor: Double check the White account.
- CEO: Lead the team.

イロト イヨト イヨト イヨト

The Dice game 00000●	Let's start 0000000000	Discussions 00000

- ▶ Form teams of 6 students.
- ▶ Start with \$1000 in each investment. Carry out the game for 8 years.
- ▶ The instructor will role the dices for all teams.
- ▶ Team members discuss together for amount redistribution.
- ▶ Roles for team members:
 - ▶ Market: Write down the outcome of dice rolling and find the right gross return rates.
 - ▶ Accountant: Calculate the values at the end of a year.
 - Green investor: Double check the Green account.
 - ▶ Red investor: Double check the Red account.
 - White investor: Double check the White account.
 - CEO: Lead the team.

・ロト ・日下 ・ヨト ・ヨト

The Dice game 00000●	Let's start 0000000000	Discussions 00000

- ▶ Form teams of 6 students.
- ▶ Start with \$1000 in each investment. Carry out the game for 8 years.
- ▶ The instructor will role the dices for all teams.
- ▶ Team members discuss together for amount redistribution.
- ▶ Roles for team members:
 - ▶ Market: Write down the outcome of dice rolling and find the right gross return rates.
 - ▶ Accountant: Calculate the values at the end of a year.
 - ▶ Green investor: Double check the Green account.
 - ▶ Red investor: Double check the Red account.
 - ▶ White investor: Double check the White account.
 - CEO: Lead the team.

(日) (日) (日) (日) (日)

The Dice game 00000●	Let's start 0000000000	Discussions 00000

- ▶ Form teams of 6 students.
- ▶ Start with \$1000 in each investment. Carry out the game for 8 years.
- ▶ The instructor will role the dices for all teams.
- ▶ Team members discuss together for amount redistribution.
- ▶ Roles for team members:
 - ▶ Market: Write down the outcome of dice rolling and find the right gross return rates.
 - Accountant: Calculate the values at the end of a year.
 - Green investor: Double check the Green account.
 - ▶ Red investor: Double check the Red account.
 - ▶ White investor: Double check the White account.
 - ▶ CEO: Lead the team.

(日) (日) (日) (日) (日)

Let's start!

▲□▶ ▲□▶ ▲□▶ ▲□▶ 亘 の��

The Dice game	Let's start	Discussions
000000	00000000	00000

◆□▶ ◆御▶ ◆理▶ ◆理▶ = 臣 = の��

Γ	h	е	D	ic	е	ga	ım	e	
0	0	0	00	0					

The Dice Game

Ling-Chieh Kung (NTU IM)

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

The Dice	game
000000	

Ling-Chieh Kung (NTU IM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Γ	h	е	D	i	С	е	g	a	m	1	e	
0	0	0	00) (С							

Ling-Chieh Kung (NTU IM)

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - のへで

The Dice Game

The	Dice	game
000	000	

Ling-Chieh Kung (NTU IM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Dice Game

The	Dice	game
000	000	

Ling-Chieh Kung (NTU IM)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Dice Game

The Dice game	Let's start	Discussions
000000	0000000000	00000

◆□▶ ◆御▶ ◆理▶ ◆理▶ = 臣 = の��

Year 8 (the final year)

< ロ > < 四 > < 三 > < 三 > < 三 > 三 三

The Dice game	Let's start	Discussions
000000	00000000	00000

End!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Dice game	Let's start	Discussions
000000	000000000	•0000

Discussions

▶ What is the best strategy in this game?

The Dice game 000000	Let's start 000000000	Discussions 00000

Discussions

▶ "Do not put all your eggs in one basket."

э

・ロト ・日ト ・ヨト ・ヨト

The Dice game	Let's start	Discussions
000000	000000000	00●00

The "Pink" investment

• Consider the "Pink" investment (which is a **portfolio**):

$$\operatorname{Pink} = \frac{\operatorname{Red} + \operatorname{White}}{2}.$$

▶ The mean and standard deviation of Pink can be calculated:

Note that $\mu_{\text{pink}} = \frac{1}{2}\mu_{\text{red}} + \frac{1}{2}\mu_{\text{white}}$ but $\sigma_{\text{pink}} < \frac{1}{2}\sigma_{\text{red}} + \frac{1}{2}\sigma_{\text{white}}!$

As we will introduce later in this semester, $\sigma_{\text{pink}} = \sqrt{\frac{1}{4}\sigma_{\text{red}}^2 + \frac{1}{4}\sigma_{\text{white}}^2}$.

The Dice game	Let's start	Discussions
000000	0000000000	00000

The "Pink" investment

• Consider the "Pink" investment (which is a **portfolio**):

$$\operatorname{Pink} = \frac{\operatorname{Red} + \operatorname{White}}{2}.$$

▶ The mean and standard deviation of Pink can be calculated:

Investment	Mean	SD
Green	1.083	0.195
Red	1.710	1.323
White	1.008	0.045
Pink	1.359	0.662

Note that $\mu_{\text{pink}} = \frac{1}{2}\mu_{\text{red}} + \frac{1}{2}\mu_{\text{white}}$ but $\sigma_{\text{pink}} < \frac{1}{2}\sigma_{\text{red}} + \frac{1}{2}\sigma_{\text{white}}!$

As we will introduce later in this semester, $\sigma_{\text{pink}} = \sqrt{\frac{1}{4}\sigma_{\text{red}}^2 + \frac{1}{4}\sigma_{\text{white}}^2}$.

(日) (日) (日) (日) (日)

Let's start 000000000	Discussions 00000
	Let's start 000000000

The "Pink" investment

• Consider the "Pink" investment (which is a **portfolio**):

$$\operatorname{Pink} = \frac{\operatorname{Red} + \operatorname{White}}{2}.$$

▶ The mean and standard deviation of Pink can be calculated:

Investment	Mean	SD
Green	1.083	0.195
Red	1.710	1.323
White	1.008	0.045
Pink	1.359	0.662

Note that $\mu_{\text{pink}} = \frac{1}{2}\mu_{\text{red}} + \frac{1}{2}\mu_{\text{white}}$ but $\sigma_{\text{pink}} < \frac{1}{2}\sigma_{\text{red}} + \frac{1}{2}\sigma_{\text{white}}!$

• As we will introduce later in this semester, $\sigma_{\text{pink}} = \sqrt{\frac{1}{4}\sigma_{\text{red}}^2 + \frac{1}{4}\sigma_{\text{white}}^2}$.

・ロト ・日下・ ・ ヨト・

The Dice game	Let's start	Discussions
000000	000000000	00000

Volatility-adjusted returns

To compare two investments, we may compare their volatility-adjusted returns:

Volatility-adjusted return = $\mu - \frac{\sigma^2}{2}$.

Investment	Mean	SD	Variance	Volatility-adjusted return
Green	1.083	0.195	0.038	1.064
Red	1.710	1.323	1.750	0.835
White	1.008	0.045	0.002	1.007
Pink	1.359	0.662	0.438	1.140

▶ Finding the best way to combine some given investments is the **portfolio optimization** problem.

The Dice game	Let's start	Discussions
000000	0000000000	000●0

Volatility-adjusted returns

To compare two investments, we may compare their volatility-adjusted returns:

Volatility-adjusted return = $\mu - \frac{\sigma^2}{2}$.

Investment	Mean	SD	Variance	Volatility-adjusted return
Green	1.083	0.195	0.038	1.064
Red	1.710	1.323	1.750	0.835
White	1.008	0.045	0.002	1.007
Pink	1.359	0.662	0.438	1.140

▶ Finding the best way to combine some given investments is the portfolio optimization problem.

The Dice Gam	e	
--------------	---	--

Lessons and warnings

- ► Lessons:
 - Expected values (means) and standard deviations (or variances) are used to measure returns and risks.
 - Diversification is a good idea to maximize long-term returns.
 - ▶ To look for the best diversification, probability helps.
- ► Warnings:
 - Knowing the probability **distributions** is hard.
 - Performances of multiple investments may actually be **dependent**.
- Responses:
 - Estimating the distributions is easier than predicting the outcome.
 - There are methods to address dependency (through covariances).

《曰》 《問》 《臣》 《臣》

Lessons and warnings

- ► Lessons:
 - Expected values (means) and standard deviations (or variances) are used to measure returns and risks.
 - Diversification is a good idea to maximize long-term returns.
 - ▶ To look for the best diversification, probability helps.
- ► Warnings:
 - Knowing the probability **distributions** is hard.
 - ▶ Performances of multiple investments may actually be **dependent**.
- Responses:
 - Estimating the distributions is easier than predicting the outcome.
 - There are methods to address dependency (through covariances).

・ロト ・回ト ・ヨト ・ヨト

Lessons and warnings

- ► Lessons:
 - Expected values (means) and standard deviations (or variances) are used to measure returns and risks.
 - Diversification is a good idea to maximize long-term returns.
 - ▶ To look for the best diversification, probability helps.
- ► Warnings:
 - Knowing the probability **distributions** is hard.
 - ▶ Performances of multiple investments may actually be **dependent**.
- Responses:
 - Estimating the distributions is easier than predicting the outcome.
 - ▶ There are methods to address dependency (through covariances).

・ロト ・回ト ・ヨト ・ヨト