GMBA 7098: Statistics and Data Analysis Introduction

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► What is statistics?
- ▶ In-class brainstorming.
- ▶ Basic statistical concepts.

Coffee pricing

- ▶ How to **set the price** *p* of a cup of coffee?
- ▶ We look for a balance between profit margin and demand volume.
- Suppose that you know:
 - ▶ The unit cost of making one cup of coffee is 10 NTD.
 - ▶ The demand as a function of the price:

Price (NTD)	40	50	60	70	80
Demand (cup)	300	280	230	200	220

Then simple calculation helps you find a profit-maximizing price.

▶ But how would you find the demand function?

Coffee pricing

- The first thing: Collect data!
- Given this set of data, how would you estimate the demand function?
- Do you need more data?
 - ▶ More records?
 - ▶ More attributes?

Da	ay Pric	e Demand	Day	Price	Demand
1	40	312	16	60	198
2	2 40	307	17	60	239
3	3 40	267	18	60	271
4	40	287	19	70	165
5	5 40	343	20	70	178
6	5 40	331	21	70	194
7	7 50	276	22	70	202
8	3 50	290	23	70	188
ę	9 50	275	24	70	210
1	0 50	300	25	80	240
1	1 50	243	26	80	233
1	2 50	266	27	80	167
1	3 60	212	28	80	198
1	4 60	234	29	80	179
1	5 60	256	30	80	225

Measuring unknowns in the world

- ▶ It is always challenging to **measure unknowns** in the world.
- ▶ To help us measure unknowns, people develop the field of **Statistics**.
- ► Statistics is the **science** of collecting, analyzing, interpreting, and presenting (**numerical**) data.
 - ► For texts: text mining, natural language processing, etc.
 - ▶ For images: image recognition, digital image processing, etc.
- ▶ Mathematics (particularly probability) is helpful.
 - E.g., to help us model and measure the uncertainty when estimating consumer demands.
- Ultimate goal (of Business Statistics): to achieve better decision making.

What is Statistics?

- ▶ Many things are unknown...
 - ▶ Consumers' tastes.
 - Quality of a product.
 - Stock prices.
 - ▶ The effectiveness of a new way of teaching/training.
- ▶ The study of Statistics includes:
 - Descriptive Statistics.
 - Probability.
 - ▶ Inferential Statistics: Estimation.
 - ▶ Inferential Statistics: Hypothesis testing.
 - ▶ Inferential Statistics: Prediction.
- ▶ In summary: To estimate, test, and predict those unknowns.

Road map

- ▶ What is statistics?
- ▶ In-class brainstorming.
- ▶ Basic statistical concepts.

Road map

- ▶ What is statistics?
- ► Syllabus.
- ▶ In-class brainstorming.
- ▶ Basic statistical concepts.

What is statistics? 00000	In-class brainstorming O	Basic concepts 000000000000000000000000000000000000

Populations vs. samples

- ► A **population** is a collection of persons, objects, or items.
 - A **census** is to investigate the whole population.
- A **sample** is a portion of the population.
 - **Sampling** is to investigate only a subset of the population.
 - We then use the information contained in the sample to **infer** ("guess") about the population.
- ▶ What are samples for the following populations?
 - ▶ All students in NTU.
 - ▶ All students in the business school.
 - All chips made in one factory.
 - ▶ All consumers who have bought iPhone 6.
- ▶ Two important questions:
 - Why sampling?
 - ► Is a sample **representative**?

Descriptive vs. inferential statistics

• Descriptive statistics:

- Graphical or numerical summaries of data.
- Describing (visualizing or summarizing) a set of data.

• Inferential statistics:

- ▶ Making a "scientific guess" on unknowns.
- ▶ Trying to say something about the population.
- Which is descriptive and which is inferential?
 - ▶ Calculating the average height of 1000 randomly selected NTU students.
 - ▶ Using this number to estimate the average height of all NTU students.
- Another example (pharmaceutical research):
 - ▶ All the potential patients form the population.
 - A group of randomly selected patients is a sample.
 - Use the result on the sample to infer the result on the population.

Parameters vs. statistics

- A numerical summary of a population is a **parameter**.
 - ▶ The average height of all NTU students.
 - ▶ The expected coffee demand when the price is 50 NTD.
- ▶ A numerical summary of a sample is a **statistic**.
 - ▶ The average height of all NTU male students.
 - ▶ The average coffee demand when the price is 50 NTD in the past 6 days.
- ▶ Almost always people use a statistic to infer a parameter.
 - ▶ Some statistics are "good" while some are "bad."

00000
000

Parameters vs. statistics: an example

- ▶ What is the average height of all NTU students?
- ▶ While a census is possible, it is still quite costly.
- ▶ It is natural to:
 - ▶ Sample some NTU students.
 - ▶ Calculate a statistic.
 - Use that statistic to estimate the average height (the parameter).
- ▶ Some (good or bad) samples and statistics:
 - The average height of all students in this classroom.
 - ▶ The average height of 100 students randomly drawn from all students.
 - ▶ The maximum height of 100 students randomly drawn from all students.
 - ▶ The sum of heights of 100 students randomly drawn from all students.
 - ▶ The average height of 60 male and 40 female students randomly drawn from the population.

Parameters vs. statistics

- A parameter is a **fixed number**.
 - E.g., the average height of all NTU students.
- ▶ A statistic is a **random number** depending on the sample.
 - ▶ Two different random samples typically generate two values of a statistic.
 - ▶ The sampling process matters.

Levels of data measurement

- Most data we will play with are numerical.
- ▶ Numerical data may be categorized to three levels:
 - ▶ Nominal.
 - Ordinal.
 - Quantitative.

What is statistics? 00000	In-class brainstorming O	Basic concepts

Nominal level

- ► A nominal scale classifies data into categories with no ranking.
- ▶ Data are labels or names used to identify an attribute of the element.
- ▶ The label may be numeric or non-numeric label.
- ► Examples:

Categorical variables	Values (Categories)
Laptop ownership	Yes / No
Citizenship	Taiwan / Japan /
Country code	886 / 86 / 1 /

▶ Arithmetic operations **cannot** be applied on nominal data.

What is statistics? 00000	In-class brainstorming O	Basic concepts

Ordinal level

- ▶ An ordinal scale classifies data into categories with ranking.
- The order or rank of the data is meaningful.
- ► However, **differences** between numerical labels do not imply **distances**.
- ► Examples:

Categorical variables	Values (Categories)
Product satisfaction	Satisfied, neutral, unsatisfied
Professor rank	Full, associate, assistant
Ranking of scores	1, 2, 3, 4,

- ▶ It is still not meaningful to do arithmetic on ordinal data.
 - Assistant + associate = full?!
 - ▶ The grade difference between no. 1 and no. 5 may not be equal to that between no. 11 and no. 15.

Quantitative (interval and ratio) levels

- ► An quantitative scale is an ordered scale in which the difference between measurements is a meaningful quantity.
 - ▶ Heights, weights, income, prices.
 - Degrees of temperatures.
 - ▶ Student scores in the 100-point scale.

Some remarks

- ▶ Nominal and ordinal data are called **qualitative data**.
- ► Most statistical methods are for **quantitative data**; some are for qualitative data.
 - Distinguishing nominal and ordinal scales is important.
 - Distinguishing interval and ratio scales is not.
- ▶ Other names:
 - ▶ Sometimes qualitative data are called **categorical** data.
 - ► Sometimes quantitative data are called **numeric** data.

A short summary

- ▶ Understand these terms:
 - Populations vs. samples.
 - ▶ Parameters vs. statistics.
 - ▶ Inferential statistics vs. descriptive statistics.
- ► For each scale of measurement, is it meaningful to calculate the following numbers?

Level	Ranking	Distance
Nominal	No Voc	No
Quantitative	Yes	Yes