Statistics and Data Analysis

Descriptive Statistics (2): Summarization

Ling-Chieh Kung

Department of Information Management National Taiwan University

Summarizing the data with numbers

- ▶ Descriptive Statistics includes some common ways to describe data.
 - ▶ **Visualization** with graphs.
 - ► Summarization with numbers.
- ▶ This is always the **first step** of any data analysis project: To get intuitions that guide our directions.
- ▶ Today we talk about summarization.
 - ► For a set of (a lot of) numbers, we use a few numbers to summarize them.
 - ► For a population: these numbers are **parameters**.
 - ► For a sample: these numbers are **statistics**.
- ▶ We will talk about three things:
 - ▶ Measures of **central tendency** for the center or middle part of data.
 - ▶ Measures of **variability** for how variable the data are.
 - ▶ Measures of **correlation** for the relationship between two variables.

Road map

- ▶ Describing central tendency.
- ▶ Describing variability.
- ▶ Describing correlation.

Medians

- ▶ The median is the middle value in an ordered set of numbers.
 - ▶ Roughly speaking, half of the numbers are below and half are above it.
- \triangleright Suppose there are N numbers:
 - ▶ If N is odd, the median is the $\frac{N+1}{2}$ th large number.
 - ▶ If N is even, the median is the average of the $\frac{N}{2}$ th and the $(\frac{N}{2}+1)$ th large number.
- ► For example:
 - ▶ The median of $\{1, 2, 4, 5, 6, 8, 9\}$ is 5.
 - ► The median of $\{1, 2, 4, 5, 6, 8\}$ is $\frac{4+5}{2} = 4.5$.

Medians

- ▶ A median is unaffected by the magnitude of extreme values:
 - \blacktriangleright The median of $\{1, 2, 4, 5, 6, 8, 9\}$ is 5.
 - ▶ The median of $\{1, 2, 4, 5, 6, 8, 900\}$ is still 5.
- ► Medians may be calculated from quantitative or ordinal data.
 - ▶ It cannot be calculated from nominal data.
- Unfortunately, a median uses only part of the information contained in these numbers.
 - ▶ For quantitative data, a median only treats them as ordinal.

Means

- ▶ The **mean** is the **average** of a set of data.
 - ▶ Can be calculated only from quantitative data.
 - ▶ The mean of $\{1, 2, 4, 5, 6, 8, 9\}$ is

$$\frac{1+2+4+5+6+8+9}{7} = 5.$$

- ▶ A mean uses all the information contained in the numbers.
- Unfortunately, a mean will be affected by extreme values.
 - ► The mean of $\{1, 2, 4, 5, 6, 8, 900\}$ is $\frac{1+2+4+5+6+8+900}{7} \approx 132.28!$
 - \blacktriangleright Using the mean and median $\mathbf{simultaneously}$ can be a good idea.
 - ▶ We should try to identify **outliers** (extreme values that seem to be "strange") before calculating a mean (or any statistics).

Population means vs. sample means

▶ Let $\{x_i\}_{i=1,...,N}$ be a population with N as the **population size**. The **population mean** is

$$\mu \equiv \frac{\sum_{i=1}^{N} x_i}{N}.$$

▶ Let $\{x_i\}_{i=1,...,n}$ be a sample with n < N as the **sample size**. The **sample mean** is

$$\bar{x} \equiv \frac{\sum_{i=1}^{n} x_i}{n}.$$

▶ People use μ and \bar{x} in almost the whole statistics world.

Population means v.s. sample means

$$\mu \equiv \frac{\sum_{i=1}^{N} x_i}{N} \qquad \qquad \bar{x} \equiv \frac{\sum_{i=1}^{n} x_i}{n}.$$

- ▶ Isn't these two means the same?
 - From the perspective of calculation, yes.
 - ► From the perspective of statistical inference, no.
- ► Typically the population mean is **fixed but unknown**.
 - ▶ The sample mean is **random**: We may get different values of \bar{x} today and tomorrow.
 - ▶ To start from \bar{x} and use **inferential statistics** to estimate or test μ , we need to apply **probability**.

Quartiles and percentiles

- ▶ The median lies at the middle of the data.
- ► The first quartile lies at the middle of the first half of the data.
- ► The third quartile lies at the middle of the second half of the data.
- \blacktriangleright For the pth **percentile**:
 - $ightharpoonup \frac{p}{100}$ of the values are below it.
 - ▶ $1 \frac{p}{100}$ of the values are above it.
- ▶ Median, quartiles, and percentiles:
 - ► The 25th percentile is the first quartile.
 - ▶ The 50th percentile is the median (and the second quartile).
 - ▶ The 75th percentile is the third quartile.

Modes

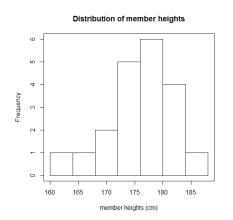
- ► The **mode**(s) is (are) the **most frequently** occurring value(s) in a set of qualitative data.
 - ▶ In the set $\{A, A, A, B, B, C, D, E, F, F, F, G, H\}$, the modes are A and F. The frequency of the modes (A and F) are 3.
- ▶ Though the above definition may also be applied to quantitative data, sometimes it is useless.
 - ▶ In many case, all values are modes!
- ► For quantitative data, we instead look for the **modal class**(es).

Modal classes

▶ In a baseball team, players' heights (in cm) are:

178	172	175	184
172	175	165	178
177	175	180	182
177	183	180	178
179	162	170	171

- ► For the classes [160, 164), [164, 168), ..., and [184, 188), the modal class is [176, 180).
- ▶ We sometimes say the mode of this set is 178.
- ▶ The way of grouping matters!

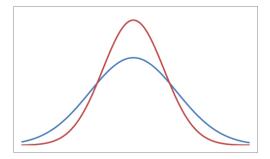


Road map

- ▶ Describing central tendency.
- ▶ Describing variability.
- ▶ Describing correlation.

Variability

- Measures of variability describe the spread or dispersion of a set of data.
- ▶ Especially important when two sets of data have the same center.



Ranges and Interquartile ranges

▶ The **range** of a set of data $\{x_i\}_{i=1,...,N}$ is the difference between the maximum and minimum numbers, i.e.,

$$\max_{i=1,...,N} \{x_i\} - \min_{i=1,...,N} \{x_i\}.$$

- ▶ The **interquartile range** of a set of data is the difference of the first and third quartile.
 - ▶ It is the range of the middle 50 of data.
 - It excludes the effects of extreme values.

Deviations from the mean

- Consider a set of population data $\{x_i\}_{i=1,\ldots,N}$ with mean μ .
- ▶ Intuitively, a way to measure the dispersion is to examine how each number deviates from the mean.
- \triangleright For x_i , the deviation mean is defined as

$$x_i - \mu$$
.

► For a **sample**, the sample mean of x_i

	_	_	_
on from the population	3	4	4 - 5 = -1
	4	5	1 - 5 = 0
	5	6	6 - 5 = 1
$x_i - \mu$.	6	8	8 - 5 = 3
	7	9	9 - 5 = 4
deviation from the	Mean	5	
	·		

$$x_i - \bar{x}$$
.

deviation

 $1 \quad 1 - 5 = -4$

2 - 2 - 5 = -3

 x_i

2

Mean deviations

- \triangleright May we summarize the N deviations into a single number to summarize the aggregate deviation?
- Intuitively, we may sum them up and then calculate the mean deviation:

$$\frac{\sum_{i=1}^{N} (x_i - \mu)}{N}.$$

▶ Is it always 0?

i	x_i	deviation
1	1	1 - 5 = -4
2	2	2 - 5 = -3
3	4	4 - 5 = -1
4	5	1 - 5 = 0
_	C	<i>C</i>

•	-	
4	5	1 - 5 = 0
5	6	6 - 5 = 1
6	8	8 - 5 = 3

Adjusting mean deviations

- ▶ People use two ways to adjust it:
 - ► Mean **absolute** deviations (MAD):

$$\frac{\sum_{i=1}^{N} |x_i - \mu|}{N}.$$

Mean squared deviations (variance):

$$\frac{\sum_{i=1}^{N}(x_i-\mu)^2}{N}.$$

i	x_i	deviation d_i	$ d_i $	d_i^2
1	1	1 - 5 = -4	4	16
2	2	2 - 5 = -3	3	9
3	4	4 - 5 = -1	1	1
4	5	1 - 5 = 0	0	0
5	6	6 - 5 = 1	1	1
6	8	8 - 5 = 3	3	9
7	9	9 - 5 = 4	4	16
Mean	5	0	2.29	7.43

Measuring variability

- ▶ Larger MADs and variances means the data are more disperse.
- ▶ Consider two 7-student groups and their grades:
 - ▶ Group 1: 70, 72, 75, 76, 78, 80, 81.
 - ► Group 2: 58, 63, 68, 74, 82, 90, 97.

i	x_i	d_i	$ d_i $	d_i^2
1	70	-6	6	36
2	72	-4	4	16
3	75	-1	1	1
4	76	0	0	0
5	78	2	2	4
6	80	4	4	16
7	81	5	5	25
Mean	76	0	3.14	14

i	x_i	d_i	$ d_i $	d_i^2
1	58	-18	18	324
2	63	-13	13	169
3	68	-8	8	64
4	74	-2	2	4
5	82	6	6	36
6	90	14	14	196
7	97	21	21	441
Mean	76	0	11.71	176.29

MADs vs. variances

- ▶ The main difference:
 - ▶ An MAD puts the same weight on all values.
 - ▶ A variance puts more weights on **extreme values**.
- ▶ They may give different ranks of dispersion:

i	x_i	d_i	$ d_i $	d_i^2
1	0	-5	5	25
2	4	-1	1	1
3	5	0	0	0
4	6	1	1	1
5	10	5	5	25
Mean	5	0	2.4	10.4

OI.	1:				
	i	x_i	d_i	$ d_i $	d_i^2
	1	1	4	4	16
	2	2	3	3	9
	3	5	0	0	0
	4	8	3	3	9
	5	9	4	4	16
	Mean	5	0	2.8	10

- ▶ In general, people use variances more than MADs.
 - ▶ But MADs are still popular in some areas, e.g., demand forecasting.
 - ▶ It is the analyst's discretion to choose the appropriate one.

Standard deviations

- One drawback of using variances is that the unit of measurement is the **square** of the original one.
- ▶ For the baseball team, the variance of member heights is 34.05 cm^2 . What is it?!
- ▶ People take the square root of a variance to generate a standard deviation.
- ▶ The standard deviation of member heights is

	$\sqrt{34}$.	$\overline{05}$	\approx	5.	85	cm
--	---------------	-----------------	-----------	----	----	----

		$\sqrt{34.05} \approx$	5.85 cm.			
•	A standard	deviation	typically	has more	managerial	implications.

_	170	179	175	101

110	112	110	104
172	175	165	178
177	175	180	182

z-scores

▶ Consider a set of sample data $\{x_i\}_{i=1,...,n}$ with sample mean \bar{x} and sample standard deviation s. For x_i , the z-score is

$$z_i = \frac{x_i - \bar{x}}{s}.$$

▶ In a set of population data $\{x_i\}_{i=1,...,N}$ with population mean μ and population standard deviation σ , the z-score of x_i is

$$z_i = \frac{x_i - \mu}{\sigma}$$
.

▶ A value's z-score measures for how many standard deviations it deviates from the mean.

z-scores vs. outliers

▶ For detecting **outliers**, one common way is double check whether x_i is an outlier if

$$|z_i| = \left| \frac{x_i - \mu}{\sigma} \right| > 3.$$

- ▶ It is quite rare for a value's magnitude of z-score to be so large.
- ▶ For sample data, use $\frac{x_i \bar{x}}{s}$.
- Some people propose the use of median and MAD is a similar way: double check whether x_i is an outlier if¹

$$\left| \frac{x_i - \text{median}}{\text{MAD}} \right| > 3.$$

▶ The above rules only **suggest** one to investigate some extreme values again. These rules are neither sufficient nor necessary for outliers.

¹The "MAD" here can be mean absolute deviation from mean, mean absolute deviation from median, median absolute deviation from median, etc.

Population v.s. sample variances

▶ Recall that the formulas for population and sample means are

$$\mu \equiv \frac{\sum_{i=1}^{N} x_i}{N}$$
 and $\bar{x} \equiv \frac{\sum_{i=1}^{n} x_i}{n}$, respectively.

- Formula-wise there is no difference.
- ▶ However, population and sample variances are

$$\sigma^2 \equiv \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$
 and $s^2 \equiv \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$, respectively.

- ▶ Note the difference between N and n-1!
- ▶ Population and sample standard deviations are $\sigma = \sqrt{\frac{\sum_{i=1}^{N}(x_i \mu)^2}{N}}$ and $s = \sqrt{\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{N}}$, respectively.
- ▶ People use σ^2 , σ , s^2 , and s in almost the whole statistics world.

Coefficient of variation

► The **coefficient of variation** is the **ratio** of the standard deviation to the mean:

Coefficient of variation =
$$\frac{\sigma}{\mu}$$
.

▶ When will you use coefficients of variation?

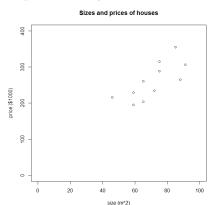
Road map

- ▶ Describing central tendency.
- Describing variability.
- ▶ Describing correlation.

Introduction

▶ Consider the size of a house and its price in a city:

Size	Price
(in m ²)	(in \$1000)
75	315
59	229
85	355
65	261
72	234
46	216
107	308
91	306
75	289
65	204
88	265
59	195



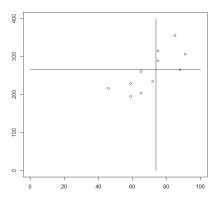
► How do we measure/describe the **correlation** (linear relationship) between the two variables?

Intuition

- Consider a set of paired data $\{(x_i, y_i)\}_{i=1,...,N}$.
- ▶ When one variable goes up, does the other one **tend to** go up or down?
- ▶ More precisely, if x_i is larger than μ_x (the mean of the x_i s), is it more likely to see $y_i > \mu_v$ or $y_i < \mu_v$?
- ▶ Let's highlight the two means on the scatter plot.

Intuition

▶ The scatter plot with the two means:



- ▶ We say that the two variables have a **positive** correlation.
 - ▶ If one goes up when the other goes down, there is a **negative** correlation.

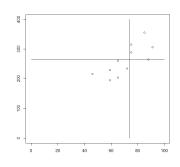
Covariances

► We define the **covariance** of a set of two-dimensional **population** data as

$$\sigma_{xy} \equiv \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N}.$$

- ▶ If most points fall in the first and third quadrants, most $(x_i \mu_x)(y \mu_y)$ will be positive and σ_{xy} tends to be positive.
- Otherwise, σ_{xy} tends to be negative.
- ► The sample covariance is

$$s_{xy} \equiv \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}.$$



Example: house sizes and prices

► For our example:

x_i	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i - \bar{x})(y_i - \bar{y})$
75	315	1.08	50.25	54.44
59	229	-14.92	-35.75	533.27
85	355	11.08	90.25	1000.27
65	261	-8.92	-3.75	33.44
72	234	-1.92	-30.75	58.94
46	216	-27.92	-48.75	1360.94
107	308	33.08	43.25	1430.85
91	306	17.08	41.25	704.69
75	289	1.08	24.25	26.27
65	204	-8.92	-60.75	541.69
88	265	14.08	0.25	3.52
59	195	-14.92	-69.75	1040.44
$\bar{x} = 73.92$	$\bar{y} = 264.75$	-	-	$s_{xy} = 617.16$

- ▶ So the covariance of house size and price is 617.16.
- ► Is it large or small?
 - ▶ This depends on how variable the two variables themselves are.

Correlation coefficients

► To take away the auto-variability of each variable itself, we define the population and sample **correlation coefficients** as

$$\rho \equiv \frac{\sigma_{xy}}{\sigma_x \sigma_y} \quad \text{and} \quad r \equiv \frac{s_{xy}}{s_x s_y},$$

- $ightharpoonup \sigma_x$ and σ_y are the population standard deviations of x_i s and y_i s.
- \triangleright s_x and s_y are the sample standard deviations of x_i s and y_i s.
- ► In our example, we have $r = \frac{617.16}{16.78 \times 50.45} \approx 0.729$.
- ▶ It can be shown that we always have

$$-1 \le \rho \le 1 \quad \text{and} \quad -1 \le r \le 1.$$

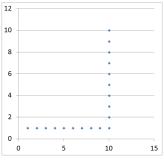
- $\rho > 0$ (s > 0): Positive correlation.
- $\rho = 0 \ (s = 0)$: No correlation.
- $\rho < 0 \ (s < 0)$: Negative correlation.

Magnitude of correlation

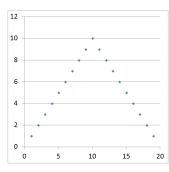
- ▶ In practice, people often determine the degree of correlation based on $|\rho|$ or |s|:
 - $0 \le |\rho| < 0.25 \text{ or } 0 \le |s| < 0.25$: A weak correlation.
 - ▶ $0.25 \le |\rho| < 0.5$ or $0.25 \le |s| < 0.5$: A moderately weak correlation.
 - ▶ $0.5 \le |\rho| < 0.75$ or $0.5 \le |s| < 0.75$: A moderately strong correlation.
 - ▶ $0.75 \le |\rho| \le 1$ or $0.75 \le |s| \le 1$: A strong correlation.

Correlation vs. independence

A correlation coefficient only measures how one variable **linearly** depends on the other variable.



$$(r = 0.5973)$$



$$(r = 0)$$

▶ Being uncorrelated does not mean being independent!