Statistics and Data Analysis

Descriptive Statistics (1): Visualization

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Visualizing the data

- We will introduce some common ways to summarize a set of data.
- By graphs.
- By statistics.
- This is always the first step of any data analysis project: To get intuitions that guide our directions.

Road map

- Frequency distributions.
- Quantitative data graphs.
- Qualitative data graphs.
- Visualizing two variables.

Descriptive Statistics

- Consider the column "cnt" in the sheet "Day" of the Excel file "Bike.xlsx".
- Each number is the number of rentals in a day.
- 985, 801, 1349, 1562, 1600, 1606, 1510, 959, 822, 1321, 1263, 1162, 1406, $1421,1248,1204,1000,683,1650,1927, \ldots$, and 2729.
- To get more ideas about this data set, we do Descriptive Statistics.
- Sometimes called exploratory data analysis.
- Using data graphs to visualize data or using numbers to summarize data.

Frequency distributions

- The original 731 numbers form a set of ungrouped data.
- When data are ungrouped, visualizing them is hard.
- We start by grouping them into a frequency distribution.
- Grouped data presented in the form of class intervals and frequencies.
- Let's create an intuitive frequency distribution.

Frequency distributions: an example

- Let's group the daily bike rental data into a frequency distribution.
- Let's label these 731 numbers are x_{1}, x_{2}, \ldots, and x_{731}.
- Step 1: Find the range:

$$
\max _{i=1, \ldots, 731}\left\{x_{i}\right\}-\min _{i=1, \ldots, 731}\left\{x_{i}\right\}=8714-22=8692
$$

- Step 2: Let's divide the range into classes:
- These classes are intervals with equal lengths.
- A typical number of classes is between 5 and 15.
- Let's choose 9, for example.
- Step 3: Class width $\geq \frac{8692}{9} \approx 965.78$. Let's try 1000 .

Frequency distributions: an example

- The resulting classes:

Class	Class interval	(Which means)
1	$[0,1000)$	$0 \leq x<1000$
2	$[1000,2000)$	$1000 \leq x<2000$
3	$[2000,3000)$	$2000 \leq x<3000$
	\vdots	
8	$[7000,8000)$	$7000 \leq x<8000$
9	$[8000,9000)$	$8000 \leq x<9000$

- How about [0, 999], [1000, 1999], etc.?
- How about $(0,1000]$, $(1000,2000]$, etc.?

Frequency distributions: an example

- Then we count to get the frequency distribution at the right.
- This is a set of grouped data.
- Some remarks:
- Typically we have 5 to 15 classes.
- Typically all classes have the same width.
- Be aware of class endpoints! Classes should NOT overlap with each other.
- If there are outliers, they should be removed first.

Class interval	Frequency
$[0,1000)$	18
$[1000,2000)$	80
$[2000,3000)$	74
$[3000,4000)$	107
$[4000,5000)$	166
$[5000,6000)$	106
$[6000,7000)$	86
$[7000,8000)$	82
$[8000,9000)$	12

Outliers

- An outlier in a data set is a value that is "very weird."
- May be due to a very rare case.
- May be due to a typo.
- For examples,
- A promotion makes the rental free on December 31, 2012. The number of daily rentals is 34231 (originally 2290).
- One mistakenly typed 654 in January 1, 2011, as 6544.
- Some outliers may be identified with a frequency distribution. Some are not.

Class interval	Frequency
$[0,1000)$	$\mathbf{1 7}$
$[1000,2000)$	80
$[2000,3000)$	73
$[3000,4000)$	107
$[4000,5000)$	166
$[5000,6000)$	106
$[6000,7000)$	87
$[7000,8000)$	82
$[8000,9000)$	12
\vdots	
$[34000,35000)$	$\mathbf{1}$

Something more

- We may add class midpoints, relative frequencies, and cumulative frequencies into a frequency table:

Class interval	Frequency	Class midpoint	Relative frequency	Cumulative frequency
$[0,1000)$	18	500	2.46%	18
$[1000,2000)$	80	1500	10.94%	98
$[2000,3000)$	74	2500	10.12%	172
$[3000,4000)$	107	3500	14.64%	279
$[4000,5000)$	166	4500	22.71%	445
$[5000,6000)$	106	5500	14.50%	551
$[6000,7000)$	86	6500	11.76%	637
$[7000,8000)$	82	7500	11.22%	719
$[8000,9000)$	12	8500	1.64%	731

- How about cumulative relative frequencies?

Road map

- Frequency distributions.
- Quantitative data graphs.
- Qualitative data graphs.
- Visualizing two variables.

Histograms

- A frequency distribution may be depicted as a histogram.

Interval	Freq.
$[0,1000)$	18
$[1000,2000)$	80
$[2000,3000)$	74
$[3000,4000)$	107
$[4000,5000)$	166
$[5000,6000)$	106
$[6000,7000)$	86
$[7000,8000)$	82
$[8000,9000)$	12

- It consists of a series of contiguous rectangles, each representing the frequency in a class.

Histograms

- Histograms may be the most important type of data graphs.
- One particular reason to draw histograms is to get some ideas about the distribution.
- Bell shape? M shape? Skewed?
- Any outlier?
- We will discuss distributions in more details.

Frequency polygons

- Alternatively, we may draw a frequency polygon by using line segments connecting dots plotted at class midpoints.
- The information contained in a frequency polygon is quite similar to that contained in a histogram.

Frequency polygons

- It is more convenient to use a frequency polygon to compare multiple frequency distributions.

- Both: Uni-modal and symmetric.
- 2011: Bi-modal and skewed to the right (right-tailed).
- 2012: Uni-modal and skewed to the left (left-tailed).
- Warning: People may misinterpret a frequency polygon as a line chart (for data with a time sequence).

Line charts

- A line chart is useful in depicting a time series data.
- A two-dimensional data set whose first dimension (the x-axis) is for labels of time points.
- It visualizes how a quantity changes as time goes by.
- For our monthly bike rentals:

Road map

- Frequency distributions.
- Quantitative data graphs.
- Qualitative data graphs.
- Visualizing two variables.

Pie charts

- A pie chart is a circular depiction of data where each slice represents the percentage of the corresponding category.
- It visualizes relative frequency distributions well.
- For our bike rental data set:
- What are the proportions of rentals in the four seasons?
- What are the proportions of rentals on the seven days of a week?

A pie chart for seasonal rentals

Season	Total rentals	Proportion
Winter (12/20-3/20)	471348	14.3%
Spring (3/21-6/20)	918589	27.9%
Summer (6/21-9/20)	1061129	32.2%
Fall $(9 / 21-12 / 20)$	841613	25.6%

A pie chart for rentals among weekdays

Day	Total rentals
Sunday	444027
Monday	455503
Tuesday	469109
Wednesday	473048
Thursday	485395
Friday	487790
Saturday	477807

Data not appropriate for pie charts

- Pie charts are used to visualize proportions, i.e., subtotals over the overall total.
- It should not be used to compare averages.
- The total numbers of rentals made by male and female users are appropriate for a pie chart.
- The average numbers of rentals per male and female users are not appropriate for a pie chart.

Bar charts

- Pie charts are useful in visualizing the proportions of each categories.
- In demonstrating the differences among categories, a bar chart is a better choice.
- The larger the category, the longer the bar.
- Some people draw bars vertically; some horizontally.

Bar charts

Day	Total rentals
Sunday	444027
Monday	455503
Tuesday	469109
Wednesday	473048
Thursday	485395
Friday	487790
Saturday	477807

Bar charts v.s. histograms

- What are the differences that distinguish a bar chart from a histogram?

- A bar chart uses noncontiguous bars to visualize categorical data.
- A histogram uses contiguous bars to visualize quantitative data.

Road map

- Frequency distributions.
- Quantitative data graphs.
- Qualitative data graphs.
- Visualizing two variables.

Visualizing two variables

- When we have data for two variables, typically we want to identify whether there is any relationship between them.
- Visualizing the data in a two-dimensional manner helps.

Scatter plots

- Sometimes in an observation there are two values recorded.
- When the two vales are both measured in quantitative scales, we may depict each observation as a point on a plane to create a scatter plot.
- For our bike rental example:
- How do monthly rentals in 2011 and those in 2012 relate with each other?
- How do daily casual and registered rentals relate with each other?

Monthly rentals in 2011 and 2012

Month	2011	2012
1	38189	96744
2	48215	103137
3	64045	164875
4	94870	174224
5	135821	195865
6	143512	202830
7	141341	203607
8	136691	214503
9	127418	218573
10	123511	198841
11	102167	152664
12	87323	123713

Daily casual and registered rentals

day	casual	registered
1	331	654
2	131	670
3	120	1229
	\vdots	
731	439	2290

