Statistics and Data Analysis

Probability

Ling-Chieh Kung

Department of Information Management
National Taiwan University

Road map

- Random variables.
- Expectation and variances.
- Continuous distributions.
- Normal distribution.

Random variables

- To describe a random event, we use random variables.
- A random variable (RV) is a variable whose outcomes are random.
- Examples:
- The outcome of tossing a coin or rolling a dice.
- The number of consumers entering a store at $7-8 \mathrm{pm}$.
- The temperature of a classroom at tomorrow noon.

Discrete and continuous random variables

- A random variable can be discrete or continuous.
- For a discrete random variable, its value is counted.
- The outcome of tossing a coin.
- The outcome of rolling a dice.
- The number of consumers entering a store at $7-8 \mathrm{pm}$.
- For a continuous random variable, its value is measured.
- The temperature of this classroom at tomorrow noon.
- The average studying hours of a group of 100 students.
- A discrete random variable has gaps among its possible values.
- A continuous random variable's possible values typically form an interval.

Discrete and continuous distributions

- How to describe a random variable?
- Write down its sample space, which includes all the possible values.
- For each possible value, write down the likelihood for it to occur.
- The two things together form a probability distributions, or simply distributions.
- Distributions may also be either discrete or continuous.
- Let's start with discrete distributions.

Describing a discrete distribution

- For a discrete random variable, we may list all possible outcomes and their probabilities.
- Let X be the result of tossing a fair coin:

x	Head	Tail
$\operatorname{Pr}(X=x)$	$\frac{1}{2}$	$\frac{1}{2}$

- Let X be the result of rolling a fair dice:

x	1	2	3	4	5	6
$\operatorname{Pr}(X=x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- The function $\operatorname{Pr}(X=x)$, sometimes abbreviated as $\operatorname{Pr}(x)$, for all $x \in S$, where S is the sample space, is called the probability function of X.
- We have $\operatorname{Pr}(X=x) \in[0,1]$ for all $x \in S$.
- We have $\sum_{x \in S} \operatorname{Pr}(X=x)=1$.

Example 1: coin tossing

- Let X_{1} and X_{2} be the result of tossing a fair coin for the first and second time, respectively.
- Let Y be the number of heads obtained by tossing a fair coin twice.
- What is the distribution of Y ?
- Possible values: 0, 1, and 2.
- Probabilities: What are $\operatorname{Pr}(Y=0), \operatorname{Pr}(Y=1)$, and $\operatorname{Pr}(Y=2)$?
- We have:

y	0	1	2
$\operatorname{Pr}(Y=y)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Example 1: coin tossing

- What if the probability of getting a head is p ?
- We have

$$
\begin{aligned}
\operatorname{Pr}(Y=2) & =\operatorname{Pr}\left(\left(X_{1}, X_{2}\right)=(\text { Head, Head })\right)=p^{2}, \\
\operatorname{Pr}(Y=0) & =\operatorname{Pr}\left(\left(X_{1}, X_{2}\right)=(\text { Tail, Tail })\right)=(1-p)^{2}, \text { and } \\
\operatorname{Pr}(Y=1) & =\operatorname{Pr}\left(\left(X_{1}, X_{2}\right)=(\mathrm{H}, \mathrm{~T})\right)+\operatorname{Pr}\left(\left(X_{1}, X_{2}\right)=(\mathrm{T}, \mathrm{H})\right) \\
& =p(1-p)+(1-p) p=2 p(1-p) .
\end{aligned}
$$

- In summary:

y	0	1	2
$\operatorname{Pr}(Y=y)$	$(1-p)^{2}$	$2 p(1-p)$	p^{2}

Example 2: inventory management

- Suppose that you sells apples.
- The unit purchasing cost is $\$ 2$.
- The unit selling price is $\$ 10$.
- Question: How many apples to prepare at the beginning of each day?
- Too many is not good: Leftovers are valueless.
- Too few is not good: There are lost sales.
- According to your historical sales records, you predict that tomorrow's demand is X, whose distribution is summarized below:

x	0	1	2	3	4	5	6	7	8
$\operatorname{Pr}(x)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

Daily demand distribution

- The probability distribution is depicted.
- This is a right-tailed (skewed to the right; positively skewed) distribution.
- The distribution of Y in Example 1 is symmetric.

Distributions of some events

x	0	1	2	3	4	5	6	7	8
$\operatorname{Pr}(x)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

- What is the minimum inventory level that can make the probability of having shortage lower than 20% ?
- This is the inventory level achieving a 80% service level.
- If the inventory level is x, the service level is $\operatorname{Pr}(X \leq x)$.
- As $F(x)=\operatorname{Pr}(X \leq x)$ is used often, it is given the name cumulative distribution function (cdf).
- The service level may be calculated for all x :
- $F(1)=\operatorname{Pr}(X \leq 1)=\operatorname{Pr}(X=0)+\operatorname{Pr}(X=1)=0.21$.
- $F(3)=\operatorname{Pr}(X \leq 3)=\operatorname{Pr}(X=0)+\cdots \operatorname{Pr}(X=3)=0.65$.
- $F(4)=\operatorname{Pr}(X \leq 4)=\operatorname{Pr}(X=0)+\cdots \operatorname{Pr}(X=4)=0.82$.

Road map

- Random variables.
- Expectation and variances.
- Continuous distributions.
- Normal distribution.

Expectation

- Consider a discrete random variable X with a sample space $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a probability function $\operatorname{Pr}(\cdot)$.
- The expected value (or mean) of X is

$$
\mu=\mathbb{E}[X]=\sum_{i \in S} x_{i} \operatorname{Pr}\left(x_{i}\right) .
$$

- Intuition: For all the possible values, use their probabilities to do a weighted average.
- For the random outcome, if I may guess only one number, I would guess the expected value to minimize the average error.

Example 1: dice rolling

- Let X be the outcome of rolling a dice, then the probability function is $\operatorname{Pr}(x)=\frac{1}{6}$ for all $x=1,2, \ldots, 6$. The expected value of X is

$$
\mathbb{E}[X]=\sum_{i=1}^{6} x_{i} \operatorname{Pr}\left(x_{i}\right)=\frac{1}{6}(1+2+\cdots+6)=3.5 .
$$

- Let Y be the outcome of rolling an unfair dice:

y_{i}	1	2	3	4	5	6
$\operatorname{Pr}\left(y_{i}\right)$	0.2	0.2	0.2	0.15	0.15	0.1

- The expected value of Y is

$$
\begin{aligned}
\mathbb{E}[Y] & =1 \times 0.2+2 \times 0.2+3 \times 0.2+4 \times 0.15+5 \times 0.15+6 \times 0.1 \\
& =3.15
\end{aligned}
$$

- Note that $3.15<3.5$, the expected value of rolling a fair dice. Why?

Conditional probability and expectation

- I sell orange juice everyday. Let D be the daily demand.
- If it is sunny, I have $\operatorname{Pr}(D=50 \mid$ sunny $)=\operatorname{Pr}(D=250 \mid$ sunny $)=0.5$.
- If it is rainy, I have $\operatorname{Pr}(D=10 \mid$ rainy $)=\operatorname{Pr}(D=50 \mid$ rainy $)=0.5$.
- These are conditional probabilities.
- What is my expected daily demand given the weather condition?
- We have $\mathbb{E}[D \mid$ sunny $]=150$ and $\mathbb{E}[D \mid$ rainy $]=30$.
- These are conditional expectations.
- If with probability 70% it will be sunny tomorrow, what is my tomorrow expected demand?

$$
\begin{aligned}
\mathbb{E}[D] & =\operatorname{Pr}(\text { sunny }) \mathbb{E}[D \mid \text { sunny }]+\operatorname{Pr}(\text { rainy }) \mathbb{E}[D \mid \text { rainy }] \\
& =0.7 \times 150+0.3 \times 30=114
\end{aligned}
$$

- The two events are dependent, i.e., the realization of one event affects the distribution of the other. They are not independent.

Example 2: Inventory decisions

- Recall the inventory problem:
- The unit purchasing cost is $\$ 2$.
- The unit selling price is $\$ 10$.
- The daily random demand's distribution is

x	0	1	2	3	4	5	6	7	8
$\operatorname{Pr}(x)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

- How to find a profit-maximizing inventory level?
- For our example, at least we may try all the possible actions.
- Suppose the stocking level is $y, y=0,1, \ldots, 8$, what is the expected profit $\pi(y)$?
- Then we choose the stocking level with the highest expected profit.

Expected profit function

- If $y=0$, obviously $\pi(0)=0$.
- If $y=1$:
- With probability $0.06, X=0$ and we lose $0-2=-2$ dollars.
- With probability $0.94, X \geq 1$ and we earn $10-2=8$ dollars.
- The expected profit is
$(-2) \times 0.06+8 \times 0.94=7.4$ dollars, i.e., $\pi(1)=7.4$.

Daily demand distribution

Expected profit function

- If $y=2$:
- With probability $0.06, X=0$ and we lose $0-4=-4$ dollars.
- With probability $0.15, X=1$ and we earn $10-4=6$ dollars.
- With probability $0.79, X \geq 2$ and we earn $20-4=16$ dollars.
- The expected profit is
$(-4) \times 0.06+6 \times 0.15+16 \times 0.79=13.3$ dollars, i.e., $\pi(2)=13.3$.
- By repeating this on $y=3,4, \ldots, 8$, we may fully derive the expected profit

Daily demand distribution

Optimizing the inventory decision

Expected profit function

- The optimal stocking level is 4 .
- What if the unit production cost is not $\$ 2$?

Variances and standard deviations

- Consider a discrete random variable X with a sample space $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and a probability function $\operatorname{Pr}(\cdot)$.
- The expected value of X is $\mu=\mathbb{E}[X]=\sum_{i \in S} x_{i} \operatorname{Pr}\left(x_{i}\right)$.
- The variance of X is

$$
\sigma^{2}=\operatorname{Var}(X) \equiv \mathbb{E}\left[(X-\mu)^{2}\right]=\sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) .
$$

- The standard deviation of X is $\sigma=\sqrt{\sigma^{2}}$.

Example 1: dice rolling

- Let X be the outcome of rolling a dice, then the probability function is $\operatorname{Pr}(x)=\frac{1}{6}$ for all $x=1,2, \ldots, 6$.
- The expected value of X is $\mu=\mathbb{E}[X]=3.5$.
- The variance of X is

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) \\
& =\frac{1}{6}\left[(-2.5)^{2}+(-1.5)^{2}+\cdots+2.5^{2}\right] \approx 2.92
\end{aligned}
$$

- The standard deviation of X is $\sqrt{2.92} \approx 1.71$.

Example 1: dice rolling

- Let X be the outcome of rolling an unfair dice:

x_{i}	1	2	3	4	5	6
$\operatorname{Pr}\left(x_{i}\right)$	0.2	0.2	0.2	0.15	0.15	0.1

- The expected value of X is $\mu=3.15$.
- The variance of X is

$$
\begin{aligned}
\operatorname{Var}(X)= & \sum_{i \in S}\left(x_{i}-\mu\right)^{2} \operatorname{Pr}\left(x_{i}\right) \\
= & (-2.15)^{2} \times 0.2+(-1.15)^{2} \times 0.2+(-0.15)^{2} \times 0.2 \\
& +0.85^{2} \times 0.15+1.85^{2} \times 0.15+2.85^{2} \times 0.1 \\
\approx & 2.6275
\end{aligned}
$$

- Note that $2.6275<2.92$, the variance of rolling a fair dice. Why?
- The standard deviation of X is $\sqrt{2.6275} \approx 1.62$.

Example 2: investment decisions

- Let Green, Red, and White be three hypothetical investments with the following probability distributions for their yearly gross returns.

Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$
Green	0.8	0.9	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	3	3
White	0.95	1	1	1	1	1.1

- Which one do you prefer?

Example 2: investment decisions

- For each investment, we may find its mean (expected value) and standard deviation.

Probability	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	Mean	SD
Green	0.8	0.9	1.1	1.1	1.2	1.4	1.083	0.195
Red	0.06	0.2	1	3	3	3	1.710	1.323
White	0.95	1	1	1	1	1.1	1.008	0.045

The mean measures the expected return. The standard deviation measures the risk.

- We prefer high expected return and low risk.
- We may compare their volatility-adjusted returns $\mu-\frac{\sigma^{2}}{2}$:

$$
\text { Green }>\text { White }>\operatorname{Red}(1.064>1.007>0.835)
$$

Road map

- Random variables.
- Expectation and variances.
- Continuous distributions.
- Normal distribution.

Continuous random variables

- Some random variables are continuous.
- The value of a continuous random variable is measured, not counted.
- E.g., the temperature of our classroom when the next lecture starts.
- For a continuous random variable, its possible values (sample space) typically form an interval.
- Let X be the temperature (in Celsius) of our classroom when the next lecture starts. Then $X \in[0,50]$.
- As another example, consider the number of courses taken by a student in this semester.
- Let X_{i} be the number of courses taken by student $i, i=1,2, \ldots, n$.
- Obviously, X_{i} is discrete.
- However, their mean $\bar{x}=\frac{\sum_{i=1}^{n} X_{i}}{n}$ is (approximately) continuous!
- Especially when n is large.
- We will often use a continuous random variable to approximate a discrete one.

Continuous probability distribution

- Let X be a number randomly drawn from $[0,6]$.
- All values in $[0,6]$ are equally likely to be observed.
- What is the probability of getting $X=2$?
- Because all the values ($0,1,2.4,3.657432,4.44 \ldots, \pi, \sqrt{2}$, etc.) may be an outcome, the probability of getting exactly $X=2$ is zero.
- In general, $\operatorname{Pr}(X=a)=0$ for all $a \in \mathbb{R}$ as long as X is continuous.
- What is the probability of getting no greater than $2, \operatorname{Pr}(X \leq 2) ?^{1}$

[^0]
Continuous probability distribution

- Obviously, $\operatorname{Pr}(X \leq 2)=\frac{1}{3}$.
- Similarly, we have:
- $\operatorname{Pr}(X \leq 3)=\frac{1}{2}$.
- $\operatorname{Pr}(X \geq 4.5)=\frac{1}{4}$.
- $\operatorname{Pr}(3 \leq X \leq 4)=\frac{1}{6}$.
- For a continuous random variable:
- A single value has no probability.
- An interval has a probability!

Uniform distribution

- The random variable X is very special:
- All possible values are equally likely to occur.
- For a continuous random variable of this property, we say it follows a (continuous) uniform distribution.
- When X is uniformly distributed in $[a, b]$, we write $X \sim \operatorname{Uni}(a, b)$.
- The likelihood of any possible value is $\frac{1}{b-a}$ (why)?
- If a discrete random variable possesses this property (e.g., rolling a fair dice), we say it follows a discrete uniform distribution.
- When do we use a uniform random variable?
- When we want to draw one from a population fairly (i.e., randomly).
- When we collect a random sample from a population.

Non-uniform distribution

- Sometimes a continuous random variable is not uniform.
- Let X be the temperature of the classroom when the next lecture starts.
- We can say that $X \in[0,50]$.
- X is more likely to occur in $[20,30]$ but less likely in [10, 20] and [30, 40]. It is almost impossible for X to be in $[0,10]$ and $[40,50]$.
- The likelihood of X in different intervals can be different.
- How to describe a continuous random variable with a non-uniform distribution? How to describe a continuous distribution?

Probability density functions

- We use a probability density function (pdf) $f(x)$ to describe the likelihood of each possible value. Larger $f(x)$ means higher likelihood.
- For X, let its pdf be

$$
f(x)= \begin{cases}0.005 & \text { if } x<10 \\ 0.02 & \text { if } 10 \leq x<20 \\ 0.05 & \text { if } 20 \leq x<30 \\ 0.02 & \text { if } 30 \leq x<40 \\ 0.005 & \text { if } 40 \leq x\end{cases}
$$

- The higher the pdf, the more likely the outcome is there.

Cumulative distribution functions

- The concept of cumulative distribution function (cdf) still applies to continuous distributions.
- Given the pdf $f(x)$, its cdf is $F(x)=\operatorname{Pr}(X \leq x)=\int_{-\infty}^{x} f(v) d v$, which is the area below the pdf from $-\infty$ to x.
- The "sum" of the likelihood of all values between 0 to x is the probability.
- $\operatorname{Pr}(X \leq 30)=\int_{0}^{30} f(v) d v=10 \times 0.005+10 \times 0.02+10 \times 0.05=0.75$.

Cumulative distribution functions

- For any given region $[a, b]$, we then have

$$
\operatorname{Pr}(a \leq X \leq b)=\operatorname{Pr}(X \leq b)-\operatorname{Pr}(X \leq a)=F(b)-F(a) .
$$

- E.g., $\operatorname{Pr}(18 \leq X \leq 30)=F(30)-F(18)=0.75-0.21=0.54$.

- In most cases, we let statistical software do the calculations. All we need to know is what to calculate.

Road map

- Random variables.
- Expectation and variances.
- Continuous distributions.
- Normal distribution.

Central tendency

- In practice, typically data do not spread uniformly.
- Values tend to be close to the center.
- Natural variables: heights of people, weights of dogs, lengths of leaves, temperature of a city, etc.
- Performance: number of cars crossing a bridge, sales made by salespeople, consumer demands, student grades, etc.
- All kinds of errors: estimation errors for consumer demand, differences from a manufacturing standard, etc.
- We need a distribution with such a central tendency.

Normal distribution

- A random variable X following a normal distribution with mean μ and standard deviation σ if its pdf is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

for all $x \in(-\infty, \infty)$.

- If a random variable follows the normal distribution, most of its "normal values" will be close to the center.
- We write $X \sim \operatorname{ND}(\mu, \sigma)$.

- It is symmetric and bell-shaped.

Altering normal distributions

- Increasing the expected value μ shifts the curve to the right.
- Increasing the standard deviation σ makes the curve flatter.

Example 1: classroom temperature

- Let X be the room temperature when the next lecture starts.
- Suppose that $X \sim \mathrm{ND}(25,5)$.
- Suppose that the lecture must be canceled if $X<15$ or $X>35$.
- The probability for the lecture to be canceled is

$$
\begin{aligned}
\operatorname{Pr}(X<15 \text { or } X>35) & =\operatorname{Pr}(X<15)+\operatorname{Pr}(X>35) \\
& =2 \operatorname{Pr}(X<15) \approx 5 \% .
\end{aligned}
$$

Standard normal distributions

- The standard normal distribution is a normal distribution with $\mu=0$ and $\sigma=1$.
- All normal distributions can be transformed to the standard normal distribution.

Proposition 1

$$
\begin{aligned}
& \text { If } X \sim \mathrm{ND}(\mu, \sigma) \text {, then } \\
& Z=\frac{X-\mu}{\sigma} \sim \mathrm{ND}(0,1) .
\end{aligned}
$$

- This transformation is called
 standardization.

Equivalence among normal distributions

- Consider a normal random variable $X \sim \mathrm{ND}(\mu, \sigma)$.
- For a value x, we define its z-score as $z=\frac{x-\mu}{\sigma}$.
- It measures how far this value is from the mean, using the standard deviation as the unit of measurement.
- E.g., if $z=2$, the value is 2 standard deviations above the mean.
- We say that x is two-sigma above the mean.
- Suppose that $X \sim \mathrm{ND}(100,20)$ and $Y \sim \mathrm{ND}(90,10)$.
- For a value x to be two-sigma above the mean of $X, x=140$.
- For a value y to be two-sigma above the mean of $Y, y=110$.
- The standardization of normal distribution implies that

$$
\begin{aligned}
\operatorname{Pr}(X \geq 140) & =\operatorname{Pr}\left(\frac{X-100}{20} \geq \frac{140-100}{20}\right)=\operatorname{Pr}(Z \geq 2) \\
& =\operatorname{Pr}\left(\frac{Y-90}{10} \geq \frac{110-90}{10}\right)=\operatorname{Pr}(Y \geq 110) .
\end{aligned}
$$

- " k-sigma away from the mean" is equivalent for all normal distribution!

The three-sigma rule for detecting outliers

- Recall our classroom temperature example:
- $X \sim \mathrm{ND}(25,5)$ and $\operatorname{Pr}(X<15)+\operatorname{Pr}(X>35) \approx 5 \%$.
- For a normally distributed data set, the probability of being two-sigma away from the mean is 5%.
- For a normally distributed data set, the probability of being two-sigma above (below) the mean is 2.5%.
- Recall our three-sigma rule for detecting outliers.
- For any normal distribution, the probability of being three-sigma away from the mean is only 0.25%.
- That is why the distance of three σ s is suggested.

[^0]: ${ }^{1}$ Because $\operatorname{Pr}(X=2)=0$, we have $\operatorname{Pr}(X \leq 2)=\operatorname{Pr}(X<2)$. In other words, "less than" and "no greater than" are the same regarding probabilities.

