Statistics and Data Analysis

Probability

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ▶ Random variables.
- Expectation and variances.
- ▶ Continuous distributions.
- ▶ Normal distribution.

Random variables

- ▶ To describe a random event, we use random variables.
- ► A random variable (RV) is a variable whose outcomes are random.
- Examples:
 - The outcome of tossing a coin or rolling a dice.
 - ▶ The number of consumers entering a store at 7-8pm.
 - ▶ The temperature of a classroom at tomorrow noon.

Discrete and continuous random variables

- ► A random variable can be **discrete** or **continuous**.
- ▶ For a discrete random variable, its value is **counted**.
 - ▶ The outcome of tossing a coin.
 - The outcome of rolling a dice.
 - ▶ The number of consumers entering a store at 7-8pm.
- ► For a continuous random variable, its value is **measured**.
 - ▶ The temperature of this classroom at tomorrow noon.
 - ▶ The average studying hours of a group of 100 students.
- ▶ A discrete random variable has **gaps** among its possible values.
- ► A continuous random variable's possible values typically form an **interval**.

Discrete and continuous distributions

- How to describe a random variable?
 - ▶ Write down its **sample space**, which includes all the possible values.
 - ▶ For each possible value, write down the **likelihood** for it to occur.
- ► The two things together form a **probability distributions**, or simply distributions.
- ▶ Distributions may also be either discrete or continuous.
 - Let's start with discrete distributions.

Random variables $000000000000000000000000000000000000$	Expectation and variances 0000000000000	Continuous distributions 000000000	Normal distribution 00000000

Describing a discrete distribution

- ▶ For a discrete random variable, we may **list** all possible outcomes and their probabilities.
 - Let X be the result of tossing a fair coin:

x	Head	Tail
$\Pr(X = x)$	$\frac{1}{2}$	$\frac{1}{2}$

• Let X be the result of rolling a fair dice:

x	1	2	3	4	5	6
$\Pr(X = x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

- ▶ The function Pr(X = x), sometimes abbreviated as Pr(x), for all $x \in S$, where S is the sample space, is called the **probability function** of X.
 - We have $Pr(X = x) \in [0, 1]$ for all $x \in S$.
 - We have $\sum_{x \in S} \Pr(X = x) = 1$.

Example 1: coin tossing

- Let X_1 and X_2 be the result of tossing a fair coin for the first and second time, respectively.
- ▶ Let *Y* be the **number of heads** obtained by tossing a fair coin twice.
- What is the distribution of Y?
 - ▶ Possible values: 0, 1, and 2.
 - ▶ Probabilities: What are Pr(Y = 0), Pr(Y = 1), and Pr(Y = 2)?

► We have:

y	0	1	2
$\Pr(Y = y)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Random variables 0000000000	Expectation and variances 0000000000000	Continuous distributions 000000000	Normal distribution 00000000

Example 1: coin tossing

- ▶ What if the probability of getting a head is *p*?
- ▶ We have

$$\begin{aligned} \Pr(Y=2) &= \Pr((X_1, X_2) = (\text{Head}, \text{Head})) = p^2, \\ \Pr(Y=0) &= \Pr((X_1, X_2) = (\text{Tail}, \text{Tail})) = (1-p)^2, \text{ and} \\ \Pr(Y=1) &= \Pr((X_1, X_2) = (\text{H}, \text{T})) + \Pr((X_1, X_2) = (\text{T}, \text{H})) \\ &= p(1-p) + (1-p)p = 2p(1-p). \end{aligned}$$

► In summary:

$$\begin{array}{c|cccc} y & 0 & 1 & 2 \\ \hline \Pr(Y=y) & (1-p)^2 & 2p(1-p) & p^2 \end{array}$$

Example 2: inventory management

Suppose that you sells apples.

- ▶ The unit purchasing cost is \$2.
- ▶ The unit selling price is \$10.
- ▶ Question: How many apples to prepare at the beginning of each day?
 - ► Too many is not good: **Leftovers** are valueless.
 - ▶ Too few is not good: There are **lost sales**.
- ► According to your historical sales records, you predict that tomorrow's demand is X, whose distribution is summarized below:

x	0	1	2	3	4	5	6	7	8
$\Pr(x)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

Daily demand distribution

- The probability distribution is depicted.
- This is a right-tailed (skewed to the right; positively skewed) distribution.
- ► The distribution of Y in Example 1 is symmetric.

Daily demand distribution

Distributions of some events

x	0	1	2	3	4	5	6	7	8
$\Pr(x)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

- ▶ What is the minimum inventory level that can make the **probability** of having shortage lower than 20%?
 - ► This is the inventory level achieving a 80% service level.
 - If the inventory level is x, the service level is $Pr(X \le x)$.
 - ▶ As $F(x) = Pr(X \le x)$ is used often, it is given the name **cumulative** distribution function (cdf).
- The service level may be calculated for all x:

•
$$F(1) = \Pr(X \le 1) = \Pr(X = 0) + \Pr(X = 1) = 0.21.$$

•
$$F(3) = \Pr(X \le 3) = \Pr(X = 0) + \dots \Pr(X = 3) = 0.65.$$

• $F(4) = \Pr(X \le 4) = \Pr(X = 0) + \dots \Pr(X = 4) = 0.82.$

Road map

- Random variables.
- Expectation and variances.
- ▶ Continuous distributions.
- ▶ Normal distribution.

Expectation

- ► Consider a discrete random variable X with a sample space $S = \{x_1, x_2, ..., x_n\}$ and a probability function $Pr(\cdot)$.
- The **expected value** (or mean) of X is

$$\mu = \mathbb{E}[X] = \sum_{i \in S} x_i \operatorname{Pr}(x_i).$$

- Intuition: For all the possible values, use their probabilities to do a weighted average.
- ▶ For the random outcome, if I may guess only one number, I would guess the expected value to minimize the average error.

Random variables 0000000000	Expectation and variances $000000000000000000000000000000000000$	Continuous distributions 000000000	Normal distribution 00000000

Example 1: dice rolling

▶ Let X be the outcome of rolling a dice, then the probability function is $Pr(x) = \frac{1}{6}$ for all x = 1, 2, ..., 6. The expected value of X is

$$\mathbb{E}[X] = \sum_{i=1}^{6} x_i \Pr(x_i) = \frac{1}{6}(1+2+\dots+6) = 3.5.$$

• Let Y be the outcome of rolling an unfair dice:

y_i	1	2	3	4	5	6
$\Pr(y_i)$	0.2	0.2	0.2	0.15	0.15	0.1

• The expected value of Y is

$$\mathbb{E}[Y] = 1 \times 0.2 + 2 \times 0.2 + 3 \times 0.2 + 4 \times 0.15 + 5 \times 0.15 + 6 \times 0.1$$

= 3.15.

• Note that 3.15 < 3.5, the expected value of rolling a fair dice. Why?

Probability

Conditional probability and expectation

▶ I sell orange juice everyday. Let D be the daily demand.

- If it is sunny, I have Pr(D = 50|sunny) = Pr(D = 250|sunny) = 0.5.
- If it is rainy, I have Pr(D = 10 | rainy) = Pr(D = 50 | rainy) = 0.5.
- ▶ These are **conditional probabilities**.

▶ What is my expected daily demand given the weather condition?

- We have $\mathbb{E}[D|\text{sunny}] = 150$ and $\mathbb{E}[D|\text{rainy}] = 30$.
- ► These are **conditional expectations**.
- ▶ If with probability 70% it will be sunny tomorrow, what is my tomorrow expected demand?

$$\begin{split} \mathbb{E}[D] &= \Pr(\text{sunny}) \mathbb{E}[D|\text{sunny}] + \Pr(\text{rainy}) \mathbb{E}[D|\text{rainy}] \\ &= 0.7 \times 150 + 0.3 \times 30 = 114. \end{split}$$

► The two events are **dependent**, i.e., the realization of one event affects the distribution of the other. They are not **independent**.

Example 2: Inventory decisions

▶ Recall the inventory problem:

- ▶ The unit purchasing cost is \$2.
- The unit selling price is \$10.
- ▶ The daily random demand's distribution is

x	0	1	2	3	4	5	6	7	8
$\Pr(x)$	0.06	0.15	0.22	0.22	0.17	0.10	0.05	0.02	0.01

- ► How to find a **profit-maximizing** inventory level?
- ▶ For our example, at least we may try all the possible actions.
 - Suppose the stocking level is y, y = 0, 1, ..., 8, what is the **expected** profit $\pi(y)$?
 - ▶ Then we choose the stocking level with the highest expected profit.

Expected profit function

• If
$$y = 0$$
, obviously $\pi(0) = 0$.

• If y = 1:

- With probability 0.06, X = 0 and we lose 0 2 = -2 dollars.
- ▶ With probability 0.94, $X \ge 1$ and we earn 10 2 = 8 dollars.
- The expected profit is $(-2) \times 0.06 + 8 \times 0.94 = 7.4$ dollars, i.e., $\pi(1) = 7.4$.

Expected profit function

- $\blacktriangleright \text{ If } y = 2:$
 - With probability 0.06, X = 0 and we lose 0 4 = -4 dollars.
 - With probability 0.15, X = 1 and we earn 10 4 = 6 dollars.
 - ▶ With probability 0.79, $X \ge 2$ and we earn 20 4 = 16 dollars.
 - The expected profit is $(-4) \times 0.06 + 6 \times 0.15 + 16 \times 0.79 = 13.3$ dollars, i.e., $\pi(2) = 13.3$.
- By repeating this on y = 3, 4, ..., 8, we may fully derive the expected profit function π(y).

Optimizing the inventory decision

Expected profit function

- The optimal stocking level is 4.
- What if the unit production cost is not \$2?

Variances and standard deviations

- ► Consider a discrete random variable X with a sample space $S = \{x_1, x_2, ..., x_n\}$ and a probability function $Pr(\cdot)$.
- The expected value of X is $\mu = \mathbb{E}[X] = \sum_{i \in S} x_i \Pr(x_i)$.
- The **variance** of X is

$$\sigma^2 = \operatorname{Var}(X) \equiv \mathbb{E}\left[(X - \mu)^2 \right] = \sum_{i \in S} (x_i - \mu)^2 \operatorname{Pr}(x_i).$$

• The standard deviation of X is $\sigma = \sqrt{\sigma^2}$.

Example 1: dice rolling

- ▶ Let X be the outcome of rolling a dice, then the probability function is $Pr(x) = \frac{1}{6}$ for all x = 1, 2, ..., 6.
 - The expected value of X is $\mu = \mathbb{E}[X] = 3.5$.
 - The variance of X is

$$\operatorname{Var}(X) = \sum_{i \in S} (x_i - \mu)^2 \operatorname{Pr}(x_i)$$

= $\frac{1}{6} \left[(-2.5)^2 + (-1.5)^2 + \dots + 2.5^2 \right] \approx 2.92.$

• The standard deviation of X is $\sqrt{2.92} \approx 1.71$.

Random variables 0000000000	Expectation and variances $000000000000000000000000000000000000$	Continuous distributions 000000000	Normal distribution 00000000

Example 1: dice rolling

• Let X be the outcome of rolling an unfair dice:

x_i	1	2	3	4	5	6
$\Pr(x_i)$	0.2	0.2	0.2	0.15	0.15	0.1

- The expected value of X is $\mu = 3.15$.
- The variance of X is

$$Var(X) = \sum_{i \in S} (x_i - \mu)^2 \Pr(x_i)$$

= $(-2.15)^2 \times 0.2 + (-1.15)^2 \times 0.2 + (-0.15)^2 \times 0.2$
+ $0.85^2 \times 0.15 + 1.85^2 \times 0.15 + 2.85^2 \times 0.1$
 $\approx 2.6275.$

- Note that 2.6275 < 2.92, the variance of rolling a fair dice. Why?
- The standard deviation of X is $\sqrt{2.6275} \approx 1.62$.

Probability

Example 2: investment decisions

▶ Let Green, Red, and White be three hypothetical **investments** with the following probability distributions for their yearly **gross returns**.

Probability	1/6	1/6	1/6	1/6	1/6	1/6
Green	0.8	0.9	1.1	1.1	1.2	1.4
Red	0.06	0.2	1	3	3	3
White	0.95	1	1	1	1	1.1

• Which one do you prefer?

Example 2: investment decisions

► For each investment, we may find its **mean** (expected value) and **standard deviation**.

Probability	1/6	1/6	1/6	1/6	1/6	1/6	Mean	SD
Green Red White	0.8	0.9	1.1	1.1	1.2	1.4	1.083	0.195
Red	0.06	0.2	1	3	3	3	1.710	1.323
White	0.95	1	1	1	1	1.1	1.008	0.045

The mean measures the **expected return**. The standard deviation measures the **risk**.

- We prefer high expected return and low risk.
- We may compare their volatility-adjusted returns $\mu \frac{\sigma^2}{2}$:

Green > White > Red (1.064 > 1.007 > 0.835).

Road map

- Random variables.
- Expectation and variances.
- ► Continuous distributions.
- ▶ Normal distribution.

Continuous random variables

- Some random variables are **continuous**.
 - ▶ The value of a continuous random variable is **measured**, not counted.
 - ▶ E.g., the temperature of our classroom when the next lecture starts.
- ► For a continuous random variable, its possible values (sample space) typically form an **interval**.
 - ▶ Let X be the temperature (in Celsius) of our classroom when the next lecture starts. Then $X \in [0, 50]$.
- ▶ As another example, consider the number of courses taken by a student in this semester.
 - Let X_i be the number of courses taken by student i, i = 1, 2, ..., n.
 - Obviously, X_i is discrete.
 - However, their mean $\bar{x} = \frac{\sum_{i=1}^{n} X_i}{n}$ is (approximately) continuous!
 - Especially when n is large.
- We will often use a continuous random variable to approximate a discrete one.

Continuous probability distribution

- Let X be a number randomly drawn from [0, 6].
 - ▶ All values in [0,6] are equally likely to be observed.
- What is the probability of getting X = 2?
 - ▶ Because all the values (0, 1, 2.4, 3.657432, 4.44..., π , $\sqrt{2}$, etc.) may be an outcome, the probability of getting **exactly** X = 2 is **zero**.
 - ▶ In general, Pr(X = a) = 0 for all $a \in \mathbb{R}$ as long as X is continuous.
- ▶ What is the probability of getting **no greater than** 2, $Pr(X \le 2)$?¹

¹Because Pr(X = 2) = 0, we have $Pr(X \le 2) = Pr(X < 2)$. In other words,

"less than" and "no greater than" are the same regarding probabilities.

Probability

Continuous probability distribution

- Obviously, $\Pr(X \le 2) = \frac{1}{3}$.
- ▶ Similarly, we have:
 - ▶ $\Pr(X \le 3) = \frac{1}{2}.$
 - ▶ $\Pr(X \ge 4.5) = \frac{1}{4}$.
 - $\Pr(3 \le X \le 4) = \frac{1}{6}.$
- ▶ For a continuous random variable:
 - A **single value** has no probability.
 - An **interval** has a probability!

Probability

Uniform distribution

- The random variable X is very special:
 - ▶ All possible values are equally likely to occur.
- ► For a continuous random variable of this property, we say it follows a (continuous) **uniform distribution**.
 - When X is uniformly distributed in [a, b], we write $X \sim \text{Uni}(a, b)$.
 - The likelihood of any possible value is $\frac{1}{b-a}$ (why)?
 - ▶ If a discrete random variable possesses this property (e.g., rolling a fair dice), we say it follows a discrete uniform distribution.
- ▶ When do we use a uniform random variable?
 - ▶ When we want to draw one from a population fairly (i.e., randomly).
 - ▶ When we collect a random sample from a population.

Non-uniform distribution

- ▶ Sometimes a continuous random variable is not uniform.
 - Let X be the temperature of the classroom when the next lecture starts.
 - We can say that $X \in [0, 50]$.
 - ▶ X is more likely to occur in [20, 30] but less likely in [10, 20] and [30, 40]. It is almost impossible for X to be in [0, 10] and [40, 50].
 - The likelihood of X in different intervals can be different.
- ▶ How to describe a continuous random variable with a non-uniform distribution? How to describe a continuous distribution?

Probability density functions

- We use a **probability density function** (pdf) f(x) to describe the likelihood of each possible value. Larger f(x) means **higher** likelihood.
- For X, let its pdf be

▶ The higher the pdf, the more likely the outcome is there.

00000000 00000000 00000000 000000000000	00000000
00000000 00000000 00000000 000000000000	00000000

Cumulative distribution functions

- ► The concept of **cumulative distribution function** (cdf) still applies to continuous distributions.
- ▶ Given the pdf f(x), its cdf is $F(x) = \Pr(X \le x) = \int_{-\infty}^{x} f(v) dv$, which is the **area below the pdf** from $-\infty$ to x.

• The "sum" of the likelihood of all values between 0 to x is the probability.

▶
$$\Pr(X \le 30) = \int_0^{30} f(v) dv = 10 \times 0.005 + 10 \times 0.02 + 10 \times 0.05 = 0.75.$$

Pro	babi	lity

Cumulative distribution functions

• For any given region [a, b], we then have

 $\Pr(a \le X \le b) = \Pr(X \le b) - \Pr(X \le a) = F(b) - F(a).$

• E.g., $Pr(18 \le X \le 30) = F(30) - F(18) = 0.75 - 0.21 = 0.54.$

▶ In most cases, we let statistical software do the calculations. All we need to know is **what to calculate**.

Road map

- Random variables.
- Expectation and variances.
- ▶ Continuous distributions.
- ▶ Normal distribution.

Central tendency

- ▶ In practice, typically data do not spread uniformly.
- ▶ Values tend to be **close to the center**.
 - ▶ Natural variables: heights of people, weights of dogs, lengths of leaves, temperature of a city, etc.
 - ▶ Performance: number of cars crossing a bridge, sales made by salespeople, consumer demands, student grades, etc.
 - ▶ All kinds of errors: estimation errors for consumer demand, differences from a manufacturing standard, etc.
- ▶ We need a distribution with such a central tendency.

Random variables 0000000000	Expectation and variances 0000000000000	Continuous distributions 000000000	Normal distribution 0000000

Normal distribution

A random variable X following a normal distribution with mean μ and standard deviation σ if its pdf is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

for all $x \in (-\infty, \infty)$.

- If a random variable follows the normal distribution, most of its "normal values" will be close to the center.
- We write $X \sim \text{ND}(\mu, \sigma)$.
- It is **symmetric** and **bell-shaped**.

Random variables 0000000000 Expectation and variances

 $\begin{array}{c} {\rm Continuous\ distributions}\\ {\rm 0000000000} \end{array}$

Normal distribution 00000000

Altering normal distributions

- Increasing the expected value μ shifts the curve to the right.
- Increasing the standard deviation σ makes the curve flatter.

Probability

Random variables 0000000000	Expectation and variances 0000000000000	Continuous distributions 000000000	Normal distribution

Example 1: classroom temperature

- Let X be the room temperature when the next lecture starts.
- Suppose that $X \sim ND(25, 5)$.
- Suppose that the lecture must be canceled if X < 15 or X > 35.
- ▶ The probability for the lecture to be canceled is

$$Pr(X < 15 \text{ or } X > 35) = Pr(X < 15) + Pr(X > 35)$$
$$= 2 Pr(X < 15) \approx 5\%.$$

Standard normal distributions

- The standard normal distribution is a normal distribution with μ = 0 and σ = 1.
- All normal distributions can be transformed to the standard normal distribution.

Proposition 1

If $X \sim \text{ND}(\mu, \sigma)$, then $Z = \frac{X-\mu}{\sigma} \sim \text{ND}(0, 1)$.

• This transformation is called **standardization**.

Equivalence among normal distributions

- Consider a normal random variable $X \sim \text{ND}(\mu, \sigma)$.
- For a value x, we define its z-score as $z = \frac{x-\mu}{\sigma}$.
 - ▶ It measures how far this value is from the mean, using the standard deviation as the unit of measurement.
 - E.g., if z = 2, the value is 2 standard deviations above the mean.
 - We say that x is **two-sigma above the mean**.
- Suppose that $X \sim ND(100, 20)$ and $Y \sim ND(90, 10)$.
 - For a value x to be two-sigma above the mean of X, x = 140.
 - For a value y to be two-sigma above the mean of Y, y = 110.
 - The standardization of normal distribution implies that

$$\begin{aligned} \Pr(X \ge 140) &= \Pr(\frac{X - 100}{20} \ge \frac{140 - 100}{20}) = \Pr(Z \ge 2) \\ &= \Pr(\frac{Y - 90}{10} \ge \frac{110 - 90}{10}) = \Pr(Y \ge 110). \end{aligned}$$

▶ "k-sigma away from the mean" is equivalent for all normal distribution!

Probability

The three-sigma rule for detecting outliers

- ▶ Recall our classroom temperature example:
 - $X \sim \text{ND}(25,5)$ and $\Pr(X < 15) + \Pr(X > 35) \approx 5\%$.
 - ▶ For a normally distributed data set, the probability of being two-sigma away from the mean is 5%.
 - ▶ For a normally distributed data set, the probability of being two-sigma above (below) the mean is 2.5%.
- ▶ Recall our three-sigma rule for **detecting outliers**.
 - ▶ For any normal distribution, the probability of being three-sigma away from the mean is only 0.25%.
 - That is why the distance of three σ s is suggested.