Statistics I, Fall 2012
 Suggested Solution for Homework 03

Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) The ogive is depicted in Figure 1.

Figure 1: The ogive for Problem 1a.
(b) Table 1 summarizes the calculations, where

$$
\bar{x}=\frac{25 \times 8+35 \times 26+\cdots+95 \times 2}{200}=55.35
$$

and

$$
s^{2}=\frac{(25-55.35)^{2} \times 8+(35-55.35)^{2} \times 26+\cdots+(95-55.35)^{2} \times 2}{200-1} \approx 219.47
$$

Class (in $\$ 1000$)	Frequency	Class midpoint M_{i} (in $\$ 1000$)	$\left(M_{i}-\bar{x}\right)^{2}$ (in 1000000 square dollars)
$[20,30)$	8	25	921.1225
$[30,40)$	26	35	414.1225
$[40,50)$	31	45	107.1225
$[50,60)$	67	55	0.1225
$[60,70)$	32	65	93.1225
$[70,80)$	28	75	386.1225
$[80,90)$	6	85	879.1225
$[90,100)$	2	95	1572.1225
Weighted average	$\bar{x}=55.35$	$s^{2} \approx 219.47$	

Table 1: Calculations for Problem 1b.
(c) The mode is the 55 (in $\$ 1000$), the class midpoint of the class with the highest frequency. The standard deviation is $\sqrt{219.47} \approx 14.82$ (in $\$ 1000$).
(d) For the median, first note that the class $[50,60)$ contains the $\frac{200}{2}=100$ th term and is the median class. Within the median class, the 100 th term is the 35 th, as $100-(8+26+31+67)=$ 35. Then we do an interpolation

$$
50+\frac{35}{67}(60-50) \approx 55.22
$$

Therefore, the median is 55.22 (in $\$ 1000$).
(e) As we may observe, the mode is smaller than the median, which is smaller than the mean. This suggests that the data are skewed to the right.
2. (a) Table 2 lists the ranges $[\bar{x}-k s, \bar{x}+k s], k=1,2,3$, number of values in each range, proportion of values in each range, and the estimates based on the empirical rule.

k	Range from the empirical rule	Number of values in the range	Proportion of values in the range	Estimates from the empirical rule
1	$[7020.62,24187.70]$	133	0.665	0.68
2	$[-1562.92,32771.24]$	193	0.965	0.95
3	$[-10146.46,41354.78]$	200	1	1.00

Table 2: Comparisons for Problem 2a.
(b) By comparing the last two columns, we may conclude that the empirical rule provides a good approximation for this set of data. The reason is that the data is approximately bell-shaped, as illustrated in Figure 2.

Figure 2: The histogram for Problem 2b.
3. Table 3 summarizes the calculations for the covariance, where

$$
\sigma_{x y}=\frac{-0.99+6.21+\cdots+19.61}{10}=3.99
$$

i	x_{i}	y_{i}	$x_{i}-\mu_{x}$	$y_{i}-\mu_{y}$	$\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)$
1	7	5	0.3	-3.3	-0.99
2	4	6	-2.7	-2.3	6.21
3	2	9	-4.7	0.7	-3.29
4	12	6	5.3	-2.3	-12.19
5	10	15	3.3	6.7	22.11
6	7	6	0.3	-2.3	-0.69
7	8	9	1.3	0.7	0.91
8	8	15	1.3	6.7	8.71
9	6	9	-0.7	0.7	-0.49
10	3	3	-3.7	-5.3	19.61
Average	$\mu_{x}=6.7$	$\mu_{y}=8.3$	-	-	$\sigma_{x y}=3.99$

Table 3: Calculations for Problem 3.
4. The first step of writing a proof is always to define the notations clearly. Let the two-dimensional data be $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1, \ldots, N}$ with means $\mu_{x}=\frac{\sum_{i=1}^{N} x_{i}}{N}$ and $\mu_{y}=\frac{\sum_{i=1}^{N} y_{i}}{N}$, variances $\sigma_{x}^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2}}{N}$ and $\sigma_{y}^{2}=\frac{\sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2}}{N}$, covariance $\sigma_{x y}$ and correlation coefficient ρ.

According to the Cauchy-Schwarz inequality, we have

$$
\left|\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)\right|^{2} \leq \sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2} \sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2} .
$$

Note that both sides are nonnegative, so it is safe to take the square root for both sides. By doing so and then dividing both side by N, we have

$$
\left|\sigma_{x y}\right| \equiv\left|\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N}\right| \leq \sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)^{2}}{N}} \sqrt{\frac{\sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2}}{N}} \equiv \sigma_{x} \sigma_{y} .
$$

Suppose the right-and-side (RHS) is zero, then $x_{1}=x_{2}=\cdots=x_{N}$ and $y_{1}=y_{2}=\cdots y_{N}$, which implies that $\rho=0$. Suppose the RHS is positive, we may take it to the left-hand-side and yield

$$
\frac{\left|\sigma_{x y}\right|}{\sigma_{x} \sigma_{y}} \leq 1 \quad \Leftrightarrow \quad\left|\frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}\right| \leq 1 \quad \Leftrightarrow \quad|\rho|=1
$$

This then implies that $-1 \leq \rho \leq 1$. Note that the first \Leftrightarrow holds because $\sigma_{x} \sigma_{y}>0$.
5. (a) The mean for $y_{i} \mathrm{~S}$ is

$$
\mu_{y} \equiv \frac{\sum_{i=1}^{N} y_{i}}{N}=\frac{\sum_{i=1}^{N}\left(a+b x_{i}\right)}{N}=\frac{N a+b \sum_{i=1}^{N} x_{i}}{N}=a+b\left(\frac{\sum_{i=1}^{N} x_{i}}{N}\right)=a+b \mu_{x}
$$

(b) The variance for $y_{i} \mathrm{~s}$ is

$$
\sigma_{y}^{2} \equiv \frac{\sum_{i=1}^{N}\left(y_{i}-\mu_{y}\right)^{2}}{N}=\frac{\sum_{i=1}^{N}\left[a+b x_{i}-\left(a+b \mu_{x}\right)\right]^{2}}{N}=\frac{\sum_{i=1}^{N} b^{2}\left(x_{i}-\mu_{x}\right)^{2}}{N}=b^{2} \sigma_{x}^{2}
$$

(c) The proof is wrong. First of all, if $b=0$, it is straightforward to show that $\sigma_{x y}=0$. Then $\rho=\frac{0}{0}$, which is undefined mathematically (in practice we say $\rho=0$ in this case, but anyway it is not 1). Now assume that $b \neq 0$. In the last step

$$
\rho \equiv \frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{b \sigma_{x}^{2}}{\sigma_{x}\left(b \sigma_{x}\right)}=1
$$

$\sigma_{y}^{2}=b^{2} \sigma_{x}^{2}$ does not imply $\sigma_{y}=b \sigma_{x}$! In general, $\sqrt{x^{2}}$ is not always x. In fact, we have $\sqrt{x^{2}}=-x$ if $x<0$. What is generally true is $\sqrt{x^{2}}=|x|$. Therefore, to fix the proof, we should replace the last step by

$$
\rho \equiv \frac{\sigma_{x y}}{\sigma_{x} \sigma_{y}}=\frac{b \sigma_{x}^{2}}{\sigma_{x}\left|b \sigma_{x}\right|}=\left(\frac{b}{|b|}\right)\left(\frac{\sigma_{x}^{2}}{\sigma_{x} \sigma_{x}}\right)=\frac{b}{|b|}=\left\{\begin{array}{ll}
1 & \text { if } b>0 \\
-1 & \text { if } b<0
\end{array} .\right.
$$

In conclusion, when $y_{i}=a+b x_{i}$ for all $i, \rho=1$ if $b>0, \rho=-1$ if $b<0$, and we define $\rho=0$ if $b=0$. Unless $b=0$, there is the strongest correlation between $x_{i} \mathrm{~s}$ and $y_{i} \mathrm{~s}$. Do you think that makes sense? Why or why not?
6. (a) $A \cup C=\{1,2,3,4,5,6,7,8,9\}$.
(b) $A \cap B=\{7,9\}$.
(c) $A \cap B \cap C=\emptyset$.
(d) $(A \cup B) \cap C=\{1,2,3,4,5,7,8,9\} \cap C=\{1,2,3,4\}$.
(e) $(B \cap C) \cup(A \cap B)=\{2,4\} \cup\{7,9\}=\{2,4,7,9\}$.
7. We shall first construct the joint probability table, as shown in Table 4.
(a) $\operatorname{Pr}(A)=0.392$.
(b) $\operatorname{Pr}(A \cap F)=0.089$.

	D	E	F	G	Total
A	0.038	0.114	0.089	0.152	0.392
B	0.101	0.051	0.101	0.051	0.304
C	0.114	0.063	0.038	0.089	0.304
Total	0.253	0.228	0.228	0.291	1.000

Table 4: The joint probability table for Problem 7.

	Freshman	Sophomore	Junior	Senior	Total
Female	0.05	0.075	0.06	0.09	0.275
Male	0.2	0.175	0.19	0.16	0.725
Total	0.25	0.25	0.25	0.25	1

Table 5: The joint probability table for Problem 8a.
(c) $\operatorname{Pr}(A \mid F)=\frac{0.089}{0.228} \approx 0.389$.
(d) $\operatorname{Pr}(B \cup E)=0.304+0.228-0.051=0.481$.
(e) $\operatorname{Pr}(D \cup G \mid C)=\frac{0.114+0.089}{0.304} \approx 0.667$.
(f) They are not independent because, e.g., $\operatorname{Pr}(A) \operatorname{Pr}(D) \approx 0.099$, which is not $\operatorname{Pr}(A \cap D) \approx 0.038$.
8. (a) The joint probability table is shown in Table 5.
(b) The proportion of girls with respect to the whole department is 0.275 .
(c) The proportion of girls with respect to the sophomore class is $\frac{0.075}{0.25}=0.3$.
(d) For (b), it is a marginal probability. For (c), it is a conditional probability.
(e) The two variables are not independent. This is because knowing that one is a sophomore gives us additional information regarding the probability that she is a girl.
9. (a) This probability is the product of 78% (the proportion of people living in urban areas) and 13% (among them, the proportion of people taking care of ill relatives), i.e., $0.78 \times 0.13=0.1014$.
(b) The joint probability table is shown in Table 6.

	Taking care	Not taking care	Total
Urban	0.1014	0.6786	0.78
Nonurban	0.0786	0.1414	0.22
Total	0.18	0.82	1

Table 6: The joint probability table for Problem 9b.
(c) The conditional probability is $\frac{0.0786}{0.18} \approx 0.437$.

