Statistics I, Fall 2012 Suggested Solution for Homework 03

Ling-Chieh Kung Department of Information Management National Taiwan University

1. (a) The ogive is depicted in Figure 1.

Figure 1: The ogive for Problem 1a.

(b) Table 1 summarizes the calculations, where

$$\bar{x} = \frac{25 \times 8 + 35 \times 26 + \dots + 95 \times 2}{200} = 55.35$$

and

$$s^{2} = \frac{(25 - 55.35)^{2} \times 8 + (35 - 55.35)^{2} \times 26 + \dots + (95 - 55.35)^{2} \times 2}{200 - 1} \approx 219.47$$

Class (in \$1000)	Frequency	Class midpoint M_i (in \$1000)	$(M_i - \bar{x})^2$ (in 1000000 square dollars)
[20, 30)	8	25	921.1225
[30, 40)	26	35	414.1225
[40, 50)	31	45	107.1225
[50, 60)	67	55	0.1225
[60, 70)	32	65	93.1225
[70, 80)	28	75	386.1225
[80, 90)	6	85	879.1225
[90, 100)	2	95	1572.1225
Weighted	d average	$\bar{x} = 55.35$	$s^2 \approx 219.47$

Table 1: Calculations for Problem 1b.

- (c) The mode is the 55 (in \$1000), the class midpoint of the class with the highest frequency. The standard deviation is $\sqrt{219.47} \approx 14.82$ (in \$1000).
- (d) For the median, first note that the class [50, 60) contains the $\frac{200}{2} = 100$ th term and is the median class. Within the median class, the 100th term is the 35th, as 100 (8 + 26 + 31 + 67) = 35. Then we do an interpolation

$$50 + \frac{35}{67}(60 - 50) \approx 55.22.$$

Therefore, the median is 55.22 (in \$1000).

- (e) As we may observe, the mode is smaller than the median, which is smaller than the mean. This suggests that the data are skewed to the right.
- 2. (a) Table 2 lists the ranges $[\bar{x} ks, \bar{x} + ks], k = 1, 2, 3$, number of values in each range, proportion of values in each range, and the estimates based on the empirical rule.

k	Range from the empirical rule	Number of values in the range	Proportion of values in the range	Estimates from the empirical rule
1	[7020.62, 24187.70]	133	0.665	0.68
2	[-1562.92, 32771.24]	193	0.965	0.95
3	[-10146.46, 41354.78]	200	1	1.00

(b) By comparing the last two columns, we may conclude that the empirical rule provides a good approximation for this set of data. The reason is that the data is approximately bell-shaped, as illustrated in Figure 2.

Figure 2: The histogram for Problem 2b.

3. Table 3 summarizes the calculations for the covariance, where

3

 $\mu_x = 6.7$

10

Average

	σ_{x_2}	$y = \frac{-0.99}{-0.99}$	$\frac{+6.21+\cdots}{10}$	· + 19.61	= 3.99.
i	x_i	y_i	$x_i - \mu_x$	$y_i - \mu_y$	$(x_i - \mu_x)(y_i - \mu_y)$
1	7	5	0.3	-3.3	-0.99
2	4	6	-2.7	-2.3	6.21
3	2	9	-4.7	0.7	-3.29
4	12	6	5.3	-2.3	-12.19
5	10	15	3.3	6.7	22.11
6	7	6	0.3	-2.3	-0.69
7	8	9	1.3	0.7	0.91
8	8	15	1.3	6.7	8.71
9	6	9	-0.7	0.7	-0.49

Table 3: Calculations for Problem 3.

-3.7

-5.3

19.61

 $\sigma_{xy} = 3.99$

3

 $\mu_y = 8.3$

4. The first step of writing a proof is always to define the notations clearly. Let the two-dimensional data be $\{(x_i, y_i)\}_{i=1,...,N}$ with means $\mu_x = \frac{\sum_{i=1}^N x_i}{N}$ and $\mu_y = \frac{\sum_{i=1}^N y_i}{N}$, variances $\sigma_x^2 = \frac{\sum_{i=1}^N (x_i - \mu_x)^2}{N}$ and $\sigma_y^2 = \frac{\sum_{i=1}^N (y_i - \mu_y)^2}{N}$, covariance σ_{xy} and correlation coefficient ρ .

According to the Cauchy-Schwarz inequality, we have

$$\left|\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)\right|^2 \le \sum_{i=1}^{N} (x_i - \mu_x)^2 \sum_{i=1}^{N} (y_i - \mu_y)^2.$$

Note that both sides are nonnegative, so it is safe to take the square root for both sides. By doing so and then dividing both side by N, we have

$$|\sigma_{xy}| \equiv \left|\frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N}\right| \le \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu_x)^2}{N}} \sqrt{\frac{\sum_{i=1}^{N} (y_i - \mu_y)^2}{N}} \equiv \sigma_x \sigma_y.$$

Suppose the right-and-side (RHS) is zero, then $x_1 = x_2 = \cdots = x_N$ and $y_1 = y_2 = \cdots y_N$, which implies that $\rho = 0$. Suppose the RHS is positive, we may take it to the left-hand-side and yield

$$\frac{|\sigma_{xy}|}{\sigma_x \sigma_y} \le 1 \quad \Leftrightarrow \quad \left|\frac{\sigma_{xy}}{\sigma_x \sigma_y}\right| \le 1 \quad \Leftrightarrow \quad |\rho| = 1.$$

This then implies that $-1 \le \rho \le 1$. Note that the first \Leftrightarrow holds because $\sigma_x \sigma_y > 0$.

5. (a) The mean for y_i s is

$$\mu_y \equiv \frac{\sum_{i=1}^N y_i}{N} = \frac{\sum_{i=1}^N (a+bx_i)}{N} = \frac{Na+b\sum_{i=1}^N x_i}{N} = a+b\left(\frac{\sum_{i=1}^N x_i}{N}\right) = a+b\mu_x$$

(b) The variance for y_i s is

$$\sigma_y^2 \equiv \frac{\sum_{i=1}^N (y_i - \mu_y)^2}{N} = \frac{\sum_{i=1}^N [a + bx_i - (a + b\mu_x)]^2}{N} = \frac{\sum_{i=1}^N b^2 (x_i - \mu_x)^2}{N} = b^2 \sigma_x^2.$$

(c) The proof is wrong. First of all, if b = 0, it is straightforward to show that $\sigma_{xy} = 0$. Then $\rho = \frac{0}{0}$, which is undefined mathematically (in practice we say $\rho = 0$ in this case, but anyway it is not 1). Now assume that $b \neq 0$. In the last step

$$\rho \equiv \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{b\sigma_x^2}{\sigma_x (b\sigma_x)} = 1,$$

 $\sigma_y^2 = b^2 \sigma_x^2$ does not imply $\sigma_y = b \sigma_x$! In general, $\sqrt{x^2}$ is not always x. In fact, we have $\sqrt{x^2} = -x$ if x < 0. What is generally true is $\sqrt{x^2} = |x|$. Therefore, to fix the proof, we should replace the last step by

$$\rho \equiv \frac{\sigma_{xy}}{\sigma_x \sigma_y} = \frac{b\sigma_x^2}{\sigma_x |b\sigma_x|} = \left(\frac{b}{|b|}\right) \left(\frac{\sigma_x^2}{\sigma_x \sigma_x}\right) = \frac{b}{|b|} = \begin{cases} 1 & \text{if } b > 0\\ -1 & \text{if } b < 0 \end{cases}$$

In conclusion, when $y_i = a + bx_i$ for all $i, \rho = 1$ if $b > 0, \rho = -1$ if b < 0, and we define $\rho = 0$ if b = 0. Unless b = 0, there is the strongest correlation between x_i s and y_i s. Do you think that makes sense? Why or why not?

- 6. (a) $A \cup C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
 - (b) $A \cap B = \{7, 9\}.$
 - (c) $A \cap B \cap C = \emptyset$.
 - (d) $(A \cup B) \cap C = \{1, 2, 3, 4, 5, 7, 8, 9\} \cap C = \{1, 2, 3, 4\}.$
 - (e) $(B \cap C) \cup (A \cap B) = \{2, 4\} \cup \{7, 9\} = \{2, 4, 7, 9\}.$
- 7. We shall first construct the joint probability table, as shown in Table 4.
 - (a) $\Pr(A) = 0.392$.
 - (b) $\Pr(A \cap F) = 0.089$.

	D	E	F	G	Total
A	0.038	0.114	0.089	0.152	0.392
B	0.101	0.051	0.101	0.051	0.304
C	0.114	0.063	0.038	0.089	0.304
Total	0.253	0.228	0.228	0.291	1.000

Table 4: The joint probability table for Problem 7.

	Freshman	Sophomore	Junior	Senior	Total
Female Male	$\begin{array}{c} 0.05 \\ 0.2 \end{array}$	$\begin{array}{c} 0.075\\ 0.175\end{array}$	$\begin{array}{c} 0.06 \\ 0.19 \end{array}$	$\begin{array}{c} 0.09 \\ 0.16 \end{array}$	$0.275 \\ 0.725$
Total	0.25	0.25	0.25	0.25	1

Table 5: The joint probability table for Problem 8a.

(c) $\Pr(A|F) = \frac{0.089}{0.228} \approx 0.389.$

- (d) $\Pr(B \cup E) = 0.304 + 0.228 0.051 = 0.481.$
- (e) $\Pr(D \cup G|C) = \frac{0.114 + 0.089}{0.304} \approx 0.667.$
- (f) They are not independent because, e.g., $\Pr(A) \Pr(D) \approx 0.099$, which is not $\Pr(A \cap D) \approx 0.038$.
- 8. (a) The joint probability table is shown in Table 5.
 - (b) The proportion of girls with respect to the whole department is 0.275.
 - (c) The proportion of girls with respect to the sophomore class is $\frac{0.075}{0.25} = 0.3$.
 - (d) For (b), it is a marginal probability. For (c), it is a conditional probability.
 - (e) The two variables are not independent. This is because knowing that one is a sophomore gives us additional information regarding the probability that she is a girl.
- 9. (a) This probability is the product of 78% (the proportion of people living in urban areas) and 13% (among them, the proportion of people taking care of ill relatives), i.e., $0.78 \times 0.13 = 0.1014$.
 - (b) The joint probability table is shown in Table 6.

	Taking care	Not taking care	Total
Urban	0.1014	0.6786 0.1414	0.78 0.22
Nonurban	0.0786	0.1414	0.22
Total	0.18	0.82	1

Table 6: The joint probability table for Problem 9b.

(c) The conditional probability is $\frac{0.0786}{0.18} \approx 0.437$.