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1. (a) First, we need to calculate µX and µY . Straightforward calculations lead to µX = 2.3 and
µY = 2.9. Then for each pair of (x, y), we may calculate (x − µX)(y − µy. For example, for
(x, y) = (2, 1), (2− 2.3)(1− 2.9) = 0.57. This quantity should then be weighted based on its
probability, Pr(X = 2, Y = 1) = 0.4. This is the first entry (in the intersection of column
“1” and row “2”) of Table 1. We may repeat the process for all the six pairs and then sum
all the six values up to obtain the covariance Cov(XY ) = 0.33. As we may find the standard
deviations σX = 0.21 and σY = 3.09, the correlation coefficient is 0.33

0.21×3.09 ≈ 0.509. We may
say that these two random variables have a moderately strong correlation.

x
y

Total
1 4 5

2 0.228 −0.066 −0.063 0.099
3 −0.0665 0.077 0.2205 0.231

Total 0.1615 0.011 0.1575 0.330

Table 1: Calculations for Problem 1a.

w
z

Total
1 4 5

2 0.20 −0.02 −0.18 0.00
3 −0.15 0.06 0.09 0.00

Total 0.05 0.04 −0.09 0.00

Table 2: Calculations for Problem 1c.

(b) X and Y are not independent because Pr(X = x, Y = y) 6= Pr(X = x) Pr(Y = y) for all
possible x and y. For example, Pr(X = 2, Y = 1) = 0.4, but Pr(X = 2) Pr(Y = 1) =
0.7× 0.45 = 0.315.

(c) We may follow the same procedure used in Part (a) to solve this problem. The means are
µW = 2.4 and µZ = 3.5. The relevant numbers are recorded in Table 2. Both the covariance
and the correlation coefficient are zero. The two random variables have no correlation.

(d) W and Z are not independent because Pr(W = w,Z = z) 6= Pr(W = w) Pr(Z = z) for
all possible w and z. For example, Pr(W = 2, Z = 1) = 0.2, but Pr(X = 2) Pr(Y = 1) =
0.6× 0.3 = 0.18.

Note. A zero correlation just means “no correlation”, which means “no linear relationship”.
It does not imply independence! In general, independence implies zero correlation but the
opposite is not true (as shown in Part (c)).

2. (a) Imagine that there are N ball while A are white and N − A are black and the experiment is
to draw n balls randomly. When n = N , all the balls will be drawn and the number of white
balls must be A. In other words, there is no uncertainty in this experiment. The variance is
thus zero.

(b) When n = 1, there is no difference between sampling with and without replacement because
we do not do the second trial. Therefore, their variances are the same.

3. Let X be a hypergeometric random variable with population size N , number of “1”s A, and the
sample size n. Let p = A

N . In this problem, we will derive the mean and variance of X.

(a) We have

Pr(X2 = 1) = Pr(X2 = 1|X1 = 1) Pr(X1 = 1) + Pr(X2 = 1|X1 = 0) Pr(X1 = 0)

=

(
A− 1

N − 1

)(
A

N

)
+

(
A

N − 1

)(
N −A
N

)
=
A

N
= p.

1



(b) Note that each trial is a Bernoulli trial with parameter p (they are identical trials but they are
not independent). Therefore, following those results for the Bernoulli distribution, we have
E[Xi] = p and Var(Xi) = p(1− p).

(c) Because the expectation of a linear function is separable, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

p = np.

Note that the first equality holds no matter Xis are independent or not.

(d) By definition, we have

Cov(X + Y ) = E
[[

(X + Y )− (µX + µY )
]2]

= E
[[

(X − µX) + (Y − µY )
]2]

= E
[
(X − µX)2 + (Y − µY )2 + 2(X − µX)(Y − µY )

]
= E

[
(X − µX)2

]
+ E

[
(Y − µY )2

]
+ 2E

[
(X − µX)(Y − µY )

]
= X + Y + 2Cov(X,Y ).

(e) Using the general formula described in Part (d) and the fact that Cov(Xi, Xj) = Cov(X1, X2)
for all i 6= j, we have

Var(X) = Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2

n∑
i=1

n∑
j=i+1

Cov(Xi, Xj)

= np(1− p) + n(n− 1)Cov(X1, X2).

(f) Recall that
Var(X) = np(1− p) + n(n− 1)Cov(X1, X2) (1)

as we derived above and this must be true for the special case n = N . By plugging n = N into

(1), we have 0 = Np(1− p) +N(N − 1)Cov(X1, X2), which implies Cov(X1, X2) = −p(1−p)
N−1 .

We may now do a substitution in (1) and get

Var(X) = np(1− p) + n(n− 1)Cov(X1, X2) = np(1− p)− n(n− 1)
p(1− p)
N − 1

= np(1− p)
(

1− n− 1

N − 1

)
= np(1− p)

(
N − n
N − 1

)
.

4. Because X ∼ Uni(a, b), the pdf is

f(x) =

{
1

b−a if x ∈ [a, b]

0 otherwise
.

(a) The mean is

E[X] =

∫ b

a

x

(
1

b− a

)
dx =

1

b− a

(
1

2
x2
)∣∣∣∣b

a

=
b2 − a2

2(b− a)
=
a+ b

2
.

(b) The variance is

Var(X) =

∫ b

a

(
x− a+ b

2

)2(
1

b− a

)
dx

=
1

b− a

∫ b

a

[
x2 − (a+ b)x+

(
a+ b

4

)2]
dx

=
1

b− a

(
1

3
x3 − a+ b

2
x2 +

a+ b

4
x

)∣∣∣∣b
a

=
1

b− a

[
1

3

(
b3 − a3

)
− a+ b

2

(
b2 − a2

)
+

(
a+ b

4

)
(b− a)

]
=

1

3

(
a2 + ab+ b2

)
− 1

2

(
a2 + 2ab+ b2

)
+

1

4
(a+ b) =

(b− a)2

12
.
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5. (a) Because ke2 is a pdf over [1, 2], it must satisfy∫ 2

1

ke2xdx = k

∫ 2

1

e2xdx =
k

2
e2x
∣∣∣∣2
1

=
k

2

(
e4 − e2

)
= 1,

which means k =
2

e4 − e2
.

(b) The mean is

E[X] =

∫ 2

1

xke2xdx = k

∫ 2

1

xe2xdx = k

[
1

2
xe2x

∣∣∣2
1
−
∫ 2

1

1

2
e2xdx

]
=
k

2

[
2e4 − e2 − e4 − e2

2

]
=
k

2

(
3

2
e4 − 1

2
e2
)

=
k

4

(
3e4 − e2

)
,

where in the third equality we apply integration by parts. Now, because k =
2

e4 − e2
, we have

E[X] =
3e4 − e2

2
(
e4 − e2

) =
3e2 − 1

2
(
e2 − 1

) .
6. (a) Because f(x) is a pdf over [0, 4], it must satisfy∫ 1

0

f(x)dx = k

(∫ 1

0

x

4
dx+

∫ 4

1

4− x
12

dx

)
= k

(
1

8
x2
∣∣∣∣1
0

+
1

12

(
4x− 1

2
x2
)∣∣∣∣4

1

)

= k

(
1

8
+

12− 15
2

12

)
=
k

2
= 1,

which means k = 2.

(b) The mean is∫ 1

0

xf(x)dx =

∫ 1

0

x2

2
dx+

∫ 4

1

4x− x2

6
dx =

1

6
x3
∣∣∣∣1
0

+
1

6

(
2x2 − 1

3
x3
)∣∣∣∣4

1

=
1

6
+

30− 21

6
=

5

3
.

(c) First, consider the case that x ≤ 1. In this case,∫ x

0

f(y)dy =

∫ x

0

y

2
dy =

x2

4
.

If x > 1, we need to again split the integration into two parts:∫ x

0

f(y)dy =

∫ 1

0

y

2
dy +

∫ x

1

4− y
6

dy =
1

4
+

1

6

(
4y − 1

2
y2
)∣∣∣∣x

1

=
1

4
+

1

6

(
4x− 4− 1

2
x2 +

1

2

)
= − 1

12
x2 +

2

3
x− 1

3
.

Combining the above two cases, the cdf is

F (x) =

{
x2

4 if x ∈ [0, 1]

− 1
12x

2 + 2
3x−

1
3 if x ∈ [1, 4]

.

7. (a) Pr(X ≤ 3) =
∑3

x=0

(
20
x

)
(0.1)x(0.9)20−x ≈ 0.867.
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(b) The Poisson random variable that approximates X should have its rate λ = np = 2. Let

Y ∼ Poi(2), we have Pr(Y ≤ 3) =
∑3

y=0
2ye−2

y! ≈ 0.857. The approximation is moderately
good. To understand this, note that n ≥ 20 and np ≤ 7 satisfies the empirical rule adopted
in the textbook. Nevertheless, as n is not large enough, the approximation is not very good.

8. (a) Let X be the number of typing errors made by the typist on a page, then X ∼ Poi(2). The
probability of not getting her salary, i.e., having more than four errors on one page, is

Pr(X > 4) = 1− Pr(X ≤ 4) = 1−
4∑

x=0

2xe−2

x!
≈ 0.053.

(b) Let Y be the number of typing errors made by the typist on twenty pages, then Y ∼ Poi(40).
The probability of getting the bonus, i.e., making no more than 20 errors on 20 pages, is

Pr(Y ≤ 20) =

20∑
y=0

40ye−40

y!
≈ 0.000368.

Therefore, it is quite unlikely that she can get the bonus.

9. (a) Let a be the lower bound and b be the upper bound, we know a+b
2 = 13 and (b−a)2

12 = 3.
Solving the two equations yield a = 10 and b = 16.

(b) Let X be the daily demand in kiloliters, then X ∼ Uni(10, 16). We then have Pr(X > 15) =
1 − Pr(X ≤ 15) = 1 − 15−10

16−10 ≈ 0.167. The probability of running out of gasoline is around
16.7%.

(c) Let h be the desired quantity, then h satisfies

Pr(X ≤ h) = 0.99 ⇔ h− 10

6
= 0.99,

which implies that h = 15.94. The station should prepare 15.94 kiloliters of gasoline to achieve
a service level of 99%.
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