Statistics I, Fall 2012 Homework 09

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

1. (10 points) Let $\{X_i\}_{i=1,\dots,n}$ be a random sample where $X_i \sim \text{ND}(\mu, \sigma)$ and X_i and X_j are independent for all $i \neq j$. Prove that

$$\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\sigma^2} \sim \operatorname{Chi}(n).$$

Hint. Use (1) the lemma for the square of a standard normal random variable proved in the lecture and (2) the fact that the moment generating function of a sum of independent random variables is the product of the moment generating functions of these random variables.

2. (10 points) Recall that in the proof of 1

$$\frac{(n-1)S^2}{\sigma^2} \sim \operatorname{Chi}(n-1) \quad \text{if } X_i \sim \operatorname{ND}(\mu, \sigma) \text{ and } X_i \perp X_j \forall i \neq j$$

we have constructed a matrix A and a column vector Y = AZ, where A is an orthogonal matrix and $Z = \begin{bmatrix} Z_1 & Z_2 & \cdots & Z_n \end{bmatrix}^T$. In the lecture we have proved that $Y_2 \sim \text{ND}(0, 1)$ and $Y_3 \sim \text{ND}(0, 1)$. Replicate the proof and prove that $Y_n \sim \text{ND}(0, 1)$.

3. (10 points) Prove that

$$\sum_{i=1}^{n} Z_{i}^{2} - n\overline{Z}^{2} = \sum_{i=1}^{n} (Z_{i} - \overline{Z})^{2},$$

where Z_i s are random variables and \overline{Z} is the mean of Z_i s.

Hint. Go from the right-hand side may be easier.

4. (10 points) When we proved the central limit theorem in the lecture, we used a fact on the convergence of distribution. The fact is stated below. Let $\{X_n\}_{n=1,2,...}$ be a sequence of random variables and X be another random variable. Let $m_n(t)$ and m(t) be the moment generating functions of X_n and X, respectively. Let $F_n(x)$ and F(x) be the cumulative distribution functions of X_n and X, respectively. Then the fact is

$$\lim_{n \to \infty} m_n(t) = m(t) \quad \Rightarrow \quad \lim_{n \to \infty} F_n(x) = F(x),$$

i.e., the distributions of X_n s converge to the distribution of X. In this case, we say the limiting distribution of X_n s is the distribution of X. In this problem, we will demonstrate this fact by giving you an example.

- (a) (2 points) Let $\lambda_n = 1 \frac{1}{n}$ be the rate of the exponential random variable X_n . Write down the moment generating function $m_n(t)$ and cumulative distribution function $F_n(x)$ of X_n , respectively. Your answer should not contain λ_n .
- (b) (3 points) Find $\lim_{n\to\infty} m_n(t)$.
- (c) (3 points) Find $\lim_{n\to\infty} F_n(x)$.
- (d) (2 points) Use your results in Parts (b) and (c) to determine the limiting distribution of X_n s as $n \to \infty$.
- 5. (25 points; 5 points each) In a population, 30% of entities are labeled as 1 and 70% as 0. Suppose we sample with replacement.

 $^{{}^{1}}X_{i} \perp X_{j}$ means X_{i} and X_{j} are independent.

- (a) Let X_1 be a randomly selected entity. What is the distribution of X_1 ? What is the probability that in the sample (with sample size 1) the number of 1s is more than the number of 0s?
- (b) Let X_2 be another randomly selected entity. What is the distribution of $\hat{p} = \frac{X_1 + X_2}{2}$? What is the probability that in the sample (with sample size 2) the number of 1s is more than the number of 0s?
- (c) Let X_3 be another randomly selected entity. What is the distribution of $\hat{p} = \frac{X_1 + X_2 + X_3}{3}$? What is the probability that in the sample (with sample size 3) the number of 1s is more than the number of 0s?
- (d) Let $\{X_i\}_{i=1,\dots 50}$ be a random sample. What is the distribution of $\hat{p} = \frac{1}{50} \sum_{i=1}^{50} X_i$? What is the probability that in the sample (with sample size 50) the number of 1s is more than the number of 0s?
- (e) Does increasing the sample size always decrease the probability of observing more 1s than 0s? Briefly explain why.
- 6. (15 points; modified from Problem 7.46 in the textbook) According to the US Bureau of Labor Statistics, 48% of all adults are women. Among all the adults, 25% of women and 20% of men have some volunteering experiences.
 - (a) (5 points) If we randomly sample 150 adult women, what is the probability of getting 35 or more people who volunteer?
 - (b) (10 points) If we randomly sample 300 adults, what is the probability that the sample proportion of people who volunteer is between 20% and 25%?
- 7. (20 points) Suppose you sample n = 15 values from a normal population with population variance $\sigma^2 = 10$. Let S^2 be the sample variance.
 - (a) (5 points) What is the probability that $\frac{(n-1)S^2}{\sigma^2} = 1.4S^2$ is above 10?
 - (b) (5 points) What is the probability that $\frac{(n-1)S^2}{\sigma^2} = 1.4S^2$ is between 6 and 14?
 - (c) (10 points) What is the probability that S^2 is between 6 and 14?