Statistics I, Fall 2012
 Suggested Solution to Homework 09

Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

1. As we have proved in the lecture, for each $i=1, \ldots, n$, we have

$$
Z_{i}^{2} \equiv\left(\frac{X_{i}-\mu}{\sigma}\right)^{2} \sim \operatorname{Chi}(1)
$$

which means the moment generating function of Z_{i}^{2} is $m_{i}(t)=(1-2 t)^{-\frac{1}{2}}$. Now, as

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}\right)^{2}=\sum_{i=1}^{n} Z_{i}^{2},
$$

the moment generating function of $\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}$ is the moment generating function of $\sum_{i=1}^{n} Z_{i}^{2}$, which is

$$
\prod_{i=1}^{n} m_{i}(t)=\left[(1-2 t)^{-\frac{1}{2}}\right]^{n}=(1-2 t)^{-\frac{n}{2}}
$$

Because this is exactly the moment generating function of a chi-square random variable with degree of freedom n, the proof is complete.
2. We have

$$
Y_{n}=\frac{1}{\sqrt{(n-1) n}} Z_{1}+\frac{1}{\sqrt{(n-1) n}} Z_{2}+\cdots+\frac{1}{\sqrt{(n-1) n}} Z_{n-1}-\frac{n-1}{\sqrt{(n-1) n}} Z_{n} .
$$

As Z_{i} s are all normal random variables, Y_{n} is also a normal random variable. It remains to find the mean and variance of Y_{n}. Because $\mathbb{E}\left[Z_{i}\right]=0$ for all $i=1, \ldots, n$, the mean is

$$
\mathbb{E}\left[Y_{n}\right]=\frac{1}{\sqrt{(n-1) n}} \mathbb{E}\left[Z_{1}\right]+\cdots+\frac{1}{\sqrt{(n-1) n}} \mathbb{E}\left[Z_{n-1}\right]-\frac{n-1}{\sqrt{(n-1) n}} \mathbb{E}\left[Z_{n}\right]=0
$$

Because $\operatorname{Var}\left(Z_{i}\right)=1$ for all $i=1, \ldots, n$, the variance is

$$
\operatorname{Var}\left(Y_{n}\right)=\frac{1}{(n-1) n}+\frac{1}{(n-1) n}+\cdots+\frac{1}{(n-1) n}+\frac{(n-1)^{2}}{(n-1) n}=\frac{1}{n}+\frac{n-1}{n}=1
$$

It then follows that $Y_{n} \sim \operatorname{ND}(0,1)$.
3. We have

$$
\begin{aligned}
\sum_{i=1}^{n}\left(Z_{i}-\bar{Z}\right)^{2} & =\sum_{i=1}^{n}\left(Z_{i}^{2}-2 Z_{i} \bar{Z}+\bar{Z}^{2}\right)=\sum_{i=1}^{n} Z_{i}^{2}-2 \bar{Z} \sum_{i=1}^{n} Z_{i}+n \bar{Z}^{2} \\
& =\sum_{i=1}^{n} Z_{i}^{2}-2 \bar{Z}(n \bar{Z})+n \bar{Z}^{2}=\sum_{i=1}^{n} Z_{i}^{2}-n \bar{Z}^{2}
\end{aligned}
$$

4. (a) The moment generating function is

$$
m_{n}(t)=\frac{1-\frac{1}{n}}{1-\frac{1}{n}-t}
$$

and the cumulative distribution function is

$$
F_{n}(x)=1-e^{-\left(1-\frac{1}{n}\right) x}
$$

(b) We have

$$
\lim _{n \rightarrow \infty} m_{n}(t)=\frac{1}{1-t}
$$

(c) We have

$$
\lim _{n \rightarrow \infty} F_{n}(x)=1-e^{-x} .
$$

(d) The limiting distribution of $X_{n} \mathrm{~s}$ is the exponential distribution with rate 1.
5. (a) X_{1} follows a Bernoulli distribution with probability 0.3. The probability of having more 1 s than 0 s when the sample size is 1 is $\operatorname{Pr}\left(X_{1}=1\right)=0.3$.
(b) The distribution of \hat{p} can be derived by finding the probabilities of the three possible outcomes: $0, \frac{1}{2}$, and 1 :

$$
\begin{aligned}
\operatorname{Pr}(\hat{p}=0) & =\operatorname{Pr}\left(X_{1}+X_{2}=0\right)=0.7^{2}=0.49, \\
\operatorname{Pr}\left(\hat{p}=\frac{1}{2}\right) & =\operatorname{Pr}\left(X_{1}+X_{2}=1\right)=2(0.3)(0.7)=0.42, \text { and } \\
\operatorname{Pr}(\hat{p}=1) & =\operatorname{Pr}\left(X_{1}+X_{2}=2\right)=0.09 .
\end{aligned}
$$

The probability of having more 1 s than 0 s when the sample size is 2 is thus $\operatorname{Pr}\left(X_{1}+X_{2}=\right.$ $2)=0.09$.
(c) The distribution of \hat{p} can be derived by finding the probabilities of the three possible outcomes: $0, \frac{1}{3}, \frac{2}{3}$, and 1 :

$$
\begin{aligned}
\operatorname{Pr}(\hat{p}=0) & =\operatorname{Pr}\left(X_{1}+X_{2}+X_{3}=0\right)=0.7^{3}=0.343 \\
\operatorname{Pr}\left(\hat{p}=\frac{1}{3}\right) & =\operatorname{Pr}\left(X_{1}+X_{2}+X_{3}=1\right)=3(0.3)(0.7)^{2}=0.441, \\
\operatorname{Pr}\left(\hat{p}=\frac{2}{3}\right) & =\operatorname{Pr}\left(X_{1}+X_{2}+X_{3}=2\right)=3(0.3)^{2}(0.7)=0.189, \text { and } \\
\operatorname{Pr}(\hat{p}=1) & =\operatorname{Pr}\left(X_{1}+X_{2}+X_{3}=3\right)=0.027
\end{aligned}
$$

The probability of having more 1 s than 0 s when the sample size is 2 is thus $\operatorname{Pr}\left(X_{1}+X_{2}+X_{3} \geq\right.$ $2)=0.189+0.027=0.216$.
(d) As $n \geq 30$, we may apply the central limit theorem and conclude that \hat{p} follows a normal distribution. For the sampling distribution, the mean should be $p=0.3$ and the standard deviation should be $\sqrt{\frac{p(1-p)}{n}}=\sqrt{\frac{0.3 \times 0.7}{50}}=0.065$. Therefore, $\hat{p} \sim \mathrm{ND}(0.3,0.065)$. The probability of having more 1 s than 0 s when the sample size is 50 is thus

$$
\operatorname{Pr}(\hat{p}>0.5)=\operatorname{Pr}\left(Z>\frac{0.5-0.3}{0.065}\right) \approx \operatorname{Pr}(Z>3.086) \approx 0.001
$$

(e) No. For example, when the sample size goes from 1 to 2 , the probability goes from 0.3 to 0.09 . This certainly has something to do with the fact that X_{i} s are discrete. Will increasing the sample size always decrease the probability of making this kind of error when the random variables are continuous?
6. (a) Let X be the number of women in the sample that have volunteering experiences and $\hat{p}=\frac{X}{150}$ be the sample proportion. According to the central limit theorem, we have

$$
\hat{p} \sim \mathrm{ND}\left(0.25, \sqrt{\frac{0.25 \times 0.75}{150}}\right) \sim \mathrm{ND}(0.25,0.035)
$$

It then follows that

$$
\operatorname{Pr}(X \geq 35) \approx \operatorname{Pr}(\hat{p} \geq 0.233) \approx \operatorname{Pr}\left(Z \geq \frac{0.233-0.25}{0.035}\right) \approx \operatorname{Pr}(Z \geq-0.47) \approx 0.681
$$

where Z is a standard normal random variable.
(b) We need to first find the population proportion, which is the probability that a randomly selected person has volunteering experiences. This probability is $0.48 \times 0.25+0.52 \times 0.2=0.224$. Let X be the number of people in the sample that have volunteering experiences and $\hat{p}=\frac{X}{300}$ be the sample proportion. According to the central limit theorem, we have

$$
\hat{p} \sim \mathrm{ND}\left(0.224, \sqrt{\frac{0.224 \times 0.776}{300}}\right) \sim \mathrm{ND}(0.224,0.024) .
$$

It then follows that

$$
\begin{aligned}
\operatorname{Pr}(0.2 \leq \hat{p} \leq 0.25) & \approx \operatorname{Pr}\left(\frac{0.2-0.224}{0.024} \leq Z \leq \frac{0.25-0.224}{0.024}\right) \\
& \approx \operatorname{Pr}(-0.997 \leq Z \leq 1.08) \approx 0.701
\end{aligned}
$$

where Z is a standard normal random variable.
7. (a) We know $1.4 S^{2} \sim \operatorname{Chi}(n-1) \sim \operatorname{Chi}(14)$. It then implies that $\operatorname{Pr}\left(1.4 S^{2}>10\right)=0.762$.
(b) We know $1.4 S^{2} \sim \operatorname{Chi}(14)$. It then implies that $\operatorname{Pr}\left(6<1.4 S^{2}<14\right) \approx 0.966-0.45=0.516$.
(c) The probability that $6<S^{2}<14$ cannot be found directly as we do not know the distribution of S^{2}. However, once we multiply all the terms by 1.4, we may find the desired probability as we know the distribution of $1.4 S^{2}$. The probability is

$$
\operatorname{Pr}\left(6<S^{2}<14\right)=\operatorname{Pr}\left(8.4<1.4 S^{2}<19.6\right) \approx 0.867-0.143=0.724
$$

