Statistics I, Fall 2012

Suggested Solution for Homework 11

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. With the confidence level 1 — a = 0.9 and the sample size n = 20, we follow the typical three steps
to do an interval estimation.

e Selection of the distribution: Because the amounts spent are normally distributed and
the population variance is unknown, we will use the ¢ distribution to construct the confidence
interval.

e Calculation: The sample mean is £ = 4.922. The sample standard deviation is s = 2.003 and
thus the multiplier is ﬁ = 0.448. The critical ¢ value is tg 1 = f0.05,19 = 1.729. Combining
all the above, the confidence interval is

z— T Hte pa = [4.148, 5.696].
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e Conclusion: With a 90% confidence level, the average amount a customer spends on a meal
while this combination is purchased is between $4.148 and $5.696.

2. With the confidence level 1 — a = 0.99 and the sample size n = 40, we follow the typical three
steps to do an interval estimation.

e Selection of the distribution: Because the sample size n = 40 is larger than 30, we will
use the z distribution to construct the confidence interval. Because the population variance
is unknown, we will use the sample variance as a substitute.

e Calculation: The sample mean is £ = 11.3. The sample standard deviation is s = 8.209

and thus the multiplier is T = 1.298. The critical ¢ value is ten—1 = t0.00539 = 2.708.
Combining all the above, the confidence interval is

F—tap1—= @ +ts,1—=| = [7.785,14.815].
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e Conclusion: With a 99% confidence level, the average number of years of experience in
supply chain among all supply chain transportation managers is between 7.785 years and
14.815 years.

3. With the confidence level 1 — a = 0.95 and the sample size n = 1000, we follow the typical three
steps to do an interval estimation.

e Selection of the distribution: Because the sample size n = 1000 is larger than 30, we
will use the z distribution to construct the confidence interval. In calculating the standard
error, because the population proportion is unknown, we will use the sample proportion as a
substitute.

e Calculation: The sample proportion is p = 0.64. The approximated standard error is

A/ w = 0.015. The critical z value is zg = zp.025 = 1.96. Combining all the above,

the confidence interval is

e e
[ﬁ — a4/ u,ﬁ + Zg\/p(p)] — [0.6103, 0.6698].
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e Conclusion: With a 95% confidence level, the proportion of registered votes supporting this
candidate is between 61.03% and 66.98%.



4.

(a) With the confidence level 1 — a = 0.99 and the sample size n = 1003, we follow the typical
three steps to do an interval estimation.

e Selection of the distribution: Because the sample size n = 1003 is larger than 30, we
will use the z distribution to construct the confidence interval. In calculating the standard
error, because the population proportion is unknown, we will use the sample proportion
as a substitute.

e Calculation: The sample proportion is p = 0.27. The approximated standard error is

w = 0.014. The critical z value is zg = 29,005 = 2.576. Combining all the above,
the confidence interval is

[p — za4/ @,p +2g4/ ;3(171—;3)] = [0.2339,0.3061].

e Conclusion: With a 99% confidence level, the Universal Music Group’s market share is
between 23.39% and 30.61%.

(b) In this case, the approximated standard error is 2 %Bg ) = 0.0063. The confidence interval is

R p(l—p) . p(1—p)
Y § it 22 ay/ e = 0.2 2862].
[p 25\ “so00 P+ #2\ 5000 0.2538, 0.2862]

With a 99% confidence level, the Universal Music Group’s market share is between 25.38%
and 28.62%. We can see that increasing the sample size reduces the size of the confidence
interval.

(a) With the confidence level 1 —a = 0.99 and the sample size n = 14, we follow the typical three
steps to do an interval estimation.
e Selection of the distribution: Because the population is normal we will use the chi-
square distribution to construct the confidence interval.
e Calculation: The sample variance is s> = 7.748. The critical chi-square values are
Xi—g n-1 = Xg.005,13 = 3.565 and x% ,,_; = X§.005,13 = 29-819. Combining all the above,
the confidence interval is

[(n —1)s%2 (n—1)s?
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] = [3.378,28.252].
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e Conclusion: With a 99% confidence level, the population variance is between 3.378 and
28.252.

(b) We first estimate the population variance. With the confidence level 1 — a = 0.95 and the
sample size n = 25, we follow the typical three steps to do an interval estimation.

e Selection of the distribution: Because the population is normal we will use the chi-
square distribution to construct the confidence interval.

e Calculation: The sample variance is s> = 2100.682. The critical chi-square values are
Xifg,nfl = X%,975,24 = 12.401 and ng,n71 = X3.025,24 = 39.364. Combining all the
above, the confidence interval is

(n—1)s% (n—1)s?
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= [1280.771, 4065.459].
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e Conclusion: With a 95% confidence level, the population variance is between 1280.771
and 4065.459.

It then follows that, with a 95% confidence level, the population standard deviation is between
35.788 and 63.761.
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Note. Because the problem was not stated clear when it was posted, all of you can get these 10
points for free.

With the confidence level 1 — a = 0.95 and the sample size n = 14, we follow the typical three
steps to do an interval estimation.
e Selection of the distribution: Because the population is normal we will use the chi-square
distribution to construct the confidence interval.

e Calculation: The sample variance is s> = 71356553.85. The critical chi-square values are
x%_%m_l = X(2)‘975,13 = 5.009 and XQ%,n—l = X(2)‘025,13 = 24.736. Combining all the above, the
confidence interval is

l(n —1)s? (n—1)s2
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] = [37502022.06, 185202914.95].

n—1

e Conclusion: With a 95% confidence level, the population variance is between 37502022.06
and 185202914.95.

Suppose the sample size is n and n > 30. In this case, we will use the z distribution to estimate
the population mean (if n < 30, because the population is not normal, we will not be able to
do an interval estimation without Nonparametric Statistics). With a 90% confidence interval, the
critical z value is zg = 2005 = 1.645. It then follows that the error of the interval estimation is

zg ﬁ = 83/25'5, where o = 500 is the estimated population standard deviation. As the error should
be no more than 100, we have
22. 22.5\°
822.5 <100 & n> 822.5 ~~ 67.64.
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Therefore, the sample size should be 68.

Suppose the sample size is n and n > 30. In this case, we will use the z distribution to estimate
the population mean (if n < 30, because the population is not normal, we will not be able to
do an interval estimation without Nonparametric Statistics). With a 90% confidence interval, the
critical z value is zg = zo.05 = 1.645. It then follows that the error of the interval estimation is

za/ p(ln_p) = 1.645,/28=2) where p is the population proportion. As p is unknown, we are unable

n

to calculate p(1 — p). However, as p(1 — p) is maximized at p = 0.5, we have p(1 — p) < 0.25 and

thus 1.6454/ p(ln_p) < 0'8\/2525. As the error should be no more than 0.02, we have

0.8225 <O.8225

2
<002 & n> ~ 1691.27.
= "=\"0.02 )

n
Therefore, the maximum sample size we need is 1692.

(a) The population mean is 49.74 and the population variance is 101.63.
(b) If we draw a histogram, we will see that the population is normal.

(¢) 1. We should use the ¢ distribution because the population variance is unknown and the
population is normal. We cannot use the z distribution because the sample size is not
large enough.

ii. You should see around 200 x 0.95 = 190 intervals covering the population mean.
(d) i. We should use the z distribution because the population variance is known and the pop-
ulation is normal. It does not matter whether the sample size is large or small.
ii. You should see around 200 x 0.9 = 180 intervals covering the population mean.
(e) i. We should use the chi-square distribution because the population is normal.
ii. You should see around 200 x 0.95 = 190 intervals covering the population mean.



