Statistics I – Chapter 1 What is Statistics?

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 12, 2012

Statistics I – Chapter 1, Fall 2012 $\hfill Introduction$

What is Statistics?

- ► The science of gathering, analyzing, interpreting, and presenting numerical data.
- Using mathematics (particularly **probability**).
- ▶ To achieve better decision making.
- ▶ Scientific management.

What is Statistics?

- ▶ Some things are unknown...
 - Consumers' tastes.
 - Quality of a product.
 - Stock prices.
 - ► Employers' preferences.
- ▶ We want to understand these unknowns.
- ▶ We use statistical methods to gather, analyze, interpret, and present data to obtain **information**.
- ▶ Harder to apply on non-numerical data.

Statistics I – Chapter 1, Fall 2012 \Box Introduction

What is Statistics?

- ▶ The study of Statistics includes:
 - Descriptive Statistics.
 - Probability.
 - ▶ Inferential Statistics: Estimation.
 - ▶ Inferential Statistics: Hypothesis testing.
 - ▶ Inferential Statistics: Prediction.

Statistics I – Chapter 1, Fall 2012 Basic concepts

Road map

► Basic statistical concepts.

- ▶ Populations v.s. samples.
- ▶ Descriptive v.s. inferential Statistics.
- Parameters v.s. statistics.
- Variables and data.
- ▶ Data measurement.

Populations v.s. samples

► A **population** is a collection of persons, objects, or items.

- A <u>census</u> is to investigate the whole population.
- A **sample** is a portion of the population.
 - A sampling is to investigate only a subset of the population.
 - ► We then use the information contained in the sample to infer ("guess") about the population.

Populations v.s. samples

- ▶ All students in NTU form a population.
 - All students in the business school form a sample.
 - ▶ 1000 students out of them form a sample.
- ▶ All students in the business school form a population.
 - ▶ All male students in the school form a sample.
- ▶ All chips made in one factory form a population.
 - Those made in a production lot form a sample.
- ▶ All packets passing a router form a population.
 - Those having the same destination form a sample.
- ► Are these samples **representative**?

Descriptive v.s. inferential Statistics

• Descriptive Statistics:

- Graphical or numerical summaries of data.
- Describing (visualizing or summarizing) a sample.

• <u>Inferential Statistics</u>:

- ▶ Making a "scientific guess" on unknowns.
- ► Trying to say something about the **population** .
- Most of our efforts in this year will be for inferential Statistics.

Examples of descriptive Statistics

- ▶ The average monthly income of 1000 people.
 - ▶ 1000 people form a sample.
 - The average monthly income summarizes the sample.
- ▶ The histogram of the monthly income of 1000 people.
 - Another way of describing the sample.
 - In particular, we visualize the sample.

Examples of inferential Statistics

- ▶ Pharmaceutical research.
 - All the potential patients form the population.
 - A group of randomly selected patients is a sample.
 - Use the result on the sample to infer the result on the population.
- ► A new product.
 - All the consumers in Taiwan form the population.
 - May try the new product in some of the stores before selling it in all stores.

Some remarks on descriptive Statistics

- Descriptive methods can also be applied on populations.
- ▶ Chapter 2: Describing data through graphs. We may draw graphs for a sample or a population.
- ▶ Chapter 3: Describing data through numbers. We may calculate those numbers for a sample or a population.

Parameters v.s. statistics

- A descriptive measure of a population is a **parameter**.
 - The average height of all NTU students.
 - The average willingness-to-pay of a new product of all potential consumers.
- A descriptive measure of a sample is a <u>statistic</u>.
 - ▶ The average height of all NTU male students.
- Understanding a population typically requires one to understand the parameter.
- ▶ Typically by investigating some statistics.

Parameters v.s. statistics: an example

- ► A laptop manufacturer wants to know the largest weight one can put on a laptop without destroying it.
 - Denote this number as θ .
 - θ can be various for different laptop!
- ▶ Suppose 10000 laptops have been produced.
- The parameter: $\min[\theta]$.
 - This will be the number announced to the public.
- ▶ Can the manufacturer conduct a census?

Parameters v.s. statistics: an example

- So probably 50 laptops will be randomly chosen as a sample for one to do inferential Statistics.
- ▶ For each laptop, we do an experiment (by destroying the laptop) and get a number x_i , i = 1, 2, ..., 50.
- These x_i s form a sample.
- What is a statistic?
 - Any descriptive summary of the sample.

• E.g.,
$$\bar{x} = \sum_{i=1}^{50} x_i$$
, $\min_{i=1,\dots,50} \{x_i\}$, etc.

▶ Which statistic is "closer to" the parameter?

Some remarks for the example

- A parameter is a **fixed** number.
 - The parameter is $\min[\theta]$, a fixed number we want to estimate.
 - θ is NOT a parameter! θ is **random** and can never be found, even with a census.
 - While $\min[\theta]$ describes the population, θ describes only one single laptop.
- Statistics is a field. A statistic is a number or a function.
 Two statistics are two numbers or two functions.
- ► The selection of statistics matters. The **sampling process** also matters.

Statistics I – Chapter 1, Fall 2012 \square Basic concepts

16/30

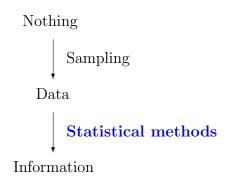
Another example

- ► (Suppose) there is a new proposal of increasing the tuition in NTU.
- ▶ We want to know the percentage of students supporting it.
- ▶ What is the population?
- ▶ What kind of statistics may we collect?
- ▶ Is it fine to sampling by standing at the "small small commissary"? How about the "normal teaching building"?

Statistics I – Chapter 1, Fall 2012 – Variables and data

Road map

- ▶ Basic statistical concepts.
- ► Variables and data.
- ▶ Data measurement.


Statistics I – Chapter 1, Fall 2012 – Variables and data

Variables and data

- ► A <u>variable</u> is an attribute of an entity that can take on different values, from entity to entity, from time to time.
 - The weight of a laptop.
 - ▶ The willingness-to-pay of a consumer for a product.
 - The result of flipping a coin.
- A <u>measurement</u> is a way of assigning values to variables.
- ▶ **<u>Data</u>** are those recorded values.

Statistics I – Chapter 1, Fall 2012 – Variables and data

From data to information

Statistics I – Chapter 1, Fall 2012 Lata measurement

Road map

- ▶ Basic statistical concepts.
- ▶ Variables and data.
- ► Data measurement.

Levels of data measurement

- ▶ In this year, most data we face will be numerical.
- ▶ Among all numerical data, there are some differences.
- Do identical numbers have an identical relation within different contexts?
 - ▶ In a post office, one package weights 60 kg while the other weights 80 kg.
 - ▶ In a baseball team, A's jersey number is 60 while B's is 80.
 - ▶ Is B heavier or bigger than A?

Statistics I − Chapter 1, Fall 2012 ∟Data measurement

Levels of data measurement

- ▶ It is important to distinguish the following four levels of data measurement:
 - ► Nominal.
 - Ordinal.
 - Interval.
 - Ratio.

Statistics I − Chapter 1, Fall 2012 ∟Data measurement

Nominal level

- ► A <u>nominal</u> scale classifies data into distinct categories in which no ranking is implied.
- ▶ Data are labels or names used to identify an attribute of the element.
- ▶ A non-numeric label or a numeric code may be used.
- Examples:

Categorical variables	Values (Categories)
Laptop ownership	Yes / No
Place of living	Taipei / Taoyuan /
Internet provider	AT&T / Comcast / Other

Coding for nominal data

- ▶ Let one's marital status be coded as:
 - Single = 1.
 - Married = 2.
 - Divorced = 3.
 - Widowed = 4.
- Because the numbering is arbitrary, arithmetic operations don't make any sense.
 - Does Widowed $\div 2 =$ Married?!

Statistics I − Chapter 1, Fall 2012 ∟Data measurement

Ordinal level

- An <u>ordinal</u> scale classifies data into distinct categories in which ranking is implied.
- ▶ The order or rank of the data is meaningful.
- However, the differences between numerical labels DO NOT imply distances.
- ► Examples:

Categorical variables	Values (Categories)
Product satisfaction	Satisfied, neutral, unsatisfied
Professor rank	Full, associate, assistant
Ranking of scores	1, 2, 3, 4,

Statistics I – Chapter 1, Fall 2012 Lata measurement

Coding for Ordinal data

- ▶ Ranking is meaningful for ordinal data.
 - A full professor is ranked higher than an associate professor.
 - ▶ A rank-10 student gets a higher grade than a rank-20 student.
- However, it is still not meaningful to do arithmetic on ordinal data.
 - Assistant + associate = full?!
 - ▶ The grade difference between no. 1 and no. 5 may not be equal to that between no. 11 and no. 15.

Statistics I – Chapter 1, Fall 2012 \Box Data measurement

Interval and ratio levels

- ► An <u>interval</u> scale is an ordered scale in which the difference between measurements is a meaningful quantity but the measurements DO NOT have a true zero point.
- ► A <u>ratio</u> scale is an ordered scale in which the difference between measurements is a meaningful quantity and the measurements DO have a true **zero point**.
- ▶ For interval data:
 - > Zero does not mean nothing; ratio is not meaningful.
 - ▶ E.g., Degrees in Celsius or Fahrenheit.
- ▶ For ratio data:
 - ▶ Zero means nothing; ratio is meaningful.
 - E.g., Degrees in Kelvin.

Statistics I − Chapter 1, Fall 2012 ∟Data measurement

Interval and ratio levels

- ▶ Interval data are actually rare.
 - ▶ Another example: GRE or GMAT scores.
- ▶ Ratio data appear more often in the world.
 - ▶ Heights.
 - ► Weights.
 - ▶ Income.
 - Prices.

Comparisons of the four levels

▶ For each level, is it meaningful to calculate the ...

Level	Ranking	Distance	Ratio
Nominal	No	No	No
Ordinal	Yes	No	No
Interval	Yes	Yes	No
Ratio	Yes	Yes	Yes

- ▶ Nominal and ordinal data are called **qualitative data**.
- ▶ Interval and ratio data are called **quantitative data**.

Statistics I – Chapter 1, Fall 2012 \Box Data measurement

Some remarks

- It is important to distinguish nominal from ordinal, from ordinal to interval, but NOT from interval to ratio.
- ▶ Most statistical methods are for quantitative data.
 - To apply these methods, typically one does not need to distinguish between interval and ratio data.
- ▶ Some method are for qualitative data.
 - To apply these methods, one need to distinguish between nominal and ordinal data.
 - Will be covered only in the Spring semester.