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Describing data through statistics

I In Chapter 2, we introduced how to summarize data
through graphs.

I In this chapter, we will discuss how to summarize data
through numbers.
I These “numbers” are called statistics for samples and

parameters for populations.
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Ungrouped data: central tendency

Road map

I Central tendency for ungrouped data.

I Variability for ungrouped data.

I Grouped data.

I Measures of shape.
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Ungrouped data: central tendency

Central tendency for ungrouped data

I Measures of central tendency yields information about
the center or middle part of a group of numbers.
I Where the center is (“center” must be defined)?
I Where the middle part is (“middle part” must be defined)?

I They provide summaries to data.
I Analogy: The determinant and eigenvalues are “summaries”

of a matrix.



Statistics I – Chapter 3, Fall 2012 5 / 65

Ungrouped data: central tendency

Central tendency for ungrouped data

I We will discuss five measures of central tendency:
I Modes.
I Medians.
I Means.
I Percentiles.
I Quartiles.

I We first focus on ungrouped data. They are raw data
without any categorization.
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Ungrouped data: central tendency

Central tendency for ungrouped data

I In the IW baseball team, players’ heights (in cm) are:

178 172 175 184 172 175 165 178 177 175
180 182 177 183 180 178 179 162 170 171

I Let’s try to describe the central tendency of this data.
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Ungrouped data: central tendency

Modes

I The mode(s) is (are) the most frequently occurring
value(s) in a set of data.
I In the team, the modes are 175 and 178. See the sorted data:

162 165 170 171 172 172 175 175 175 177
177 178 178 178 179 180 180 182 183 184

I We thus know that most people are of 175 and 178 cm.
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Ungrouped data: central tendency

The number of modes

I The data of the IM team is bimodal.

I In general, data may be unimodal, bimodal, or
multimodal.
I When the mode is unique, the data is unimodal.
I When there are two modes or two values of similar frequencies

that are more dominant than others, the data is bimodal.
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Ungrouped data: central tendency

Bell shaped curve

I A particularly important type of unimodal curves is the
bell shaped curves.

I Normal distributions, which will be defined in Chapter 5, is
bell shaped.
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Ungrouped data: central tendency

Medians

I The median is the middle value in an ordered set of
numbers.
I For the median, at least half of the numbers are weakly

below and at least half are weakly above it.1

I To find the median, suppose there are N numbers:
I If N is odd, the median is the N+1

2 th large number.
I If N is even, the median is the average of the N

2 th and the
(N2 + 1)th large number.

1“Weekly below (above)” means “no greater (less) than”.



Statistics I – Chapter 3, Fall 2012 11 / 65

Ungrouped data: central tendency

Medians

I In the IW team, the median is 177+177
2

= 177 cm.

162 165 170 171 172 172 175 175 175 177
177 178 178 178 179 180 180 182 183 184

I For the following team, the median is 175+177
2

= 176 cm.

162 165 170 171 172 172 175 175 175 175
177 178 178 178 179 180 180 182 183 184

I For the following team, the median is 177 cm.

162 165 170 171 172 172 175 175 175 175
177 178 178 178 179 180 180 182 183 184 188
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Ungrouped data: central tendency

Medians

I A median is unaffected by the magnitude of extreme values:
I For the following team, the median is still 177 cm.

162 165 170 171 172 172 175 175 175 175
177 178 178 178 179 180 180 182 183 184 238

I Unfortunately, a median does not use all the information
contained in the numbers.
I While data may be of interval or ratio scales, a median only

treat the data as ordinal.
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Ungrouped data: central tendency

Means

I The (arithmetic) mean is the arithmetic average of a
group of data.
I For the IW team, the mean is

162 + 165 + 170 + · · ·+ 183 + 184

20
= 175.65 cm.

I In Statistics, means are the most commonly used measure of
central tendency.

I Do people consider geometric means in Statistics?



Statistics I – Chapter 3, Fall 2012 14 / 65

Ungrouped data: central tendency

Population means v.s. sample means
I Let {xi}i=1,...,N be a population with N as the

population size. The population mean is

µ ≡
∑N

i=1 xi
N

.

I Let {xi}i=1,...,n be a sample with n < N as the sample size.
The sample mean is

x̄ ≡
∑n

i=1 xi
n

.

I Throughout this year (and the whole Statistics world), we
use the above notations.
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Ungrouped data: central tendency

Population means v.s. sample means

I Isn’t these two means the same?
I From the perspective of calculation, yes.
I From the perspective of statistical inference, no.

I In practice, typically the population mean of a population is
unknown.
I We use inferential Statistics to estimate or test for the

population mean.
I To do so, we start from the sample mean.
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Ungrouped data: central tendency

Some remarks for means

I Do not try to find the mean for ordinal or nominal data.

I A mean uses all the information contained in the numbers.

I Unfortunately, a mean will be affected by extreme values.
I Therefore, using the mean and median simultaneously can

be a good idea.
I We should try to identify outliers (extreme values that seem

to be “strange”) before calculating a mean (or any statistics).
I Any outlier here?

16 165 170 171 172 172 175 175 175 177
177 178 178 178 179 180 180 182 183 184
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Ungrouped data: central tendency

Quartiles

I The range of a set of data is determined by the two extreme
values. It says nothing about the other numbers.
I For uniformly distributed data, the range is representative.
I For other types of distribution, especially bell shaped

distributions, the range ignores most of the data.

I Sometimes we want to know the range of the middle 50%
values. This motivates us to define quartiles.

I For the qth quartile,
I at least q

4 of the values are weakly below it and
I at least 1− q

4 of the values are weakly above it.
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Ungrouped data: central tendency

Quartiles

I To calculate the qth quartile, q = 1, 2, 3, first calculate
i = q

4
N . Then we have the qth quartile as

Qi ≡

{ xi + xi+1

2
if i ∈ N

xi otherwise
.

I Find the quartiles for the IW team:

162 165 170 171 172 172 175 175 175 177
177 178 178 178 179 180 180 182 183 184

I How many numbers are below the qth quartile?
I What is the proportion of numbers below the qth quartile?
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Ungrouped data: central tendency

Some remarks for quartiles

I The interquartile range (IQR), is defined as the difference
between the first and third quartiles.
I What is the proportion of numbers in the interquartile range?

I What is the second quartile?

I The textbook says that, for the qth quartile, at most 1− q
4

of the values are weakly above it. What do you think?
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Ungrouped data: central tendency

Percentiles

I The idea of quartiles can be generalized to percentiles.

I For the P th percentile,
I at least P

100 of the values are weakly below it and
I at least 1− P

100 of the values are weakly above it.

I In theory, P can be any real number between 0 and 100.

I In practice, typically only integer values of P are of interest.
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Ungrouped data: central tendency

Percentiles

I To calculate the P th percentile, P ∈ [0, 100], first calculate
i = P

100
N . Then we have the P th percentile as

Pi ≡

{ xi + xi+1

2
if i ∈ N

xi otherwise
.

I The 25th percentile is the first quartile.
I The 50th percentile is the median.
I The 75th percentile is the third quartile.
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Ungrouped data: central tendency

Some final remarks

I Five measures of central tendency for ungrouped data:
modes, medians, means, quartiles, percentiles.

I Each measure provide a certain summary of the data.

I To better describe a set of data, combine some of these
measures.
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Ungrouped data: variability

Road map

I Central tendency for ungrouped data.

I Variability for ungrouped data.

I Grouped data.

I Measures of shape.
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Ungrouped data: variability

Variability for ungrouped data

I Measures of variability describe the spread or
dispersion of a set of data.

I Especially useful when two sets of data have the same center.
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Ungrouped data: variability

Variability for ungrouped data

I We will discuss seven measures of central tendency:
I Ranges.
I Interquartile ranges.
I Mean absolute deviations.
I Variances.
I Standard deviations.
I z scores.
I Coefficients of variation.

I We first focus on ungrouped data. They are raw data
without any categorization.
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Ungrouped data: variability

Ranges and Interquartile ranges

I The range of a set of data {xi}i=1,...,N is

max
i=1,...,N

{xi} − min
i=1,...,N

{xi}.

I In applications that require strict “guarantees,” such as
quality control, the range is important.

I The interquartile range of a set of data is the difference of
the first and third quartile.
I It is the range of the middle 50% of data.
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Ungrouped data: variability

Deviations from the mean

I Consider a set of population data {xi}i=1,...,N with mean µ.

I Intuitively, a way to measure the dispersion is to examine
how each number deviates from the mean.

I For xi, the deviation from the mean is defined as

xi − µ.

I For a sample, the deviations from the mean are defined
based on the sample mean x̄.
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Ungrouped data: variability

Deviations from the mean

I How to combine the N deviations into a single number?

I Intuitively, we may sum them up:

N∑
i=1

(xi − µ).

I What will happen?

I How would you design a way to combine these deviations?
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Ungrouped data: variability

Deviations from the mean

I Instead of summing them up, we have the following two
alternative options:
I Summing up the absolute values of the deviations:

N∑
i=1

|xi − µ|.

I Summing up the squares of the deviations.

N∑
i=1

(xi − µ)2.
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Ungrouped data: variability

Mean absolute deviations

I The mean absolute deviation (MAD) of a population
{xi}i=1,...,N is the average of the absolute values of the
deviations from the mean:∑N

i=1 |xi − µ|
N

.

I It is always nonnegative. As long as any two numbers are
different, it is positive.

I The larger the MAD is, the more dispersed the data is.
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Ungrouped data: variability

Mean absolute deviations

I In the WI baseball team, there are with only six players. In
one game, their scores are 3, 5, 6, 10, 12, and 18 points.

I Find the MAD of the population:
I First, find the population size:

N = 6.

I Second, find the population mean:

µ =

∑6
i=1 xi
6

= 9.
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Ungrouped data: variability

Mean absolute deviations

I Third, find the sum of absolute deviations by constructing
the following table:

xi xi − µ |xi − µ|

3 −6 6
5 −4 4
6 −3 3
10 1 1
12 3 3
18 9 9

Total 54 0 26

I Finally, the mean absolute deviation is 26
6

= 13
3
≈ 4.33.
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Ungrouped data: variability

Some remarks for MAD

I Mean absolute deviations are intuitive, easy to calculate,
and reasonably representative.

I Unfortunately, as the absolute function is NOT
differentiable, it is hard to derive rigorous statistical
properties for it.

I Mean absolute deviations are thus less useful in Statistics.
I In this semester, you will not see them again ...
I In some applications, such as forecasting, mean absolute

deviations are still adopted.
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Ungrouped data: variability

Variances

I The variance of a population {xi}i=1,...,N is the average of
the squared values of the deviations from the mean:

σ2 ≡
∑N

i=1(xi − µ)2

N
.

I It is always nonnegative. As long as any two numbers are
different, it is positive.

I A larger variance implies a more dispersed set of data.
I It emphasizes on huge deviations.
I It is differentiable.
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Ungrouped data: variability

Variances

I Find the variance of the WI team players’ scores
{3, 5, 6, 10, 12, 18}. Note that this is a population.

I Again, we construct the following table:

xi xi − µ (xi − µ)2

3 −6 36
5 −4 16
6 −3 9
10 1 1
12 3 9
18 9 81

Total 54 0 152

I The population variance is thus σ2 = 152
6

= 76
3
≈ 25.33.
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Ungrouped data: variability

Some remarks for variances

I The population variance 25.33 is much larger than the mean
absolute deviation 4.33. Is this always true?

I While the mean absolute deviation is 4.33 points, the
population variance is 25.33 squared points.

I The main disadvantage of using variances is that the unit of
measurement is the square of the original one.
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Ungrouped data: variability

Population v.s. sample variances

I The symbol σ2 is always used as the population variance.

I For a sample {xi}i=1,...,n, the sample variance is defined as

s2 ≡
∑n

i=1(xi − x̄)2

n− 1
.

Notice that n− 1!!

I You probably want to ask something ...
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Ungrouped data: variability

Standard deviations

I To fix the problem of having a squared unit of measurement
when using variances, we define standard deviations.

I For either a population or a sample, the standard deviation
is the square root of the variance:

σ ≡

√∑N
i=1(xi − µ)2

N
and s ≡

√∑n
i=1(xi − x̄)2

n− 1
.

I Standard deviations have the same unit of measurement as
the raw data.
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Ungrouped data: variability

Standard deviations

I As we will see, standard deviations play a very important
role in statistical inference.

I Before that, let’s study two interesting rules regarding
standard deviations.
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Ungrouped data: variability

Chebyshev’s theorem

I Chebyshev’s theorem provides a lower bound on the
proportion of data that are “close to” the mean:

Proposition 1 (Chebyshev’s theorem)

For any set of data with mean µ and standard deviation σ,
if k ≥ 1, at least

1− 1

k2

proportion of the values are within [µ− kσ, µ+ kσ].

I So 75% of data are within 2σ, 89% are within 3σ, etc.

I The power of Chebyshev’s theorem is that it applies to any
set of data.
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Ungrouped data: variability

Chebyshev’s theorem

I Let’s verify Chebyshev’s theorem by investigating the WI
team players’ scores {3, 5, 6, 10, 12, 18}.
I µ = 9 and σ ≈ 5.03.
I For k = 2: [−1.06, 19.06] contains 100% > 1− 1

22
= 75%.

I For k = 1.5: [1.46, 16.55] contains 83.3% > 1− 1
(1.5)2

= 55.6%.

I We will prove this theorem when studying Chapter 6.

I As Chebyshev’s theorem applies to any set of data, the
bounds it provide are typically loose for most data.

I The next theorem does better for bell shaped data.
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Ungrouped data: variability

The empirical rule

I The empirical rule estimates the approximate proportion
of values that are “close to” the mean:

Observation 1 (The empirical rule)

For a bell shaped set of data, approximately 68%, 95%, and
99.7% of the values are within 1σ, 2σ, and 3σ from µ.

I For the scores {3, 5, 6, 10, 12, 18}:
I µ = 9 and σ ≈ 5.03.
I For 1σ: [3.97, 14.03] contains 66.7% ≈ 68%.
I For 2σ: [−1.06, 19.06] contains 100% ≈ 95%.
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Ungrouped data: variability

Chebyshev’s theorem v.s. empirical rule

I Recall that the IW team players’ heights

162 165 170 171 172 172 175 175 175 177
177 178 178 178 179 180 180 182 183 184

are approximately bell shaped:
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Ungrouped data: variability

Chebyshev’s theorem v.s. empirical rule

I Let’s apply the two rules on the IW team players’ heights:

I µ = 175.65 and σ = 5.54.
I The result:

1σ 2σ 3σ

Chebyshev’s theorem 0% 75% 88.9%
Empirical rule 68% 95% 99.7%

Real proportion 70% 95% 100%
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Ungrouped data: variability

Some remarks for the empirical rule

I It is a rule of thumb! All we have are approximations.

I The approximation is precise for normally distributed data.

I The approximation is good only for bell shaped data.

I What kind of data may make the approximation bad?
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Ungrouped data: variability

Standard scores

I For a number xi, we define its z score (standard scores or z
value) as

z =
xi − µ
σ

.

I A z score represents the number of standard deviations
that the value deviates from the mean.

I z scores are particularly important for normal distributions.
This will be discussed extensively later in the semester.
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Ungrouped data: variability

Coefficient of variation

I The coefficient of variation is the ratio of the standard
deviation to the mean:

Coefficient of variation =
σ

µ
.

I Why do we want to use coefficients of variation? Is using
standard deviation not enough?

I When will you use coefficients of variation? Is it when you
have one or multiple sets of data?
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Grouped data

Road map

I Central tendency for ungrouped data.

I Variability for ungrouped data.

I Grouped data.

I Measures of shape.
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Grouped data

Grouped data

I A set of grouped data contains values that are divided into
several classes.
I One example is frequency distributions.
I When you survey people’s income ...

I We now introduce how to calculate the mean, median, mode,
variance, and standard deviation for a set of grouped data.
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Grouped data

Means for grouped data

I In calculating the mean for a set of grouped data, the class
midpoint are used to represent all the values in that class.

I For the IW team, suppose we only have the frequency table:

Class Frequency

[160, 164) 1
[164, 168) 1
[168, 172) 2
[172, 176) 5
[176, 180) 6
[180, 184) 4
[184, 188) 1
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Grouped data

Means for grouped data

I The mean of this set of grouped data is calculated as follows:

Class Frequency (fi) Class midpoint (Mi) fiMi

[160, 164) 1 162 162
[164, 168) 1 166 166
[168, 172) 2 170 340
[172, 176) 5 174 870
[176, 180) 6 178 1068
[180, 184) 4 182 728
[184, 188) 1 186 186

Total 20 3520

Then the mean is 3520
20

= 176 cm.
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Grouped data

Means for grouped data

I For a set of grouped data with k classes, let Mi be the
midpoint and fi be the frequency of class i. The mean of
this set of data is

µgrouped =

∑k
i=1 fiMi∑k
i=1 fi

.

I The mean for grouped data is just an approximation.

I It is hard to do better if we do not know more about the
distribution of the data.
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Grouped data

Variances for grouped data

I For variances, we still use the class midpoint to represent
all numbers in each class.

I For a set of grouped data with mean µ and k classes, let Mi

be the midpoint and fi be the frequency of class i. The
variance of this set of data is

σ2
grouped =

∑k
i=1 fi(Mi − µ)2∑k

i=1 fi
.

I Verify by yourself that the variance of the IW team’s
grouped heights is 32.8 cm2.
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Grouped data

Standard deviations for grouped data

I For standard deviations, we still use the class midpoint to
represent all numbers in each class.

I For a set of grouped data with mean µ and k classes, let Mi

be the midpoint and fi be the frequency of class i. The
variance of this set of data is

σgrouped =

√∑k
i=1 fi(Mi − µ)2∑k

i=1 fi
.

I Verify by yourself that the standard deviation of the IW
team’s grouped heights is 5.73 cm.
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Grouped data

For samples

I When the grouped data form a sample, change the
denominator from

∑k
i=1 fi to

∑k
i=1 fi − 1.
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Grouped data

Modes for grouped data

I The mode for grouped data is the class midpoint of the
modal class.

I Verify by yourself that the mode of the IW team’s grouped
heights is 178 cm.
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Grouped data

Medians for grouped data

I Calculating medians for grouped data does NOT use class
midpoints!

I It involves the following steps:
I Given the size N , find the median class: the class in which

the N
2 th term locates.

I Determine the position in the class of the N
2 th term.

I Do an interpolation within the median class based on the
position and the frequency of the class.
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Grouped data

Medians for grouped data

Class Frequency

[160, 164) 1
[164, 168) 1
[168, 172) 2
[172, 176) 5
[176, 180) 6
[180, 184) 4
[184, 188) 1

I N
2

= 10.

I The tenth term locates in the class
[176, 180). It is the first term of the
median class.

I As the class starts from 176, ends at
180, and has six terms, the
interpolation puts the first term at

176 +
1

6
(180− 176) ≈ 176.67.

I So the median is 176.67 cm.
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Measure of shape

Road map

I Central tendency for ungrouped data.

I Variability for ungrouped data.

I Grouped data.

I Measures of shape.
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Measure of shape

Skewness

I In describing the distribution of a set of data, the shape is
also important.

I There are two common statistical descriptions on the shape
of a set of data:
I Skewness.
I Kurtosis.
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Measure of shape

Skewness

I A distribution is symmetric if its right half is the mirror
image of its left half.

I A distribution is skewed (asymmetric) if it is not
symmetric.

I There are two types of skewness, depending on where the
tail goes:
I Positively skewed or skewed to the right.
I Negatively skewed or skewed to the left.
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Measure of shape

Skewness

I Which curve is symmetric?

I Which is skewed to the left?

I Which is skewed to the right?
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Measure of shape

Skewness

I If a distribution is unimodal, the relationship among the
mean, median, and mode gives hints to the skewness.
I Symmetric: mean = median = mode.
I Skewed to the left: mean < median < mode.
I Skewed to the right: mean > median > mode.
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Measure of shape

Coefficients of skewness

I Many different coefficients of skewness have been defined.

I A coefficient of skewness is a function of the data values
such that the function is:
I symmetric if the coefficient is 0,
I skewed to the right if the coefficient is positive, and
I skewed to the left if the coefficient is negative.

I No one says which coefficient of skewness dominates all
others.
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Measure of shape

Kurtosis

I Kurtosis describes the degree of peakedness of a
distribution.

I Many different coefficients of kurtosis have been defined.

I No one says which coefficient of kurtosis dominates all
others.
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