# Statistics I – Chapter 3 Describing Data through Statistics

#### Ling-Chieh Kung

Department of Information Management National Taiwan University

September 19, 2012

## Describing data through statistics

- ▶ In Chapter 2, we introduced how to summarize data through graphs.
- In this chapter, we will discuss how to summarize data through **numbers**.
  - ► These "numbers" are called **statistics** for samples and parameters for **populations**.

Statistics I - Chapter 3, Fall 2012 Ungrouped data: central tendency

# Road map

- ► Central tendency for ungrouped data.
- ▶ Variability for ungrouped data.
- ▶ Grouped data.
- ▶ Measures of shape.

# Central tendency for ungrouped data

- ▶ Measures of central tendency yields information about the center or middle part of a group of numbers.
  - ▶ Where the center is ("center" must be defined)?
  - ▶ Where the middle part is ("middle part" must be defined)?
- ▶ They provide **summaries** to data.
  - ▶ Analogy: The determinant and eigenvalues are "summaries" of a matrix.

# Central tendency for ungrouped data

- ▶ We will discuss five measures of central tendency:
  - ► Modes.
  - Medians.
  - Means.
  - Percentiles.
  - Quartiles.
- ► We first focus on **ungrouped data**. They are raw data without any categorization.

# Central tendency for ungrouped data

▶ In the IW baseball team, players' heights (in cm) are:

| 178 | 172 | 175 | 184 | 172 | 175 | 165 | 178 | 177 | 175 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 180 | 182 | 177 | 183 | 180 | 178 | 179 | 162 | 170 | 171 |



▶ Let's try to describe the central tendency of this data.

Statistics I - Chapter 3, Fall 2012 Ungrouped data: central tendency

#### Modes

- ► The mode(s) is (are) the most frequently occurring value(s) in a set of data.
  - ▶ In the team, the modes are 175 and 178. See the sorted data:

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 177 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 |

• We thus know that most people are of 175 and 178 cm.

# The number of modes

- The data of the IM team is **<u>bimodal</u>**.
- In general, data may be <u>unimodal</u>, bimodal, or <u>multimodal</u>.
  - When the mode is unique, the data is unimodal.
  - ▶ When there are two modes or two values of similar frequencies that are more dominant than others, the data is bimodal.





# Bell shaped curve

 A particularly important type of unimodal curves is the bell shaped curves.



 Normal distributions, which will be defined in Chapter 5, is bell shaped.

# Medians

- ► The <u>median</u> is the middle value in an ordered set of numbers.
  - ► For the median, at least half of the numbers are weakly below and at least half are weakly above it.<sup>1</sup>
- To find the median, suppose there are N numbers:
  - If N is odd, the median is the  $\frac{N+1}{2}$ th large number.
  - If N is even, the median is the **average** of the  $\frac{N}{2}$ th and the  $(\frac{N}{2}+1)$ th large number.

<sup>1</sup> "Weekly below (above)" means "no greater (less) than".

Statistics I - Chapter 3, Fall 2012 Ungrouped data: central tendency

#### Medians

• In the IW team, the median is  $\frac{177+177}{2} = 177$  cm.

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 177 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 |

▶ For the following team, the median is  $\frac{175+177}{2} = 176$  cm.

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 175 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 |

▶ For the following team, the median is 177 cm.

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 175 |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 | 188 |

Statistics I – Chapter 3, Fall 2012 └─Ungrouped data: central tendency

#### Medians

- ▶ A median is unaffected by the magnitude of extreme values:
  - ▶ For the following team, the median is still 177 cm.

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 175 |             |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 | <b>23</b> 8 |

- Unfortunately, a median does not use all the information contained in the numbers.
  - While data may be of interval or ratio scales, a median only treat the data as ordinal.

#### Means

- ► The (arithmetic) <u>mean</u> is the **arithmetic average** of a group of data.
  - ▶ For the IW team, the mean is

$$\frac{162 + 165 + 170 + \dots + 183 + 184}{20} = 175.65 \text{ cm}.$$

- In Statistics, means are the most commonly used measure of central tendency.
- ▶ Do people consider geometric means in Statistics?

#### Population means v.s. sample means

► Let {x<sub>i</sub>}<sub>i=1,...,N</sub> be a population with N as the population size. The population mean is

$$\mu \equiv \frac{\sum_{i=1}^{N} x_i}{N}$$

• Let  $\{x_i\}_{i=1,\dots,n}$  be a sample with n < N as the sample size. The sample mean is

$$\bar{x} \equiv \frac{\sum_{i=1}^{n} x_i}{n}$$

 Throughout this year (and the whole Statistics world), we use the above notations.

# Population means v.s. sample means

- ▶ Isn't these two means the same?
  - From the perspective of calculation, yes.
  - From the perspective of statistical inference, **no**.
- ► In practice, typically the population mean of a population is **unknown**.
  - ► We use **inferential Statistics** to estimate or test for the population mean.
  - To do so, we start from the sample mean.

#### Some remarks for means

- ▶ Do not try to find the mean for ordinal or nominal data.
- A mean uses all the information contained in the numbers.
- ▶ Unfortunately, a mean will be affected by extreme values.
  - ► Therefore, using the mean and median **simultaneously** can be a good idea.
  - We should try to identify <u>outliers</u> (extreme values that seem to be "strange") before calculating a mean (or any statistics).
  - Any outlier here?

| <b>16</b> | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 177 |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177       | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 |

# Quartiles

- ▶ The range of a set of data is determined by the two extreme values. It says nothing about the other numbers.
  - ▶ For uniformly distributed data, the range is representative.
  - For other types of distribution, especially bell shaped distributions, the range ignores most of the data.
- ► Sometimes we want to know the range of the middle 50% values. This motivates us to define **quartiles**.
- For the qth quartile,
  - at least  $\frac{q}{4}$  of the values are weakly below it and
  - at least  $1 \frac{q}{4}$  of the values are weakly above it.

Statistics I − Chapter 3, Fall 2012 ∟Ungrouped data: central tendency

#### Quartiles

► To calculate the *q*th quartile, q = 1, 2, 3, first calculate  $i = \frac{q}{4}N$ . Then we have the *q*th quartile as

$$Q_i \equiv \begin{cases} \frac{x_i + x_{i+1}}{2} & \text{if } i \in \mathbb{N} \\ x_i & \text{otherwise} \end{cases}$$

▶ Find the quartiles for the IW team:

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 177 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 |

- ▶ How many numbers are below the *q*th quartile?
- ▶ What is the proportion of numbers below the *q*th quartile?

## Some remarks for quartiles

- ▶ The **interquartile range** (IQR), is defined as the difference between the first and third quartiles.
  - What is the proportion of numbers in the interquartile range?
- ▶ What is the **second quartile**?
- ▶ The textbook says that, for the *q*th quartile, at most  $1 \frac{q}{4}$  of the values are weakly above it. What do you think?

Statistics I - Chapter 3, Fall 2012 Ungrouped data: central tendency

#### Percentiles

- ▶ The idea of quartiles can be generalized to **percentiles**.
- ▶ For the *P*th percentile,
  - at least  $\frac{P}{100}$  of the values are weakly below it and
  - at least  $1 \frac{P}{100}$  of the values are weakly above it.
- ▶ In theory, *P* can be any **real** number between 0 and 100.
- ▶ In practice, typically only **integer** values of *P* are of interest.

Statistics I - Chapter 3, Fall 2012 Ungrouped data: central tendency

#### Percentiles

▶ To calculate the *P*th percentile,  $P \in [0, 100]$ , first calculate  $i = \frac{P}{100}N$ . Then we have the *P*th percentile as

$$P_i \equiv \begin{cases} \frac{x_i + x_{i+1}}{2} & \text{if } i \in \mathbb{N} \\ x_i & \text{otherwise} \end{cases}$$

- The 25th percentile is the first quartile.
- ▶ The 50th percentile is the median.
- The 75th percentile is the third quartile.

Statistics I - Chapter 3, Fall 2012 Lungrouped data: central tendency

#### Some final remarks

- Five measures of central tendency for ungrouped data: modes, medians, means, quartiles, percentiles.
- ▶ Each measure provide a certain summary of the data.
- ▶ To better describe a set of data, combine some of these measures.

Statistics I – Chapter 3, Fall 2012 Ungrouped data: variability

# Road map

- ▶ Central tendency for ungrouped data.
- ► Variability for ungrouped data.
- ▶ Grouped data.
- ▶ Measures of shape.

# Variability for ungrouped data

- ► Measures of variability describe the spread or dispersion of a set of data.
- ▶ Especially useful when two sets of data have the same center.



# Variability for ungrouped data

- ▶ We will discuss seven measures of central tendency:
  - Ranges.
  - Interquartile ranges.
  - Mean absolute deviations.
  - ► Variances.
  - Standard deviations.
  - $\triangleright$  z scores.
  - Coefficients of variation.
- We first focus on ungrouped data. They are raw data without any categorization.

#### Ranges and Interquartile ranges

• The **range** of a set of data  $\{x_i\}_{i=1,\dots,N}$  is

$$\max_{i=1,\dots,N} \{x_i\} - \min_{i=1,\dots,N} \{x_i\}.$$

- ▶ In applications that require strict "guarantees," such as quality control, the range is important.
- The **interquartile range** of a set of data is the difference of the first and third quartile.
  - ▶ It is the range of the **middle 50%** of data.

#### Deviations from the mean

- Consider a set of population data  $\{x_i\}_{i=1,\dots,N}$  with mean  $\mu$ .
- ▶ Intuitively, a way to measure the dispersion is to examine how each number **deviates from the mean**.
- For  $x_i$ , the <u>deviation from the mean</u> is defined as

$$x_i - \mu$$
.

▶ For a **sample**, the deviations from the mean are defined based on the sample mean  $\bar{x}$ .

#### Deviations from the mean

- ▶ How to combine the *N* deviations into a single number?
- ▶ Intuitively, we may sum them up:

$$\sum_{i=1}^{N} (x_i - \mu).$$

- ▶ What will happen?
- ▶ How would you design a way to combine these deviations?

#### Deviations from the mean

- ▶ Instead of summing them up, we have the following two alternative options:
  - Summing up the absolute values of the deviations:

$$\sum_{i=1}^{N} |x_i - \mu|.$$

• Summing up the squares of the deviations.

$$\sum_{i=1}^{N} (x_i - \mu)^2.$$

## Mean absolute deviations

► The mean absolute deviation (MAD) of a population {x<sub>i</sub>}<sub>i=1,...,N</sub> is the average of the absolute values of the deviations from the mean:

$$\frac{\sum_{i=1}^{N} |x_i - \mu|}{N}$$

- ▶ It is always **nonnegative**. As long as any two numbers are different, it is **positive**.
- The larger the MAD is, the more dispersed the data is.

# Mean absolute deviations

- ▶ In the WI baseball team, there are with only six players. In one game, their scores are 3, 5, 6, 10, 12, and 18 points.
- ▶ Find the MAD of the population:
  - ▶ First, find the population size:

$$N = 6.$$

Second, find the population mean:

$$\mu = \frac{\sum_{i=1}^{6} x_i}{6} = 9.$$

#### Mean absolute deviations

 Third, find the sum of absolute deviations by constructing the following table:

|       | $x_i$ | $x_i - \mu$ | $ x_i - \mu $ |
|-------|-------|-------------|---------------|
|       | 3     | -6          | 6             |
|       | 5     | -4          | 4             |
|       | 6     | -3          | 3             |
|       | 10    | 1           | 1             |
|       | 12    | 3           | 3             |
|       | 18    | 9           | 9             |
| Total | 54    | 0           | 26            |

• Finally, the mean absolute deviation is  $\frac{26}{6} = \frac{13}{3} \approx 4.33$ .

#### Some remarks for MAD

- Mean absolute deviations are intuitive, easy to calculate, and reasonably representative.
- Unfortunately, as the absolute function is NOT differentiable, it is hard to derive rigorous statistical properties for it.
- ▶ Mean absolute deviations are thus less useful in Statistics.
  - ▶ In this semester, you will not see them again ...
  - In some applications, such as forecasting, mean absolute deviations are still adopted.

Statistics I – Chapter 3, Fall 2012 Ungrouped data: variability

#### Variances

► The <u>variance</u> of a population {x<sub>i</sub>}<sub>i=1,...,N</sub> is the average of the squared values of the deviations from the mean:

$$\sigma^2 \equiv \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

- ▶ It is always **nonnegative**. As long as any two numbers are different, it is **positive**.
- A larger variance implies a more dispersed set of data.
- It emphasizes on huge deviations.
- It is **differentiable**.

#### Variances

- ▶ Find the variance of the WI team players' scores {3, 5, 6, 10, 12, 18}. Note that this is a **population**.
- ▶ Again, we construct the following table:

|       | $x_i$ | $x_i - \mu$ | $(x_i - \mu)^2$ |
|-------|-------|-------------|-----------------|
|       | 3     | -6          | 36              |
|       | 5     | -4          | 16              |
|       | 6     | -3          | 9               |
|       | 10    | 1           | 1               |
|       | 12    | 3           | 9               |
|       | 18    | 9           | 81              |
| Total | 54    | 0           | 152             |

• The population variance is thus  $\sigma^2 = \frac{152}{6} = \frac{76}{3} \approx 25.33$ .

#### Some remarks for variances

- ▶ The population variance 25.33 is much larger than the mean absolute deviation 4.33. Is this always true?
- ▶ While the mean absolute deviation is 4.33 **points**, the population variance is 25.33 **squared points**.
- ▶ The main disadvantage of using variances is that the unit of measurement is the square of the original one.

## Population v.s. sample variances

- The symbol  $\sigma^2$  is always used as the **population variance**.
- ▶ For a sample  $\{x_i\}_{i=1,...,n}$ , the sample variance is defined as

$$s^2 \equiv \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

.

Notice that n - 1!!

▶ You probably want to ask something ...

#### Standard deviations

- ► To fix the problem of having a squared unit of measurement when using variances, we define standard deviations.
- For either a population or a sample, the standard deviation is the square root of the variance:

$$\sigma \equiv \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} \quad \text{and} \quad s \equiv \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}.$$

 Standard deviations have the same unit of measurement as the raw data. Statistics I – Chapter 3, Fall 2012 Ungrouped data: variability

#### Standard deviations

- ▶ As we will see, standard deviations play a very important role in statistical inference.
- Before that, let's study two interesting rules regarding standard deviations.

Statistics I – Chapter 3, Fall 2012 Ungrouped data: variability

## Chebyshev's theorem

• Chebyshev's theorem provides a lower bound on the proportion of data that are "close to" the mean:

#### Proposition 1 (Chebyshev's theorem)

For any set of data with mean  $\mu$  and standard deviation  $\sigma$ , if  $k \geq 1$ , at least

$$1 - \frac{1}{k^2}$$

proportion of the values are within  $[\mu - k\sigma, \mu + k\sigma]$ .

- ▶ So 75% of data are within  $2\sigma$ , 89% are within  $3\sigma$ , etc.
- ► The power of Chebyshev's theorem is that it applies to **any** set of data.

## Chebyshev's theorem

- ▶ Let's verify Chebyshev's theorem by investigating the WI team players' scores {3, 5, 6, 10, 12, 18}.
  - $\mu = 9$  and  $\sigma \approx 5.03$ .
  - For k = 2: [-1.06, 19.06] contains  $100\% > 1 \frac{1}{2^2} = 75\%$ .
  - ▶ For k = 1.5: [1.46, 16.55] contains  $83.3\% > 1 \frac{1}{(1.5)^2} = 55.6\%$ .
- ▶ We will prove this theorem when studying Chapter 6.
- ► As Chebyshev's theorem applies to any set of data, the bounds it provide are typically loose for most data.
- ▶ The next theorem does better for bell shaped data.

# The empirical rule

► The **empirical rule** estimates the approximate proportion of values that are "close to" the mean:

Observation 1 (The empirical rule)

For a bell shaped set of data, approximately 68%, 95%, and 99.7% of the values are within  $1\sigma$ ,  $2\sigma$ , and  $3\sigma$  from  $\mu$ .

- For the scores  $\{3, 5, 6, 10, 12, 18\}$ :
  - $\mu = 9$  and  $\sigma \approx 5.03$ .
  - For  $1\sigma$ : [3.97, 14.03] contains  $66.7\% \approx 68\%$ .
  - For  $2\sigma$ : [-1.06, 19.06] contains  $100\% \approx 95\%$ .

# Chebyshev's theorem v.s. empirical rule

▶ Recall that the IW team players' heights

| 162 | 165 | 170 | 171 | 172 | 172 | 175 | 175 | 175 | 177 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 177 | 178 | 178 | 178 | 179 | 180 | 180 | 182 | 183 | 184 |

are approximately bell shaped:



# Chebyshev's theorem v.s. empirical rule

- ▶ Let's apply the two rules on the IW team players' heights:
  - $\mu = 175.65$  and  $\sigma = 5.54$ .
  - ► The result:

|                     | $1\sigma$ | $2\sigma$ | $3\sigma$ |
|---------------------|-----------|-----------|-----------|
| Chebyshev's theorem | 0%        | 75%       | 88.9%     |
| Empirical rule      | 68%       | 95%       | 99.7%     |
| Real proportion     | 70%       | 95%       | 100%      |

# Some remarks for the empirical rule

- ► It is a **rule of thumb**! All we have are approximations.
- ▶ The approximation is precise for normally distributed data.
- ▶ The approximation is good only for bell shaped data.
- ▶ What kind of data may make the approximation bad?

Statistics I – Chapter 3, Fall 2012 Ungrouped data: variability

#### Standard scores

• For a number  $x_i$ , we define its <u>z</u> score (standard scores or z value) as

$$z = \frac{x_i - \mu}{\sigma}.$$

- ► A z score represents the number of standard deviations that the value deviates from the mean.
- ► z scores are particularly important for normal distributions. This will be discussed extensively later in the semester.

► The <u>coefficient of variation</u> is the **ratio** of the standard deviation to the mean:

Coefficient of variation 
$$= \frac{\sigma}{\mu}$$
.

- ▶ Why do we want to use coefficients of variation? Is using standard deviation not enough?
- ▶ When will you use coefficients of variation? Is it when you have one or multiple sets of data?

Statistics I – Chapter 3, Fall 2012 Grouped data

# Road map

- ▶ Central tendency for ungrouped data.
- ▶ Variability for ungrouped data.
- Grouped data.
- ▶ Measures of shape.

Statistics I – Chapter 3, Fall 2012 Grouped data

#### Grouped data

- A set of grouped data contains values that are divided into several classes.
  - One example is frequency distributions.
  - ▶ When you survey people's income ...
- ▶ We now introduce how to calculate the mean, median, mode, variance, and standard deviation for a set of grouped data.

# Means for grouped data

- In calculating the mean for a set of grouped data, the class midpoint are used to represent all the values in that class.
- ▶ For the IW team, suppose we only have the frequency table:

| Class      | Frequency |
|------------|-----------|
| [160, 164) | 1         |
| [164, 168) | 1         |
| [168, 172) | 2         |
| [172, 176) | 5         |
| [176, 180) | 6         |
| [180, 184) | 4         |
| [184, 188) | 1         |

# Means for grouped data

▶ The mean of this set of grouped data is calculated as follows:

| Class      | Frequency $(f_i)$ | Class midpoint $(M_i)$ | $f_i M_i$ |
|------------|-------------------|------------------------|-----------|
| [160, 164) | 1                 | 162                    | 162       |
| [164, 168) | 1                 | 166                    | 166       |
| [168, 172) | 2                 | 170                    | 340       |
| [172, 176) | 5                 | 174                    | 870       |
| [176, 180) | 6                 | 178                    | 1068      |
| [180, 184) | 4                 | 182                    | 728       |
| [184, 188) | 1                 | 186                    | 186       |
| Total      | 20                |                        | 3520      |

Then the mean is  $\frac{3520}{20} = 176$  cm.

# Means for grouped data

• For a set of grouped data with k classes, let  $M_i$  be the midpoint and  $f_i$  be the frequency of class i. The mean of this set of data is

$$\mu_{\text{grouped}} = \frac{\sum_{i=1}^{k} f_i M_i}{\sum_{i=1}^{k} f_i}.$$

- ▶ The mean for grouped data is just an approximation.
- ▶ It is hard to do better if we do not know more about the distribution of the data.

#### $53 \, / \, 65$

#### Variances for grouped data

- ► For variances, we still use the **class midpoint** to represent all numbers in each class.
- For a set of grouped data with mean  $\mu$  and k classes, let  $M_i$  be the midpoint and  $f_i$  be the frequency of class i. The variance of this set of data is

$$\sigma_{\text{grouped}}^2 = \frac{\sum_{i=1}^k f_i (M_i - \mu)^2}{\sum_{i=1}^k f_i}.$$

► Verify by yourself that the variance of the IW team's grouped heights is 32.8 cm<sup>2</sup>.

## Standard deviations for grouped data

- ► For standard deviations, we still use the **class midpoint** to represent all numbers in each class.
- For a set of grouped data with mean  $\mu$  and k classes, let  $M_i$  be the midpoint and  $f_i$  be the frequency of class i. The variance of this set of data is

$$\sigma_{\text{grouped}} = \sqrt{\frac{\sum_{i=1}^{k} f_i (M_i - \mu)^2}{\sum_{i=1}^{k} f_i}}.$$

▶ Verify by yourself that the standard deviation of the IW team's grouped heights is 5.73 cm.

Statistics I − Chapter 3, Fall 2012 Grouped data

#### For samples

▶ When the grouped data form a sample, change the denominator from  $\sum_{i=1}^{k} f_i$  to  $\sum_{i=1}^{k} f_i - 1$ .

Statistics I – Chapter 3, Fall 2012 Grouped data

# Modes for grouped data

- The mode for grouped data is the class midpoint of the modal class.
- Verify by yourself that the mode of the IW team's grouped heights is 178 cm.

# Medians for grouped data

- Calculating medians for grouped data does NOT use class midpoints!
- ▶ It involves the following steps:
  - Given the size N, find the **median class**: the class in which the  $\frac{N}{2}$ th term locates.
  - Determine the **position in the class** of the  $\frac{N}{2}$ th term.
  - ▶ Do an **interpolation** within the median class based on the position and the frequency of the class.

Statistics I – Chapter 3, Fall 2012 Grouped data

#### Medians for grouped data

| Class      | Frequency |
|------------|-----------|
| [160, 164) | 1         |
| [164, 168) | 1         |
| [168, 172) | 2         |
| [172, 176) | 5         |
| [176, 180) | 6         |
| [180, 184) | 4         |
| [184, 188) | 1         |

$$\blacktriangleright \ \frac{N}{2} = 10.$$

- ► The tenth term locates in the class [176, 180). It is the first term of the median class.
- ► As the class starts from 176, ends at 180, and has six terms, the interpolation puts the first term at

$$176 + \frac{1}{6}(180 - 176) \approx 176.67.$$

▶ So the median is 176.67 cm.

Statistics I − Chapter 3, Fall 2012 ∟Measure of shape

# Road map

- ▶ Central tendency for ungrouped data.
- ▶ Variability for ungrouped data.
- ▶ Grouped data.
- ► Measures of shape.

Statistics I − Chapter 3, Fall 2012 ∟Measure of shape

- ▶ In describing the distribution of a set of data, the **shape** is also important.
- There are two common statistical descriptions on the shape of a set of data:
  - Skewness.
  - Kurtosis.

Statistics I − Chapter 3, Fall 2012 Measure of shape

- ► A distribution is <u>symmetric</u> if its right half is the <u>mirror</u> image of its left half.
- ► A distribution is <u>skewed</u> (asymmetric) if it is not symmetric.
- ▶ There are two types of skewness, depending on where the tail goes:
  - Positively skewed or skewed to the right.
  - Negatively skewed or <u>skewed to the left</u>.

Statistics I − Chapter 3, Fall 2012 ∟Measure of shape

- ▶ Which curve is symmetric?
- ▶ Which is skewed to the left?
- ▶ Which is skewed to the right?





- ▶ If a distribution is unimodal, the relationship among the mean, median, and mode gives hints to the skewness.
  - Symmetric: mean = median = mode.
  - Skewed to the left: mean < median < mode.
  - ▶ Skewed to the right: mean > median > mode.





Statistics I − Chapter 3, Fall 2012 ∟Measure of shape

#### Coefficients of skewness

- ▶ Many different <u>coefficients of skewness</u> have been defined.
- ► A coefficient of skewness is a function of the data values such that the function is:
  - ▶ symmetric if the coefficient is 0,
  - ▶ skewed to the right if the coefficient is positive, and
  - ▶ skewed to the left if the coefficient is negative.
- No one says which coefficient of skewness dominates all others.

Statistics I − Chapter 3, Fall 2012 ∟Measure of shape

#### **Kurtosis**

- ▶ <u>Kurtosis</u> describes the **degree of peakedness** of a distribution.
- ▶ Many different <u>coefficients of kurtosis</u> have been defined.
- No one says which coefficient of kurtosis dominates all others.