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LNIeasures of linear relationship

Introduction

» In Chapter 3, we have studied several descriptive measures
of a single variable.

» How to describe a relationship between two variables?

» In particular, we will focus on identifying and describing a
linear relationship.
» A linear relationship is usually call a
» For relationships among multiple variables: Multlvarlate
statistical analysis.
» For relationships among multiple variables with time index:
Time series analysis.
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LNIeasures of linear relationship

Introduction

» Suppose we have a set of two-dimensional quantitative
data, {(x;,v:) bic1. N-
» How do we know whether there is a correlation between the
two dimensions?
» If yes, how does one dimension affect the other one?
» If yes, how to quantify the strength?
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LMeasures of linear relationship

Example: house sizes and prices

Size Price
(in m2)  (in $1000)
75 315
59 229
85 355
65 261
72 234
46 216
107 308
91 306
75 289
65 204
88 265
59 195
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» Consider the size of a house and its price in the IM city:
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LNIeasures of linear relationship

Intuition

» Suppose we want to see whether the following is true:
“When one variable becomes larger, the other one tends to
become larger as well.”

» In this case, when z; is larger than u,, the mean of the x;’s,
intuitively what should happen between y; and p,,?
>y > py?
> Yi = iy
>y < Ny?

» So let’s separate the plane into four “quadrants” based on
fe and fi,.
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LMeasures of linear relationship

Intuition

» The scatter plot with the two means:

Houses in the IM city
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» Most points fall in the first and third quadrants!
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LNIeasures of linear relationship

Covariances

» So we define the covariance of a set of two-dimensional
population data as

» If most points fall in the first and third quadrants, most
(@i — pa)(y — py) will be positive and o, tends to be positive.
» Otherwise, 0., tends to be negative.
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LNIeasures of linear relationship

Example: house sizes

» For our example:

and prices

x; Yi T —px Yi — My (T — pa) (Y — py)
75 315 1.08 50.25 54.44

59 229 —14.92 —35.75 533.27

85 355 11.08 90.25 1000.27
65 261 —8.92 —3.75 33.44

72 234 —1.92 —30.75 58.94

46 216 —27.92 —48.75 1360.94
107 308 33.08 43.25 1430.85
91 306 17.08 41.25 704.69

75 289 1.08 24.25 26.27

65 204 —8.92 —60.75 541.69

88 265 14.08 0.25 3.52

59 195 —14.92 —69.75 1040.44

po = 7392  py = 264.75 - - Ozy = 565.73
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LNIeasures of linear relationship

Covariances and variances

» Interestingly, the covariance of a single variable is its
variance:
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LNIeasures of linear relationship
Covariances and correlations

» For a pair of two variables, there are three possibilities:
» They are positively correlated if the covariance is
significantly greater than zero.
» They are negatively correlated if the covariance is
significantly less than zero.
» They are uncorrelated if the covariance is close to zero.

» But how to define significance? How to compare the degrees
of correlation among multiple pairs of variables?

» In particular, the variability of each variable itself affects
the value of covariance. We need some kind of
normalization.



Statistics I — Supplements for Chapter 3, Fall 2012 11/14

LNIeasures of linear relationship

Correlation coefficients

» The correlation coefficient of a set of two-dimensional
data {(2;, i) }iz1,..~ 18

_ Oay
p=—",
020y

where 0, and o, are the standard deviations of z;s and y;s,
respectively.

» In essence, we normalize the co-variability by the
auto-variability of the two variables.
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LNIeasures of linear relationship

Correlation coefficients

» Correlation coefficients have a very nice property:

Proposition 1

Let p be the correlation coefficient of a set of
two-dimensional data, then

—1<p<1
» Intuition: When calculating o, positive and negative terms

may cancel each others. But when calculating o, and oy, this
never happens.
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LNIeasures of linear relationship

Correlation coefficients

» In practice, people often use the following rule to determine
the degree of correlation based on |p|:

0 < |p| < 0.25: A weak correlation.

0.25 < |p| < 0.5: A moderately weak correlation.

0.5 < |p| < 0.75: A moderately strong correlation.

0.75 < |p| < 1: A strong correlation.
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» Typically, we do not say “there is a correlation” if |p| < 0.5.
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LMeasures of linear relationship

For sample data

» For a set of two-dimensional sample data {(z;, y;) }iz1, n:

» The sample covariance is

o= D)= §)

n—1

Spy =

» The correlation coefficient is

Say
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