Statistics I – Supplements for Chapter 3 Measures of Linear Relationship

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 26, 2012

Introduction

- ▶ In Chapter 3, we have studied several descriptive measures of a **single** variable.
- ▶ How to describe a relationship between **two** variables?
- ► In particular, we will focus on identifying and describing a **linear relationship**.
 - A linear relationship is usually call a <u>correlation</u>.
 - ► For relationships among multiple variables: Multivariate statistical analysis.
 - ▶ For relationships among multiple variables with time index: Time series analysis.

Introduction

- Suppose we have a set of **two-dimensional** quantitative data, $\{(x_i, y_i)\}_{i=1,\dots,N}$.
 - How do we know whether there is a correlation between the two dimensions?
 - ▶ If yes, how does one dimension affect the other one?
 - If yes, how to quantify the strength?

Example: house sizes and prices

• Consider the size of a house and its price in the IM city:

Intuition

- Suppose we want to see whether the following is true:
 "When one variable becomes larger, the other one tends to become larger as well."
- ▶ In this case, when x_i is larger than μ_x , the mean of the x_i 's, intuitively what should happen between y_i and μ_y ?

•
$$y_i > \mu_y$$
?

•
$$y_i = \mu_y$$
?

•
$$y_i < \mu_y$$
?

► So let's separate the plane into four "quadrants" based on μ_x and μ_y .

Statistics I – Supplements for Chapter 3, Fall 2012 — Measures of linear relationship

Intuition

▶ The scatter plot with the two means:

Most points fall in the first and third quadrants!

Statistics I – Supplements for Chapter 3, Fall 2012 — Measures of linear relationship

Covariances

► So we define the <u>covariance</u> of a set of two-dimensional population data as

$$\sigma_{xy} \equiv \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N}.$$

- If most points fall in the first and third quadrants, most $(x_i \mu_x)(y \mu_y)$ will be positive and σ_{xy} tends to be positive.
- Otherwise, σ_{xy} tends to be negative.

Statistics I – Supplements for Chapter 3, Fall 2012 Measures of linear relationship

Example: house sizes and prices

► For our example:

x_i	y_i	$x_i - \mu_x$	$y_i - \mu_y$	$(x_i - \mu_x)(y_i - \mu_y)$
75	315	1.08	50.25	54.44
59	229	-14.92	-35.75	533.27
85	355	11.08	90.25	1000.27
65	261	-8.92	-3.75	33.44
72	234	-1.92	-30.75	58.94
46	216	-27.92	-48.75	1360.94
107	308	33.08	43.25	1430.85
91	306	17.08	41.25	704.69
75	289	1.08	24.25	26.27
65	204	-8.92	-60.75	541.69
88	265	14.08	0.25	3.52
59	195	-14.92	-69.75	1040.44
$\mu_x = 73.92$	$\mu_y = 264.75$	_	_	$\sigma_{xy} = 565.73$

Statistics I – Supplements for Chapter 3, Fall 2012 Measures of linear relationship

Covariances and variances

 Interestingly, the covariance of a single variable is its variance:

$$\sigma_{xx} \equiv \frac{\sum_{i=1}^{N} (x_i - \mu_x)(x_i - \mu_x)}{N}$$
$$= \frac{\sum_{i=1}^{N} (x_i - \mu_x)^2}{N} \equiv \sigma^2.$$

Covariances and correlations

- ▶ For a pair of two variables, there are three possibilities:
 - ► They are **positively correlated** if the covariance is significantly **greater than zero**.
 - They are **negatively correlated** if the covariance is significantly **less than zero**.
 - They are <u>uncorrelated</u> if the covariance is **close to zero**.
- ▶ But how to define significance? How to compare the degrees of correlation among multiple pairs of variables?
- In particular, the variability of each variable itself affects the value of covariance. We need some kind of normalization.

Correlation coefficients

▶ The <u>correlation coefficient</u> of a set of two-dimensional data $\{(x_i, y_i)\}_{i=1,...,N}$ is

$$\rho \equiv \frac{\sigma_{xy}}{\sigma_x \sigma_y},$$

where σ_x and σ_y are the standard deviations of x_i s and y_i s, respectively.

 In essence, we normalize the co-variability by the auto-variability of the two variables.

Correlation coefficients

► Correlation coefficients have a very nice property:

Proposition 1

Let ρ be the correlation coefficient of a set of two-dimensional data, then

$$-1 \le \rho \le 1.$$

• Intuition: When calculating σ_{xy} , positive and negative terms may cancel each others. But when calculating σ_x and σ_y , this never happens.

Statistics I – Supplements for Chapter 3, Fall 2012 — Measures of linear relationship

Correlation coefficients

- In practice, people often use the following rule to determine the degree of correlation based on |ρ|:
 - ▶ $0 \le |\rho| < 0.25$: A weak correlation.
 - ▶ $0.25 \le |\rho| < 0.5$: A moderately weak correlation.
 - ▶ $0.5 \le |\rho| < 0.75$: A moderately strong correlation.
 - ▶ $0.75 \le |\rho| \le 1$: A strong correlation.
- Typically, we do not say "there is a correlation" if $|\rho| < 0.5$.

Statistics I – Supplements for Chapter 3, Fall 2012 Measures of linear relationship

For sample data

- ▶ For a set of two-dimensional sample data $\{(x_i, y_i)\}_{i=1,...,n}$:
 - The sample covariance is

$$s_{xy} \equiv \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n - 1}.$$

▶ The <u>correlation coefficient</u> is

$$r \equiv \frac{s_{xy}}{s_x s_y}$$