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Introduction

I We have studied frequency distributions.
I For each value or interval, what is the frequency?

I In the next three chapters, we will study probability
distributions.
I For each value or interval, what is the probability?

I There are two types of probability distribution:
I Population distributions: Chapters 5 and 6.
I Sampling distributions: Chapter 7.
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Random variables

Basic concepts

Road map

I Random variables.
I Basic concepts.
I Expectations and variances.

I Binomial distributions.

I Hypergeometric distributions.

I Poisson distributions.
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Random variables

Basic concepts

Random variables

I A random variable (RV) is a variable whose outcomes are
random.

I Examples:
I The outcome of tossing a coin.
I The outcome of rolling a dice.
I The number of people preferring Pepsi to Coke in a group of

25 people.
I The number of consumers entering a bookstore at 7-8pm.
I The temperature of this classroom at tomorrow noon.
I The average studying hours of a group of 10 students.
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Random variables

Basic concepts

Discrete random variables

I A random variable can be discrete, continuous, or mixed.

I A random variable is discrete if the set of all possible
values is finite or countably infinite.
I The outcome of tossing a coin: Finite.
I The outcome of rolling a dice: Finite.
I The number of people preferring Pepsi to Coke in a group of

25 people: Finite.
I The number of consumers entering a bookstore at 7-8pm:

Countably infinite.
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Random variables

Basic concepts

Continuous random variables

I A random variable is continuous if the set of all possible
values is uncountable.
I The temperature of this classroom at tomorrow noon.
I The average studying hours of a group of 10 students.
I The interarrival time between two consumers.
I The GDP per capita of Taiwan in 2013.
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Random variables

Basic concepts

Discrete v.s. continuous RVs

I For a discrete RV, typically things are counted.
I Typically there are gaps among possible values.

I For a continuous RV, typically things are measured.
I Typically possible values form an interval.
I Such an interval may have a infinite length.

I Sometimes a random variable is called mixed.
I On Saturday I may or may not go to school. If I go, I need at

least one hour for communication. Let X be the number of
hours I spend in working including communication on
Saturday. Then X ∈ {0} ∪ [1, 24].

I By definition, is a mixed RV discrete or continuous?
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Random variables

Basic concepts

Discrete and continuous distributions

I The possibilities of outcomes of a random variable are
summarized by probability distributions, or simply
distributions.

I As variables can be either discrete or continuous,
distributions may also be either discrete or continuous.

I In this chapter we study discrete distributions.

I In Chapter 6 we study continuous distributions.
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Random variables

Basic concepts

Describing a discrete distribution

I On way to fully describe a discrete distribution is to list all
possible outcomes and their probabilities.
I Let X be the result of tossing a fair coin:

x H T

Pr(X = x) 1
2

1
2

I Let X be the result of rolling a fair dice:

x 1 2 3 4 5 6

Pr(X = x) 1
6

1
6

1
6

1
6

1
6

1
6
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Random variables

Basic concepts

Describing a discrete distribution

I But complete enumeration is unsatisfactory if there are too
many (or even infinite) possible values.

I Also, sometimes there is a formula for the probabilities.

I Suppose we toss a fair coin and will stop with a tail.

I Let X be the number of tosses we make.
I Pr(X = 1) = 1

2 (getting a tail at the first time).

I Pr(X = 2) = (12)(12) = 1
4 (head and then a tail).

I Pr(X = 3) = (12)(12)(12) = 1
8 (head, head, and then a tail).

I In general, Pr(X = x) = (12)x for all x = 1, 2, ....

I No need to create a table!
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Random variables

Basic concepts

Probability mass functions

I The formula of calculating the probability of each possible
value of a discrete random variable is call a
probability mass function (pmf).
I This is sometimes abbreviated as a probability function (pf).
I Pr(X = x) = (12)x, x = 1, 2, ..., is the pmf of X.
I If the meaning is clear, Pr(X = x) is abbreviated as Pr(x).
I Any finite list of probabilities can be described by a pmf.

I In practice, many random variables cannot be exactly
described by a pmf (or the pmf is too hard to be found).

I In this case, people may approximate the distribution of
the random variable by a distribution with a known pmf.

I So the first step is to study some well-known distributions.
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Random variables

Basic concepts

Parameters of a distribution

I A distribution depends on a formula.

I A formula depends on some parameters.
I Suppose the coin now generates a head with probability p.
I How to modify the original pmf Pr(X = x) = (12)x?
I The pmf becomes Pr(X = x|p) = px−1(1− p), x = 1, 2, ....
I The probability p is called the parameter of this

distribution.

I Be aware of the difference between:
I The parameter of a population and
I The parameter of a distribution.
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Random variables

Expectations and variances

Descriptive measures

I Consider a discrete random variable X with a sample space
S, realizations {xi}i∈S, and a pmf Pr(·).

I The expected value (or mean) of X is

µ ≡ E[X] =
∑
i∈S

xi Pr(xi).

I The variance of X is

σ2 ≡ Var(X) ≡ E
[
(X − µ)2

]
=
∑
i∈S

(xi − µ)2 Pr(xi).

I The standard deviation of X is σ ≡
√
σ2.
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Random variables

Expectations and variances

Descriptive measures: an example

I Let X be the outcome of rolling a dice, then the pmf is
Pr(x) = 1

6
for all x = 1, 2, ..., 6.

I The expected value of X is

E[X] ≡
6∑
i=1

xi Pr(xi) =
1

6
(1 + 2 + · · ·+ 6) = 3.5.

I The variance of X is

Var(X) ≡
∑
i∈S

(xi − µ)2 Pr(xi)

=
1

6

[
(−2.5)2 + (−1.5)2 + · · ·+ 2.52

]
≈ 2.92.

I The standard deviation of X is
√

2.92 ≈ 1.71.
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Random variables

Expectations and variances

Linear functions of a random variable

I Consider the linear function a+ bX of a RV X.

Proposition 1

Let X be a random variable and a and b be two known
constants, then

E[a+ bX] = a+ bE[X] and Var(a+ bX) = b2Var(X).

Proof. Similar to Problems 5a and 5b in Homework 3.

I If one earns 5x by rolling x, the expected value of variance
of the earning of rolling a dice are 17.5 and 72.92.
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Random variables

Expectations and variances

Expectation of a sum of RVs
I Consider the sum of a set of n random variables:

n∑
i=1

Xi = X1 +X2 + · · ·+Xn.

What is the expectation?

I “Expectation of a sum is the sum of expectations:”

Proposition 2

Let {Xi}i=1,...,n be a set of random variables, then

E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi].



Statistics I – Chapter 5, Fall 2012 17 / 70

Random variables

Expectations and variances

Expectation of a sum of RVs

I Proof of Proposition 2. Suppose n = 2 and Si is the sample
space of Xi, then

E[X1 +X2] =
∑
x1∈S1

∑
x2∈S2

(x1 + x2) Pr(x1, x2)

=
∑
x1∈S1

∑
x2∈S2

x1 Pr(x1, x2) +
∑
x2∈S1

∑
x1∈S2

x2 Pr(x1, x2)

=
∑
x1∈S1

x1
∑
x2∈S2

Pr(x1, x2) +
∑
x2∈S2

x2
∑
x1∈S1

Pr(x1, x2)

=
∑
x1∈S1

x1 Pr(x1) +
∑
x2∈S2

x2 Pr(x2) = E[X1] + E[X2],

where Pr(x1, x2) is the abbreviation of Pr(X1 = x1, X2 = x2).
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Random variables

Expectations and variances

Expectation of a product of RVs
I Consider the product of n independent random variables:

n∏
i=1

Xi = X1 ×X2 × · · · ×Xn.

Proposition 3

Let {Xi}i=1,...,n be a set of independent RVs, then

E

[
n∏
i=1

Xi

]
=

n∏
i=1

E[Xi].

Proof. Homework!
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Random variables

Expectations and variances

Variance of sum of RVs

I “Variance of an independent sum is the sum of variances:”

Proposition 4

Let {Xi}i=1,...,n be a set of independent random variables,
then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi).

I Is Var(2X) = 2Var(X)? Why?

I Is E(2X) = 2E(X)? Why?



Statistics I – Chapter 5, Fall 2012 20 / 70

Random variables

Expectations and variances

Variance of sum of RVs

I Proof of Proposition 4. Suppose n = 2 and E[Xi] = µi, then

Var(X1 +X2) = E
[
X1 +X2 − E[X1 +X2]

]2
= E[X1 +X2 − µ1 + µ2]

2

= E
[
(X1 − µ1)2 + (X2 − µ2)2 + 2(X1 − µ1)(X2 − µ2)

]
= Var(X1) + Var(X2) + 2E

[
(X1 − µ1)(X2 − µ2)

]
.

Because X1 and X2 are independent, E[X1X2] = µ1µ2. Thus,

E
[
(X1−µ1)(X2−µ2)

]
= E[X1X2]−µ1E[X2]−µ2E[X1]+µ1µ2 = 0,

which completes the proof.
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Random variables

Expectations and variances

Summary

I Two definitions:
I E[X].

I Var(X) = E
[
X − E[X]

]2
.

I Four fundamental properties:
I E[a+ bX] = a+ bE[X] and Var[a+ bX] = b2Var[X].

I E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn].

I E[X1 × · · · ×Xn] = E[X1]× · · · × E[Xn] if independent.

I Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn) if independent.
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Binomial distributions

Bernoulli distributions

Road map

I Random variables.

I Binomial distributions.
I Bernoulli distributions.
I Binomial distributions.

I Hypergeometric distributions.

I Poisson distributions.
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Binomial distributions

Bernoulli distributions

Bernoulli trials

I The study of the binomial distribution must start from
studying Bernoulli trials.

I In some types of trial, the random result is binary.
I Tossing a coin.
I The sex of a person.
I Taller or shorter than 170cm.

I One such trial is called a Bernoulli trial.

I This is named after Jacob Bernoulli, the uncle of Daniel
Bernoulli, who established the Bernoulli Principle in for
fluid dynamics.
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Binomial distributions

Bernoulli distributions

Bernoulli distributions

I So in a Bernoulli trial, the outcome is binary.

I Typically they are labeled as 0 and 1.
I In some cases, 0 means a failure and 1 means a success.

I Let the probability of observing 1 be p. This defines the
Bernoulli distribution:

Definition 1 (Bernoulli distribution)

A random variable X follows the Bernoulli distribution with
parameter p ∈ (0, 1), denoted by X ∼ Ber(p), if its pmf is

Pr(x|p) =

{
p if x = 1
1− p if x = 0

.
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Binomial distributions

Bernoulli distributions

Bernoulli distributions

I What are the mean and variance of a Bernoulli RV?

Proposition 5

Let X ∼ Ber(p), then E[X] = p and Var(X) = p(1− p).

I Intuitions:
I We will see 1 more likely if p goes up.
I The variance is zero if p = 1 or p = 0. Why?
I The variance is maximized at p = 1

2 . It is the hardest case for
predicting the result.
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Binomial distributions

Bernoulli distributions

Bernoulli distributions

I Proof of Proposition 5. For the mean, we have

E[X] ≡
∑
i∈S

xi Pr(xi) = 1× p+ 0× (1− p) = p.

For the variance, we have

Var(X) ≡
∑
i∈S

(xi − E[X])2 Pr(xi)

= (1− p)2p+ (−p)2(1− p) = p(1− p).

Note that both derivations are based on the definitions.
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Binomial distributions

Bernoulli distributions

Some remarks for Jacob Bernoulli

I Jacob Bernoulli (1654 – 1705) was one of the many
prominent Swiss mathematicians in the Bernoulli family.

I He is best known for the work Ars Conjectandi (The Art of
Conjecture), published eight years after his death.

I He discovered the value of e by solving the limit

lim
n→∞

(
1 +

1

n

)n
.

I He provided the first rigorous proof for the Law of Large
Numbers (for the special case of binary variables).
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Binomial distributions

Binomial distributions

A sequence of Bernoulli trials

I Now we are ready to study the binomial distribution.

I Consider a sequence of n independent Bernoulli trials.

I Let the outcomes be Xis, where Xi ∼ Ber(p), i = 1, 2, ..., n.

I Then consider the sum of these Bernoulli variables

Y =
n∑
i=1

Xi.

Y denotes the number of “1” observed in the n trials.
I Number of heads observed after tossing a coin ten times.
I Number of men sampled in 1000 randomly selected people.
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Binomial distributions

Binomial distributions

Finding the probability: a special case

I What is the probability that we see x 1s in n trials?

I Maybe an easier question: What is the probability that we
see two 1s in five trials?

I There are many different possibilities to see two 1s:

1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 0 1 1
1 0 0 0 1

I Note that these are ten mutually exclusive events. What we
want is a union probability of the union of these ten events.

I By the special law of addition, the union probability is the
sum of the probabilities of these ten events.

I So what is the probability of each event?
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Binomial distributions

Binomial distributions

Finding the probability: a special case

I The ten events:

1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 0 1 1
1 0 0 0 1

I Event 1: (X1, X2, X3, X4, X5) = (1, 1, 0, 0, 0). This is a joint
event, an intersection of five independent events.

I So by the special law of multiplication, the joint
probability is the product of the five marginal events:

Pr(X1 = 1, X2 = 1, X3 = 0, X4 = 0, X5 = 0)

= Pr(X1 = 1)(X2 = 1)(X3 = 0)(X4 = 0)(X5 = 0)

= p · p · (1− p)(1− p)(1− p) = p2(1− p)3
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Binomial distributions

Binomial distributions

Finding the probability: a special case
I The ten events:

1 1 0 0 0 0 1 1 0 0 0 0 1 1 0
1 0 1 0 0 0 1 0 1 0 0 0 1 0 1
1 0 0 1 0 0 1 0 0 1 0 0 0 1 1
1 0 0 0 1

I So the probability of event 1 is p2(1−p)3. How about event 2?
I The probability of event 2 is p(1− p)p(1− p)(1− p), which is

also p2(1− p)3!
I In fact, the probabilities of all the ten events are all p2(1− p)3.

I Combining all the discussions above, we have

Pr

(
n∑
i=1

Xi = 2

∣∣∣∣∣n = 5, p

)
= 10p2(1− p)3.
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Binomial distributions

Binomial distributions

Finding the probability

I What is the probability that we see x 1s in n trials?
I In n trials, we need to see x 1s and n− x 0s.
I The probability that those “chosen” trials all result in 1 is px.
I The probability that other trials all result in 0 is (1− p)n−x.
I How many different ways to choose x trials out of n trials?(

n

x

)
=

n!

x!(n− x)!
.

I The product of these three yields the desired probability, as
shown in the next page.
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Binomial distributions

Binomial distributions

Binomial distributions

I The variable
∑n

i=1Xi follows the Binomial distribution.

Definition 2 (Binomial distribution)

A random variable X follows the Binomial distribution with
parameters n ∈ N and p ∈ (0, 1), denoted by X ∼ Bi(n, p),
if its pmf is

Pr(x|n, p) =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x

for x ∈ S = {0, 1, ..., n}.
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Binomial distributions

Binomial distributions

Graphing binomial distributions

I When n is fixed, increasing p shifts the peak of a binomial
distribution to the right.

I What is the skewness when p = 0.5?
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Binomial distributions

Binomial distributions

An example

I Suppose a machine producing chips has a 6% defective rate.
A company purchased twenty of these chips.

I Let X be the number of defectives, then X ∼ Bi(20, 0.06).

1. The probability that none is defective is

Pr(X = 0) =

(
20

0

)
0.0600.9420,

which is around 0.29.
2. The probability that no more than two are defective is

Pr(X ≤ 2) = 0.29 +

(
20

1

)
0.0610.9419 +

(
20

2

)
0.0620.9418

= 0.29 + 0.37 + 0.22 = 0.88.
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Binomial distributions

Binomial distributions

Other applications

I Suppose when one consumer passes our apple store, the
probability that she or he will buy at least one apple is 2%.
If 100 consumers passes our apple store per day:
I How many apples may we sell in expectation?
I Facing the trade off between lost sales and leftover inventory,

how many apples should we prepare to maximize our profit?

I Among all candidates we have interviewed, 20% are
outstanding. If we randomly hire ten people, what is the
probability that at least three of them are outstanding?
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Binomial distributions

Binomial distributions

Be careful!

I Look at the following “application” again:
I Among all candidates we have interviewed, 20% are

outstanding. If we randomly hire ten people, what is the
probability that at least three of them are outstanding?

I Is there anything wrong?

I If there are only fifteen people interviewed, selecting ten
out of fifteen is NOT a sequence of Bernoulli trails!

I Why?
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Binomial distributions

Binomial distributions

Sampling with replacement?

I When we sample without replacement, we may not use
binomial distributions.
I Randomly selecting six distinct numbers out of 1, 2, ..., 42.
I Randomly asking ten students in this class regarding whether

they want more homework.

I Fortunately, sampling without replacement can be
approximated by sampling with replacement when n

N
→ 0.

I In practice, we require n ≤ 0.05N for applying the binomial
distribution on sampling without replacement.
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Binomial distributions

Binomial distributions

Expectations and variances

I What are the expectation and variance of a binomial
random variable?

Proposition 6

Let X ∼ Bi(n, p), then

E[X] = np and Var(X) = np(1− p).

I Any intuition?
I Hint. Consider the underlying Bernoulli sequence.
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Binomial distributions

Binomial distributions

Expectations and variances

I Proof of Proposition 6. We can express the binomial random
variable as X =

∑n
i=1Xi, where Xi ∼ Ber(p). Now, according to

Proposition 2, we have

E[X] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] =

n∑
i=1

p = np.

Moreover, according to Proposition 4, we have

Var(X) = Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) =

n∑
i=1

p(1−p) = np(1−p),

where this result is due to the independence of Xis.
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Binomial distributions

Binomial distributions

Sum of independent binomial RVs

I What if we add two binomial random variables together?

Proposition 7

Let X1 ∼ Bi(n1, p1) and X2 ∼ Bi(n2, p2). Suppose X1 and
X2 are independent and p1 = p2, then then

X1 +X2 ∼ Bi(n1 + n2, p).

I Intuition: It is the sum of two independent Bernoulli
sequences.

I What if p1 6= p2?
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Hypergeometric distributions

Road map

I Random variables.

I Binomial distributions.

I Hypergeometric distributions.

I Poisson distributions.
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Hypergeometric distributions

Hypergeometric distributions

I Consider an experiment with sampling without
replacement.

I When n ≤ 0.05N , we may use a binomial distribution to
model the experiment.

I What if n > 0.05N?

I The hypergeometric distribution is defined for this
situation.
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Hypergeometric distributions

Hypergeometric distributions

I In describing an experiment like this, we need three
parameters:
I N : the population size.
I A: the number of outcomes that are labeled as “1.”
I n: the sample size.

I Consider a box containing N balls where A of them are
white. Suppose we randomly pick up n balls, what is the
probability for us to see x white balls?
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Hypergeometric distributions

Hypergeometric distributions: the pmf

I The pmf of a hypergeometric random variable is “a
combination of three combinations:”

Definition 3 (Hypergeometric distribution)

An RV X follows the hypergeometric distribution with
parameters N ∈ N, n ∈ {1, 2, ..., N − 1}, and
A ∈ {0, 1, ..., N}, denoted by X ∼ HG(N,A, n), if its pmf is

Pr(x|N,A, n) =

(
A
x

)(
N−A
n−x

)(
N
n

)
for x ∈ S = {0, 1, ..., n}.
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Hypergeometric distributions

Expectations and variances

I What are the expectation and variance of a hypergeometric
random variable?

Proposition 8

Let X ∼ HG(N,A, n) and p = A
N
, then

E[X] = np and Var(X) = np(1− p)
(
N − n
N − 1

)
.

Proof. Homework!

I Similar to those of a binomial random variable?
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Hypergeometric distributions

Expectations and variances

I Consider a binomial RV and a hypergeometric RV:
I Their means are the same: np = n

(
A
N

)
.

I Their variances are different: np(1− p) and np(1− p)
(
N−n
N−1

)
.

I For the two variances, which one is smaller?

I Why? Why sampling with replacement has a larger
variance than sampling without replacement does?
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Hypergeometric distributions

Binomial v.s. hypergeometric RVs

I A hypergeometric random variable can be approximated
by a binomial random variable when n

N
is close to 0.
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Hypergeometric distributions

Binomial v.s. hypergeometric RVs

I Also, a hypergeometric RV is more centralized.
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Hypergeometric distributions

Binomial v.s. hypergeometric RVs

I In general, let A
N

= p, one can show that(
A
x

)(
N−A
n−x

)(
N
n

) →
(
n

x

)
px(1− p)1−x as N →∞.

This shows that a hypergeometric RV is approximately a
binomial RV when n

N
is close to 0.

I It is easier to verify that the mean and variance of a
hypergeometric RV approach those of a binomial RV:
I Mean: they are actually the same: n

(
A
N

)
= np.

I Variance: np(1− p)
(
N−n
N−1

)
→ np(1− p) as N →∞.
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Hypergeometric distributions

Relationships

Ber(p)
��
��

��
��

��1∑n
i=1; indep.

Bi(n, p)

PPPPPPPPPPq
∑n

i=1; dep.
HG(N,A, n)

6

p = A
N

n
N
→ 0
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Poisson distributions

Poisson distributions

Road map

I Random variables.

I Binomial distributions.

I Hypergeometric distributions.

I Poisson distributions.
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Poisson distributions

Poisson distributions

Poisson distributions

I The Poisson distribution is one of the most important
probability distribution in the field of Operations Research.

I Like the binomial and hypergeometric distributions, it also
counts the number of occurrences of a particular event.

I However, it does not have a predetermined number of trials.
Instead, it counts the number of occurrences within a given
interval or continnum.
I Number of consumers entering an LV store in our hour.
I Number of telephone calls per minute into a call center.
I Number of typhoons landing Taiwan in one year.
I Number of sewing flaws per pair of jeans.
I Number of times that one catches a cold in each year.
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Poisson distributions

Poisson distributions

Poisson distributions

I A fundamental assumption of the Poisson distribution is the
homogeneity of the arrival rate.
I The arrival rate is the rate that the event occurs.
I The arrival rate is identical throughout the interval.
I It is denoted by λ: In average, there are λ occurrences in one

unit of time (be aware of the unit of measurement!).

I Theoretically, the number of occurrence within an interval
can range from zero to infinity.

I So a Poisson RV can take any nonnegative integer value.

I How to calculate the probability for each possible value?
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Poisson distributions

Poisson distributions

Poisson distributions: deriving the pmf

I Suppose we want to know the number of occurrences of an
event within time interval [0, 1].
I E.g., number of consumers entering a store in an hour.

One hour
? ?? ? ? ? ?

I We may divide the interval into n pieces: [0, 1
n
), [ 1

n
, 2
n
), etc.

I E.g., dividing an hour into twelve 5-minute intervals (n = 12).

? ?? ? ? ? ?

I We may set n to be large enough so that each piece is short
enough and may have at most one occurrence.
I E.g., dividing one hour into 3600 seconds.
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Poisson distributions: deriving the pmf

I Each piece is so short that there is at most one occurrence.
I This can be achieved by making n→∞.

I Then each piece looks like a Bernoulli trial and all pieces
are independent.
I For each piece, the probability of one occurrence is λ

n .
I Why independent?

I Let X be the number of arrivals in [0, 1] and Xi be the
number of arrivals in [ i−1

n
, i
n
), i = 1, ..., n, then

X =
n∑
i=1

Xi

and X ∼ Bi(n, p = λ
n
). Note that Xi ∈ {0, 1}.
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Poisson distributions: deriving the pmf

I As X ∼ Bi
(
n, p = λ

n

)
, the pmf is

Pr

(
x|n, p =

λ

n

)
=

(
n

x

)
px(1− p)n−x

=
n(n− 1) · · · (n− x+ 1)

x!

(
λ

n

)x(
1− λ

n

)n−x
=

(
λx

x!

)(
n

n

)(
n− 1

n

)
· · ·
(
n− x+ 1

n

)(
1− λ

n

)−x
︸ ︷︷ ︸

→1 as n→∞!

(
1− λ

n

)n
.

I So lim
n→∞

Pr

(
x

∣∣∣∣n, p =
λ

n

)
=

(
λx

x!

)
lim
n→∞

(
1− λ

n

)n
.
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Poisson distributions: deriving the pmf

I From elementary Calculus, we have

lim
n→∞

(
1− λ

n

)n
= e−λ.

I Therefore,

lim
n→∞

Pr

(
x

∣∣∣∣n, p =
λ

n

)
=

(
λx

x!

)
lim
n→∞

(
1− λ

n

)n
=
λxe−λ

x!
.

This is the pmf of a Poisson RV with arrival rate λ.

I A Poisson RV is nothing but the limiting case (n→∞) of
a binomial RV!
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Poisson distributions: definition

I Now we are ready to define the Poisson distribution.

Definition 4 (Poisson distribution)

A random variable X follows the Poisson distribution with
parameters λ > 0, denoted by X ∼ Poi(λ), if its pmf is

Pr(x|λ) =
λxe−λ

x!

for x ∈ S = N ∪ {0}.

I It “extends the binomial distribution to infinity.”
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Poisson distributions
I Poisson distributions are skewed to the right.
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Poisson distributions

Binomial v.s. Poisson distributions
I A Poisson RV can be approximated by a binomial RV

when n→∞ and λ = np remains constant.
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Binomial v.s. Poisson distributions

I So when n is large and p is small, we may approximate a
binomial random variable by a Poisson random variable with
λ = np.

I How large should n be and how small should p be?

I In practice, there are several rule of thumbs:
I Textbook: when n ≥ 20 and np ≤ 7.
I Dr. Yen: n > 100 and p < 0.01.
I Wikipedia: something else.
I But you know how to verify the quality of approximation.
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Relationships

Ber(p)
��
��

��
��

�1∑n
i=1; indep.

Bi(n, p)

PPPPPPPPPPq
∑n

i=1; dep.
HG(N,A, n)

6

p = A
N

n
N
→ 0

PPPPPPPPPq

n→∞
p→ 0

λ = np

Poi(λ)
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Expectations and variances

I What are the expectation and variance of a Poisson RV?

Proposition 9

Let X ∼ Poi(λ), then

E[X] = Var(X) = λ.

Proof. Later in this semester.

I Actually, when we say λ is the arrival rate, we are implicitly
saying that λ is the mean.

I The mean and variance are identical. Is that common?
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Time units for Poisson random variables

I Let X ∼ Poi(λ). The value of λ depends on the definition of
the unit time.
I If in average 120 consumers enter in one hour, λ = 120/hour.
I Counting in minutes: λ = 2/minute.
I Counting in days: λ = 2880/day.

I In short, the value of λ is proportional to the length of a
unit time.
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An example: questions

I The number of car accidents at a particular intersection is
believed to follow a Poisson distribution with the mean
three per week.

1. How likely is that there is no accident in one day?
2. How likely is that there is at least three accidents in a week?
3. If in the last week there were seven accidents, should you try

to reinvestigate the mean of the Poisson distribution?
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An example: answers

I Let X ∼ Poi(3) be the number of car accidents at that
intersection in one week.

1. Let Y be the number of car accidents at that intersection in
one day, then Y ∼ Poi(37). The probability that there is no
accident in one day is thus

Pr(Y = 0) =
(37)0e−

3
7

0!
= e−

3
7 ≈ 0.651.
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An example: answers
I Continued from the previous page:

2. The probability of at least three accidents in a week is

Pr(X ≥ 3) = 1−
2∑
i=0

Pr(X = i)

= 1−
(

30e−3

0!
+

31e−3

1!
+

32e−3

2!

)
≈ 1− (0.05 + 0.149 + 0.224) = 0.577.

3. The probability of seven accidents in a week is

Pr(X = 7) =
37e−3

7!
≈ 0.022.

It is thus highly possible that λ is larger than we thought.
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Summary

I Use random variables to model experiments, events, and
outcomes.

I Use distributions to describe random variables.

I Four important discrete distributions:
I Bernoulli, binomial, Hypergeometric, and Poisson.

I For each of them, there is a pmf, a mean, and a variance.

I Use them to approximate practical situations and derive
probabilities.
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Summary

Finding the probability

I MS Excel functions.

I The probability tables.
I Study the textbook by yourself.
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