Statistics I – Chapter 5 Discrete Probability Distributions

Ling-Chieh Kung

Department of Information Management National Taiwan University

October 3, 2012

Introduction

- ► We have studied **frequency distributions**.
 - ▶ For each value or interval, what is the frequency?
- In the next three chapters, we will study probability distributions.
 - ▶ For each value or interval, what is the probability?
- There are two types of probability distribution:
 - Population distributions: Chapters 5 and 6.
 - Sampling distributions: Chapter 7.

Road map

▶ Random variables.

- Basic concepts.
- Expectations and variances.
- ▶ Binomial distributions.
- ► Hypergeometric distributions.
- ▶ Poisson distributions.

Random variables

- ► A <u>random variable</u> (RV) is a variable whose outcomes are random.
- ► Examples:
 - The outcome of tossing a coin.
 - The outcome of rolling a dice.
 - The number of people preferring Pepsi to Coke in a group of 25 people.
 - The number of consumers entering a bookstore at 7-8pm.
 - ▶ The temperature of this classroom at tomorrow noon.
 - The average studying hours of a group of 10 students.

Discrete random variables

- ▶ A random variable can be discrete, continuous, or mixed.
- ► A random variable is <u>discrete</u> if the set of all possible values is **finite** or **countably infinite**.
 - The outcome of tossing a coin: Finite.
 - ▶ The outcome of rolling a dice: Finite.
 - The number of people preferring Pepsi to Coke in a group of 25 people: Finite.
 - ► The number of consumers entering a bookstore at 7-8pm: Countably infinite.

Continuous random variables

- ► A random variable is <u>continuous</u> if the set of all possible values is uncountable.
 - ▶ The temperature of this classroom at tomorrow noon.
 - The average studying hours of a group of 10 students.
 - ▶ The interarrival time between two consumers.
 - The GDP per capita of Taiwan in 2013.

Discrete v.s. continuous RVs

- ► For a discrete RV, typically things are **counted**.
 - ► Typically there are **gaps** among possible values.
- ► For a continuous RV, typically things are **measured**.
 - Typically possible values form an **interval**.
 - ▶ Such an interval may have a infinite length.
- Sometimes a random variable is called **mixed**.
 - On Saturday I may or may not go to school. If I go, I need at least one hour for communication. Let X be the number of hours I spend in working including communication on Saturday. Then $X \in \{0\} \cup [1, 24]$.
 - ▶ By definition, is a mixed RV discrete or continuous?

Discrete and continuous distributions

- ► The possibilities of outcomes of a random variable are summarized by probability distributions, or simply distributions.
- As variables can be either discrete or continuous, distributions may also be either discrete or continuous.
- ▶ In this chapter we study discrete distributions.
- ▶ In Chapter 6 we study continuous distributions.

Describing a discrete distribution

- On way to fully describe a discrete distribution is to list all possible outcomes and their probabilities.
 - Let X be the result of tossing a fair coin:

x	Η	Т
$\Pr(X = x)$	$\frac{1}{2}$	$\frac{1}{2}$

• Let X be the result of rolling a fair dice:

x	1	2	3	4	5	6
$\Pr(X = x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Describing a discrete distribution

- But complete enumeration is unsatisfactory if there are too many (or even infinite) possible values.
- ▶ Also, sometimes there is a **formula** for the probabilities.
- ▶ Suppose we toss a fair coin and will stop with a tail.
- Let X be the number of tosses we make.
 - $Pr(X = 1) = \frac{1}{2}$ (getting a tail at the first time).
 - $Pr(X = 2) = (\frac{1}{2})(\frac{1}{2}) = \frac{1}{4}$ (head and then a tail).
 - ▶ $Pr(X = 3) = (\frac{1}{2})(\frac{1}{2})(\frac{1}{2}) = \frac{1}{8}$ (head, head, and then a tail).
 - ▶ In general, $Pr(X = x) = (\frac{1}{2})^x$ for all x = 1, 2, ...
 - ▶ No need to create a table!

Probability mass functions

- The formula of calculating the probability of each possible value of a discrete random variable is call a probability mass function (pmf).
 - This is sometimes abbreviated as a probability function (pf).
 - $Pr(X = x) = (\frac{1}{2})^x$, x = 1, 2, ..., is the pmf of X.
 - If the meaning is clear, Pr(X = x) is abbreviated as Pr(x).
 - Any finite list of probabilities can be described by a pmf.
- ▶ In practice, many random variables cannot be exactly described by a pmf (or the pmf is too hard to be found).
- ► In this case, people may approximate the distribution of the random variable by a distribution with a known pmf.
- ▶ So the first step is to study some well-known distributions.

Parameters of a distribution

- A distribution depends on a formula.
- A formula depends on some **parameters**.
 - ▶ Suppose the coin now generates a head with probability *p*.
 - How to modify the original pmf $Pr(X = x) = (\frac{1}{2})^x$?
 - The pmf becomes $Pr(X = x|p) = p^{x-1}(1-p), x = 1, 2, ...$
 - ► The probability *p* is called the **parameter** of this distribution.
- ▶ Be aware of the difference between:
 - The parameter of a population and
 - The parameter of a distribution.

Descriptive measures

- Consider a discrete random variable X with a sample space S, realizations $\{x_i\}_{i\in S}$, and a pmf $Pr(\cdot)$.
- The **expected value** (or mean) of X is

$$\mu \equiv \mathbb{E}[X] = \sum_{i \in S} x_i \Pr(x_i).$$

• The <u>variance</u> of X is

$$\sigma^2 \equiv \operatorname{Var}(X) \equiv \mathbb{E}\left[(X-\mu)^2\right] = \sum_{i \in S} (x_i - \mu)^2 \operatorname{Pr}(x_i).$$

• The standard deviation of X is $\sigma \equiv \sqrt{\sigma^2}$.

Descriptive measures: an example

- ► Let X be the outcome of rolling a dice, then the pmf is $Pr(x) = \frac{1}{6}$ for all x = 1, 2, ..., 6.
 - The expected value of X is

$$\mathbb{E}[X] \equiv \sum_{i=1}^{6} x_i \Pr(x_i) = \frac{1}{6}(1+2+\dots+6) = 3.5.$$

• The variance of X is

$$\operatorname{Var}(X) \equiv \sum_{i \in S} (x_i - \mu)^2 \operatorname{Pr}(x_i)$$

= $\frac{1}{6} \left[(-2.5)^2 + (-1.5)^2 + \dots + 2.5^2 \right] \approx 2.92.$

• The standard deviation of X is $\sqrt{2.92} \approx 1.71$.

Linear functions of a random variable

• Consider the **linear function** a + bX of a RV X.

Proposition 1

Let X be a random variable and a and b be two known constants, then

 $\mathbb{E}[a+bX] = a + b\mathbb{E}[X] \quad and \quad \operatorname{Var}(a+bX) = b^2\operatorname{Var}(X).$

Proof. Similar to Problems 5a and 5b in Homework 3.

• If one earns 5x by rolling x, the expected value of variance of the earning of rolling a dice are 17.5 and 72.92.

Expectation of a sum of RVs

• Consider the sum of a set of n random variables:

$$\sum_{i=1}^{n} X_i = X_1 + X_2 + \dots + X_n.$$

What is the expectation?

• "Expectation of a sum is the sum of expectations:"

Proposition 2

Let $\{X_i\}_{i=1,\dots,n}$ be a set of random variables, then

$$\mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i]$$

Expectation of a sum of RVs

▶ Proof of Proposition 2. Suppose n = 2 and S_i is the sample space of X_i , then

$$\mathbb{E}[X_1 + X_2] = \sum_{x_1 \in S_1} \sum_{x_2 \in S_2} (x_1 + x_2) \operatorname{Pr}(x_1, x_2)$$

= $\sum_{x_1 \in S_1} \sum_{x_2 \in S_2} x_1 \operatorname{Pr}(x_1, x_2) + \sum_{x_2 \in S_1} \sum_{x_1 \in S_2} x_2 \operatorname{Pr}(x_1, x_2)$
= $\sum_{x_1 \in S_1} x_1 \sum_{x_2 \in S_2} \operatorname{Pr}(x_1, x_2) + \sum_{x_2 \in S_2} x_2 \sum_{x_1 \in S_1} \operatorname{Pr}(x_1, x_2)$
= $\sum_{x_1 \in S_1} x_1 \operatorname{Pr}(x_1) + \sum_{x_2 \in S_2} x_2 \operatorname{Pr}(x_2) = \mathbb{E}[X_1] + \mathbb{E}[X_2],$

where $Pr(x_1, x_2)$ is the abbreviation of $Pr(X_1 = x_1, X_2 = x_2)$. \Box

Expectation of a product of RVs

► Consider the product of *n* **independent** random variables:

$$\prod_{i=1}^{n} X_i = X_1 \times X_2 \times \dots \times X_n.$$

Proposition 3

Let $\{X_i\}_{i=1,\dots,n}$ be a set of independent RVs, then

$$\mathbb{E}\left[\prod_{i=1}^{n} X_{i}\right] = \prod_{i=1}^{n} \mathbb{E}[X_{i}].$$

Proof. Homework!

Variance of sum of RVs

▶ "Variance of an independent sum is the sum of variances:"

Proposition 4

Let $\{X_i\}_{i=1,\dots,n}$ be a set of independent random variables, then

$$\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}).$$

- Is $\operatorname{Var}(2X) = 2\operatorname{Var}(X)$? Why?
- Is $\mathbb{E}(2X) = 2\mathbb{E}(X)$? Why?

Variance of sum of RVs

▶ Proof of Proposition 4. Suppose n = 2 and $\mathbb{E}[X_i] = \mu_i$, then

$$Var(X_1 + X_2) = \mathbb{E} \Big[X_1 + X_2 - \mathbb{E} [X_1 + X_2] \Big]^2$$

= $\mathbb{E} [X_1 + X_2 - \mu_1 + \mu_2]^2$
= $\mathbb{E} \Big[(X_1 - \mu_1)^2 + (X_2 - \mu_2)^2 + 2(X_1 - \mu_1)(X_2 - \mu_2) \Big]$
= $Var(X_1) + Var(X_2) + 2\mathbb{E} \Big[(X_1 - \mu_1)(X_2 - \mu_2) \Big].$

Because X_1 and X_2 are independent, $\mathbb{E}[X_1X_2] = \mu_1\mu_2$. Thus,

$$\mathbb{E}\Big[(X_1 - \mu_1)(X_2 - \mu_2)\Big] = \mathbb{E}[X_1 X_2] - \mu_1 \mathbb{E}[X_2] - \mu_2 \mathbb{E}[X_1] + \mu_1 \mu_2 = 0,$$

which completes the proof.

Summary

- ► Two definitions:
 - $\mathbb{E}[X]$.
 - $\operatorname{Var}(X) = \mathbb{E}\left[X \mathbb{E}[X]\right]^2$.
- ▶ Four fundamental properties:
 - $\mathbb{E}[a+bX] = a+b\mathbb{E}[X]$ and $\operatorname{Var}[a+bX] = b^2\operatorname{Var}[X]$.
 - $\blacktriangleright \mathbb{E}[X_1 + \dots + X_n] = \mathbb{E}[X_1] + \dots + \mathbb{E}[X_n].$
 - $\mathbb{E}[X_1 \times \cdots \times X_n] = \mathbb{E}[X_1] \times \cdots \times \mathbb{E}[X_n]$ if independent.
 - $\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n)$ if independent.

Road map

- Random variables.
- Binomial distributions.
 - Bernoulli distributions.
 - Binomial distributions.
- ▶ Hypergeometric distributions.
- ▶ Poisson distributions.

Bernoulli trials

- ► The study of the binomial distribution must start from studying <u>Bernoulli trials</u>.
- ▶ In some types of trial, the random result is **binary**.
 - Tossing a coin.
 - ▶ The sex of a person.
 - ▶ Taller or shorter than 170cm.
- ▶ One such trial is called a Bernoulli trial.
- This is named after Jacob Bernoulli, the uncle of Daniel Bernoulli, who established the Bernoulli Principle in for fluid dynamics.

Bernoulli distributions

- ▶ So in a Bernoulli trial, the outcome is binary.
- ► Typically they are labeled as **0** and **1**.
 - ▶ In some cases, 0 means a failure and 1 means a success.
- ► Let the **probability of observing 1** be *p*. This defines the **Bernoulli distribution**:

Definition 1 (Bernoulli distribution)

A random variable X follows the Bernoulli distribution with parameter $p \in (0, 1)$, denoted by $X \sim Ber(p)$, if its pmf is

$$\Pr(x|p) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

Bernoulli distributions

▶ What are the mean and variance of a Bernoulli RV?

Proposition 5

Let $X \sim Ber(p)$, then $\mathbb{E}[X] = p$ and Var(X) = p(1-p).

- ► Intuitions:
 - We will see 1 more likely if p goes up.
 - The variance is zero if p = 1 or p = 0. Why?
 - The variance is maximized at $p = \frac{1}{2}$. It is the hardest case for predicting the result.

Bernoulli distributions

▶ *Proof of Proposition 5.* For the mean, we have

$$\mathbb{E}[X] \equiv \sum_{i \in S} x_i \Pr(x_i) = 1 \times p + 0 \times (1-p) = p.$$

For the variance, we have

$$Var(X) \equiv \sum_{i \in S} (x_i - \mathbb{E}[X])^2 \Pr(x_i)$$

= $(1-p)^2 p + (-p)^2 (1-p) = p(1-p).$

Note that both derivations are based on the definitions.

Some remarks for Jacob Bernoulli

- ► Jacob Bernoulli (1654 1705) was one of the many prominent Swiss mathematicians in the Bernoulli family.
- ▶ He is best known for the work *Ars Conjectandi* (The Art of Conjecture), published eight years after his death.
- ► He discovered **the value of** *e* by solving the limit

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

 He provided the first rigorous proof for the Law of Large Numbers (for the special case of binary variables).

A sequence of Bernoulli trials

- ▶ Now we are ready to study the binomial distribution.
- Consider a sequence of n independent Bernoulli trials.
- Let the outcomes be X_i s, where $X_i \sim \text{Ber}(p), i = 1, 2, ..., n$.
- ▶ Then consider the **sum** of these Bernoulli variables

$$Y = \sum_{i=1}^{n} X_i.$$

- Y denotes the number of "1" observed in the n trials.
 - ▶ Number of heads observed after tossing a coin ten times.
 - ▶ Number of men sampled in 1000 randomly selected people.

Finding the probability: a special case

- What is the probability that we see x 1s in n trials?
- Maybe an easier question: What is the probability that we see two 1s in five trials?
 - There are many different possibilities to see two 1s:

1	1	0	0	0	0	1	1	0	0	0	0	1	1	0
1	0	1	0	0	0	1	0	1	0	0	0	1	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	1	1
1	0	0	0	1										

- Note that these are ten mutually exclusive events. What we want is a union probability of the union of these ten events.
- ▶ By the **special law of addition**, the union probability is the sum of the probabilities of these ten events.
- ▶ So what is the probability of each event?

Finding the probability: a special case

▶ The ten events:

1	1	0	0	0	0	1	1	0	0	0	0	1	1	0
1	0	1	0	0	0	1	0	1	0	0	0	1	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	1	1
1	0	0	0	1										

- Event 1: $(X_1, X_2, X_3, X_4, X_5) = (1, 1, 0, 0, 0)$. This is a **joint** event, an intersection of five **independent** events.
- So by the special law of multiplication, the joint probability is the product of the five marginal events:

$$Pr(X_1 = 1, X_2 = 1, X_3 = 0, X_4 = 0, X_5 = 0)$$

= $Pr(X_1 = 1)(X_2 = 1)(X_3 = 0)(X_4 = 0)(X_5 = 0)$
= $p \cdot p \cdot (1 - p)(1 - p)(1 - p) = p^2(1 - p)^3$

Finding the probability: a special case

▶ The ten events:

1	1	0	0	0	0	1	1	0	0	0	0	1	1	0
1	0	1	0	0	0	1	0	1	0	0	0	1	0	1
1	0	0	1	0	0	1	0	0	1	0	0	0	1	1
1	0	0	0	1										

- ▶ So the probability of event 1 is $p^2(1-p)^3$. How about event 2?
- ► The probability of event 2 is p(1-p)p(1-p)(1-p), which is also $p^2(1-p)^3!$
- In fact, the probabilities of all the ten events are all $p^2(1-p)^3$.
- Combining all the discussions above, we have

$$\Pr\left(\sum_{i=1}^{n} X_i = 2 \middle| n = 5, p\right) = 10p^2(1-p)^3.$$

Finding the probability

- What is the probability that we see x 1s in n trials?
 - In *n* trials, we need to see x 1s and n x 0s.
 - The probability that those "chosen" trials all result in 1 is p^x .
 - The probability that other trials all result in 0 is $(1-p)^{n-x}$.
 - ▶ How many different ways to **choose** *x* trials out of *n* trials?

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

• The product of these three yields the desired probability, as shown in the next page.

Binomial distributions

• The variable $\sum_{i=1}^{n} X_i$ follows the **<u>Binomial distribution</u>**.

Definition 2 (Binomial distribution)

A random variable X follows the Binomial distribution with parameters $n \in \mathbb{N}$ and $p \in (0, 1)$, denoted by $X \sim Bi(n, p)$, if its pmf is

$$\Pr(x|n,p) = \binom{n}{x} p^x (1-p)^{n-x} = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

for $x \in S = \{0, 1, ..., n\}.$

Graphing binomial distributions

▶ When *n* is fixed, increasing *p* shifts the peak of a binomial distribution to the right.

• What is the skewness when p = 0.5?

An example

- Suppose a machine producing chips has a 6% defective rate. A company purchased twenty of these chips.
- Let X be the number of defectives, then $X \sim \text{Bi}(20, 0.06)$.
 - 1. The probability that none is defective is

$$\Pr(X=0) = \binom{20}{0} 0.06^0 0.94^{20},$$

which is around 0.29.

2. The probability that no more than two are defective is

$$\Pr(X \le 2) = 0.29 + {\binom{20}{1}} 0.06^1 0.94^{19} + {\binom{20}{2}} 0.06^2 0.94^{18}$$
$$= 0.29 + 0.37 + 0.22 = 0.88.$$

Other applications

- Suppose when one consumer passes our apple store, the probability that she or he will buy at least one apple is 2%. If 100 consumers passes our apple store per day:
 - How many apples may we sell in expectation?
 - ► Facing the trade off between lost sales and leftover inventory, how many apples should we prepare to maximize our profit?
- Among all candidates we have interviewed, 20% are outstanding. If we randomly hire ten people, what is the probability that at least three of them are outstanding?

Be careful!

- ▶ Look at the following "application" again:
 - ▶ Among all candidates we have interviewed, 20% are outstanding. If we randomly hire ten people, what is the probability that at least three of them are outstanding?
- ▶ Is there anything wrong?
- If there are only fifteen people interviewed, selecting ten out of fifteen is NOT a sequence of Bernoulli trails!
- ► Why?

Sampling with replacement?

- ▶ When we sample **without** replacement, we may not use binomial distributions.
 - ▶ Randomly selecting six distinct numbers out of 1, 2, ..., 42.
 - ▶ Randomly asking ten students in this class regarding whether they want more homework.
- ▶ Fortunately, sampling without replacement can be approximated by sampling with replacement when $\frac{n}{N} \rightarrow 0$.
- ▶ In practice, we require $n \leq 0.05N$ for applying the binomial distribution on sampling without replacement.

Expectations and variances

▶ What are the expectation and variance of a binomial random variable?

Proposition 6

Let $X \sim \operatorname{Bi}(n, p)$, then

$$\mathbb{E}[X] = np \quad and \quad \operatorname{Var}(X) = np(1-p).$$

- ► Any intuition?
 - ▶ Hint. Consider the underlying Bernoulli sequence.

Expectations and variances

▶ Proof of Proposition 6. We can express the binomial random variable as $X = \sum_{i=1}^{n} X_i$, where $X_i \sim \text{Ber}(p)$. Now, according to Proposition 2, we have

$$\mathbb{E}[X] = \mathbb{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbb{E}[X_i] = \sum_{i=1}^{n} p = np.$$

Moreover, according to Proposition 4, we have

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{Var}(X_{i}) = \sum_{i=1}^{n} p(1-p) = np(1-p),$$

where this result is due to the independence of X_i s.

Sum of independent binomial RVs

▶ What if we add two binomial random variables together?

Proposition 7

Let $X_1 \sim \operatorname{Bi}(n_1, p_1)$ and $X_2 \sim \operatorname{Bi}(n_2, p_2)$. Suppose X_1 and X_2 are independent and $p_1 = p_2$, then then

$$X_1 + X_2 \sim \operatorname{Bi}(n_1 + n_2, p).$$

- Intuition: It is the sum of two independent Bernoulli sequences.
- What if $p_1 \neq p_2$?

Statistics I – Chapter 5, Fall 2012 Lypergeometric distributions

Road map

- ▶ Random variables.
- Binomial distributions.
- Hypergeometric distributions.
- Poisson distributions.

Hypergeometric distributions

- Consider an experiment with sampling without replacement.
- ▶ When $n \leq 0.05N$, we may use a binomial distribution to model the experiment.
- What if n > 0.05N?
- ► The hypergeometric distribution is defined for this situation.

Hypergeometric distributions

- In describing an experiment like this, we need three parameters:
 - N: the population size.
 - ► A: the number of outcomes that are labeled as "1."
 - \triangleright n: the sample size.
- Consider a box containing N balls where A of them are white. Suppose we randomly pick up n balls, what is the probability for us to see x white balls?

Hypergeometric distributions: the pmf

▶ The pmf of a hypergeometric random variable is "a combination of three combinations:"

Definition 3 (Hypergeometric distribution)

An RV X follows the hypergeometric distribution with parameters $N \in \mathbb{N}$, $n \in \{1, 2, ..., N - 1\}$, and $A \in \{0, 1, ..., N\}$, denoted by $X \sim \operatorname{HG}(N, A, n)$, if its pmf is

$$\Pr(x|N, A, n) = \frac{\binom{A}{x}\binom{N-A}{n-x}}{\binom{N}{n}}$$

for $x \in S = \{0, 1, ..., n\}$.

Expectations and variances

▶ What are the expectation and variance of a hypergeometric random variable?

Proposition 8

Let
$$X \sim \operatorname{HG}(N, A, n)$$
 and $p = \frac{A}{N}$, then
 $\mathbb{E}[X] = np$ and $\operatorname{Var}(X) = np(1-p)\left(\frac{N-n}{N-1}\right).$

Proof. Homework!

Similar to those of a binomial random variable?

Expectations and variances

- ▶ Consider a binomial RV and a hypergeometric RV:
 - Their means are the same: $np = n\left(\frac{A}{N}\right)$.
 - Their variances are different: np(1-p) and $np(1-p)\left(\frac{N-n}{N-1}\right)$.
- ▶ For the two variances, which one is smaller?
- Why? Why sampling with replacement has a larger variance than sampling without replacement does?

Binomial v.s. hypergeometric RVs

▶ A hypergeometric random variable can be **approximated** by a binomial random variable when $\frac{n}{N}$ is close to 0.

Binomial v.s. hypergeometric RVs

▶ Also, a hypergeometric RV is more centralized.

Hypergeometric v.s. binomial distributions

Binomial v.s. hypergeometric RVs

• In general, let $\frac{A}{N} = p$, one can show that

$$\frac{\binom{A}{x}\binom{N-A}{n-x}}{\binom{N}{n}} \to \binom{n}{x} p^x (1-p)^{1-x} \quad \text{as } N \to \infty.$$

This shows that a hypergeometric RV is **approximately** a binomial RV when $\frac{n}{N}$ is close to 0.

- ▶ It is easier to verify that the mean and variance of a hypergeometric RV approach those of a binomial RV:
 - Mean: they are actually the same: $n\left(\frac{A}{N}\right) = np$.
 - Variance: $np(1-p)(\frac{N-n}{N-1}) \to np(1-p)$ as $N \to \infty$.

Statistics I – Chapter 5, Fall 2012 — Hypergeometric distributions

Relationships

Road map

- ▶ Random variables.
- Binomial distributions.
- ▶ Hypergeometric distributions.
- ▶ Poisson distributions.

Poisson distributions

- ▶ The <u>Poisson distribution</u> is one of the most important probability distribution in the field of Operations Research.
- Like the binomial and hypergeometric distributions, it also counts the number of occurrences of a particular event.
- ► However, it does not have a predetermined number of trials. Instead, it counts the number of occurrences within a given interval or continuum.
 - ▶ Number of consumers entering an LV store in our hour.
 - ▶ Number of telephone calls per minute into a call center.
 - ▶ Number of typhoons landing Taiwan in one year.
 - Number of sewing flaws per pair of jeans.
 - ▶ Number of times that one catches a cold in each year.

Poisson distributions

- A fundamental assumption of the Poisson distribution is the homogeneity of the <u>arrival rate</u>.
 - The arrival rate is the rate that the event occurs.
 - ▶ The arrival rate is **identical** throughout the interval.
 - It is denoted by λ: In average, there are λ occurrences in one unit of time (be aware of the unit of measurement!).
- ► Theoretically, the number of occurrence within an interval can range **from zero to infinity**.
- ▶ So a Poisson RV can take any nonnegative integer value.
- ▶ How to calculate the probability for each possible value?

Poisson distributions: deriving the pmf

- ▶ Suppose we want to know the number of occurrences of an event within time interval [0, 1].
 - E.g., number of consumers entering a store in an hour.

- We may divide the interval into n pieces: $[0, \frac{1}{n}), [\frac{1}{n}, \frac{2}{n}),$ etc.
 - E.g., dividing an hour into twelve 5-minute intervals (n = 12).

- ▶ We may set *n* to be large enough so that each piece is short enough and may have **at most one occurrence**.
 - E.g., dividing one hour into 3600 seconds.

Poisson distributions: deriving the pmf

- ▶ Each piece is so short that there is at most one occurrence.
 - This can be achieved by making $n \to \infty$.
- ► Then each piece looks like a **Bernoulli trial** and all pieces are **independent**.
 - For each piece, the probability of one occurrence is $\frac{\lambda}{n}$.
 - ▶ Why independent?
- ▶ Let X be the number of arrivals in [0, 1] and X_i be the number of arrivals in $\left[\frac{i-1}{n}, \frac{i}{n}\right), i = 1, ..., n$, then

$$X = \sum_{i=1}^{n} X_i$$

and $X \sim \operatorname{Bi}(n, p = \frac{\lambda}{n})$. Note that $X_i \in \{0, 1\}$.

Poisson distributions: deriving the pmf

• As $X \sim \operatorname{Bi}(n, p = \frac{\lambda}{n})$, the pmf is

$$\Pr\left(x|n, p = \frac{\lambda}{n}\right) = \binom{n}{x} p^x (1-p)^{n-x}$$
$$= \frac{n(n-1)\cdots(n-x+1)}{x!} \left(\frac{\lambda}{n}\right)^x \left(1-\frac{\lambda}{n}\right)^{n-x}$$
$$= \left(\frac{\lambda^x}{x!}\right) \underbrace{\binom{n}{n} \binom{n-1}{n} \cdots \binom{n-x+1}{n} \binom{1-\lambda}{n}^{-x}}_{\to 1 \text{ as } n \to \infty!} \left(1-\frac{\lambda}{n}\right)^n.$$

• So
$$\lim_{n \to \infty} \Pr\left(x \middle| n, p = \frac{\lambda}{n}\right) = \left(\frac{\lambda^x}{x!}\right) \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n$$

Poisson distributions: deriving the pmf

▶ From elementary Calculus, we have

$$\lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}.$$

► Therefore,

$$\lim_{n \to \infty} \Pr\left(x \middle| n, p = \frac{\lambda}{n}\right) = \left(\frac{\lambda^x}{x!}\right) \lim_{n \to \infty} \left(1 - \frac{\lambda}{n}\right)^n = \frac{\lambda^x e^{-\lambda}}{x!}.$$

This is the pmf of a Poisson RV with arrival rate λ .

► A Poisson RV is nothing but the limiting case (n → ∞) of a binomial RV!

Poisson distributions: definition

▶ Now we are ready to define the Poisson distribution.

Definition 4 (Poisson distribution)

A random variable X follows the Poisson distribution with parameters $\lambda > 0$, denoted by $X \sim \text{Poi}(\lambda)$, if its pmf is

$$\Pr(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

for $x \in S = \mathbb{N} \cup \{0\}$.

▶ It "extends the binomial distribution to infinity."

Poisson distributions

▶ Poisson distributions are **skewed to the right**.

Binomial v.s. Poisson distributions

▶ A Poisson RV can be **approximated** by a binomial RV when $n \to \infty$ and $\lambda = np$ remains constant.

Binomial v.s. Poisson distributions

- So when n is large and p is small, we may approximate a binomial random variable by a Poisson random variable with λ = np.
- How large should n be and how small should p be?
- ▶ In practice, there are several rule of thumbs:
 - Textbook: when $n \ge 20$ and $np \le 7$.
 - Dr. Yen: n > 100 and p < 0.01.
 - Wikipedia: something else.
 - ▶ But you know how to verify the quality of approximation.

Relationships

Expectations and variances

▶ What are the expectation and variance of a Poisson RV?

Proposition 9

Let $X \sim \operatorname{Poi}(\lambda)$, then

$$\mathbb{E}[X] = \operatorname{Var}(X) = \lambda.$$

Proof. Later in this semester.

- Actually, when we say λ is the arrival rate, we are implicitly saying that λ is the mean.
- ▶ The mean and variance are identical. Is that common?

Time units for Poisson random variables

- Let X ~ Poi(λ). The value of λ depends on the definition of the unit time.
 - If in average 120 consumers enter in one hour, $\lambda = 120$ /hour.
 - Counting in minutes: $\lambda = 2/\text{minute}$.
 - Counting in days: $\lambda = 2880/\text{day}$.
- In short, the value of λ is proportional to the length of a unit time.

An example: questions

- ▶ The number of car accidents at a particular intersection is believed to follow a Poisson distribution with the mean three per week.
 - 1. How likely is that there is no accident in one day?
 - 2. How likely is that there is at least three accidents in a week?
 - 3. If in the last week there were seven accidents, should you try to reinvestigate the mean of the Poisson distribution?

An example: answers

- ► Let X ~ Poi(3) be the number of car accidents at that intersection in one week.
 - 1. Let Y be the number of car accidents at that intersection in one day, then $Y \sim \text{Poi}(\frac{3}{7})$. The probability that there is no accident in one day is thus

$$\Pr(Y=0) = \frac{\left(\frac{3}{7}\right)^0 e^{-\frac{3}{7}}}{0!} = e^{-\frac{3}{7}} \approx 0.651.$$

An example: answers

- ▶ Continued from the previous page:
 - 2. The probability of at least three accidents in a week is

$$Pr(X \ge 3) = 1 - \sum_{i=0}^{2} Pr(X = i)$$

= $1 - \left(\frac{3^{0}e^{-3}}{0!} + \frac{3^{1}e^{-3}}{1!} + \frac{3^{2}e^{-3}}{2!}\right)$
 $\approx 1 - (0.05 + 0.149 + 0.224) = 0.577.$

3. The probability of seven accidents in a week is

$$\Pr(X=7) = \frac{3^7 e^{-3}}{7!} \approx 0.022.$$

It is thus highly possible that λ is larger than we thought.

Statistics I – Chapter 5, Fall 2012 Poisson distributions Summary

- ► Use **random variables** to model experiments, events, and outcomes.
- Use **distributions** to describe random variables.
- ► Four important discrete distributions:
 - ▶ Bernoulli, binomial, Hypergeometric, and Poisson.
- ▶ For each of them, there is a **pmf**, a **mean**, and a **variance**.
- ▶ Use them to approximate practical situations and derive probabilities.

Statistics I – Chapter 5, Fall 2012 Poisson distributions Summary

Finding the probability

- ▶ MS Excel functions.
- ▶ The probability tables.
 - Study the textbook by yourself.