Statistics I – Chapter 6 Continuous Probability Distributions

Ling-Chieh Kung

Department of Information Management National Taiwan University

October 17, 2012

Introduction

- ▶ In Chapter 5, we discussed discrete probability distributions.
- ► In this chapter, we discuss **continuous probability distributions**.
 - Continuous distributions describe continuous random variables.
 - ▶ Things are **measured** rather than counted.

Road map

- ► Basic concepts
- Uniform distributions
- ▶ Exponential distributions
- Normal distributions

Probabilities for a continuous RV

- ▶ For a continuous random variable, the concept of probability should be used with cautions.
 - Let X be the temperature of this room at tomorrow noon.
 - Probably $X \in [15, 25]$.
 - What is Pr(X = 20)? **Zero**!
 - ► Some probabilities that make sense: $Pr(X \ge 20)$, $Pr(18 \le X \le 22)$, $Pr(X \le 24)$, etc.
- There is a probability for a **range** of possible values.
- ► There is **no** probability for a **single value**!

Probability density functions

- A continuous distribution is described by a probability density functions (pdf).
 - Typically denoted by f(x), where x is a possible value.
 - ▶ Satisfies $\int_{x \in S} f(x) dx = 1$, where S is the sample space.
 - ▹ For each possible value x, the function gives the probability density. It is not a probability!
- ▶ Recall that for a discrete distribution, we define a probability mass function.
- ▶ And the sum/integral of density becomes mass.
- ► So the **integral of a pdf** over a range gives probability!

Probability density functions

 \blacktriangleright Suppose a random variable X has the following pdf:

$$f(x) = kx^2 \quad \forall x \in [0, 1].$$

Let S = [0, 1] be the sample space.

- What is the value of k?
- What is $\Pr(X \ge \frac{1}{2})$?
- What is the **expected value** $\mathbb{E}[X]$?
- What is the **variance** Var(X)?

Probability density functions

• The pdf:
$$f(x) = kx^2$$
 for $x \in [0, 1]$.

▶ For it to really be a pdf, we need

$$\int_0^1 f(x)dx = \int_0^1 kx^2 dx = 1.$$

Why?

► So we have

$$\int_0^1 kx^2 dx = k \int_0^1 x^2 dx = k \left(\frac{1}{3}\right) = 1,$$

which implies k = 3.

Probability density functions

▶ For $\Pr(X \ge \frac{1}{2})$, we have

$$\Pr\left(X \ge \frac{1}{2}\right) = \int_{\frac{1}{2}}^{1} f(x)dx = \int_{\frac{1}{2}}^{1} (3x^2)dx$$
$$= 3\left(\frac{1-\frac{1}{8}}{3}\right) = \frac{7}{8}.$$

▶ For the expectation, we have

$$\mathbb{E}[X] \equiv \int_{x \in S} x f(x) dx = \int_0^1 x (3x^2) dx$$

= $3 \int_0^1 x^3 dx = 3 \left(\frac{1}{4}\right) = \frac{3}{4}.$

Probability density functions

• The pdf:
$$f(x) = 3x^2$$
 for $x \in [0, 1]$.

▶ For the variance, we have

$$\begin{aligned} \operatorname{Var}(X) &\equiv \mathbb{E}\Big[(X - \mathbb{E}[X])^2 \Big] \\ &= \int_{x \in S} (x - \mathbb{E}[X])^2 f(x) dx \\ &= \int_0^1 \left(x - \frac{3}{4} \right)^2 (3x^2) dx \\ &= 3 \int_0^1 \left(x^4 - \frac{3}{2}x^3 + \frac{9}{16}x^2 \right) dx \\ &= 3 \left(\frac{1}{5} - \frac{3}{8} + \frac{3}{16} \right) = \frac{3}{80}. \end{aligned}$$

Probability density functions

- ► In general, for any continuous random variable X, Pr(X = x) = 0 for any single value x.
- ▶ $Pr(X \in I)$ can be found for any interval I by doing an integration.
 - ► I may be of infinite length.

Cumulative distribution functions

► The <u>cumulative distribution function</u> (cdf), defined as

$$F(x) \equiv \Pr(X \le x),$$

indicates the cumulative probability up to x.

• The cdf of $f(x) = 3x^2$ over S = [0, 1] is

$$F(x) = \int_0^x f(y)dy = 3\int_0^x y^2 dy = 3\left(\frac{x^3}{3}\right) = x^3$$

• In general, $\frac{d}{dx}F(x) = f(x)$.

Statistics I – Chapter 6, Fall 2012 Uniform distributions

Road map

- ▶ Basic concepts
- Uniform distributions
- ▶ Exponential distributions
- Normal distributions

Uniform distributions

- ► Sometimes the probability density of a RV is **constant**.
- ▶ In this case, we say the RV follows a <u>uniform distribution</u>:

Definition 1 (Uniform distribution)

A random variable X follows the uniform distribution with lower bound $a \in \mathbb{R}$ and upper bound $b \in \mathbb{R}$, denoted by $X \sim \text{Uni}(a, b)$, if its pdf is

$$f(x|a,b) = \frac{1}{b-a}$$

for all $x \in [a, b]$.

Graphing uniform distributions

Expectations and variances

▶ The mean and variance of $X \sim \text{Uni}(a, b)$ can be derived:

Proposition 1 Let $X \sim \text{Uni}(a, b)$, then $\mathbb{E}[X] = \frac{a+b}{2}$ and $\text{Var}(X) = \frac{(b-a)^2}{12}$.

Proof. Homework!

Cumulative distribution functions

• The cdf of $X \sim \text{Uni}(a, b)$ can be derived:

Proposition 2 Let $X \sim \text{Uni}(a, b)$, then

$$F(x|a,b) = \frac{x-a}{b-a}.$$

Proof. Trivial.

Statistics I – Chapter 6, Fall 2012 Uniform distributions

An example

▶ Let X be the weight of a box of oranges sold at a particular price. Though ideally each box should be of 5 kg, there are some errors. Suppose X follows a uniform distribution within 4.7 kg and 5.3 kg.

• The pdf:
$$f(x|4.7, 5.3) = \frac{1}{5.3-4.7} = \frac{1}{0.6} \approx 1.67.$$

•
$$\mathbb{E}[X] = \frac{4.7+5.3}{2} = 5$$
 kg.

•
$$\operatorname{Var}(X) = \frac{(5.3 - 4.7)^2}{12} = 0.03 \text{ kg}^2.$$

• Standard deviation ≈ 0.17 kg.

Statistics I – Chapter 6, Fall 2012 Uniform distributions

An example (cont'd)

•
$$X \sim \text{Uni}(4.7, 5.3).$$

• $F(x|4.7, 5.3) = \frac{x - 4.7}{0.6}.$

Wait!

- How come $f(x) \approx 1.67 > 1$?
- ▶ It is a **density** function, not a probability function!
- ▶ In general:
 - For any pmf, $Pr(x) \leq 1$ for all possible x.
 - For any pdf, f(x) may be > 1 for some possible x.
 - For any cdf, $F(x) \leq 1$ for all possible x.

Remarks for uniform distributions

- ▶ For a uniformly distributed random variable, the probability density is constant.
- Except in some artificial situations, this assumption is typically not true, especially in natural environments.
 - A normal distribution may be a better alternative.
- Nevertheless, uniform distributions are widely used in operations research, management science, and economics due to its tractability.

Statistics I – Chapter 6, Fall 2012 Lexponential distributions

Road map

- ► Basic concepts
- Uniform distributions
- ► Exponential distributions
 - Basic properties
 - Exponential and Poisson distributions
- Normal distributions

Exponential distributions

- ► For some situations, the probability density decreases **geometrically**.
 - Similar to radioactive decay (though it is not a probability).
- ► In Statistics, we are particularly interested in those functions decreasing **exponentially**.
- For example, e^{-x} for $x \in [0, \infty)$.
 - ▶ Note that

$$\int_0^\infty e^{-x} dx = -e^{-x} \big|_0^\infty = -(0-1) = 1.$$

So e^{-x} is indeed a pdf.

Exponential distributions

- ► In general, the **rate of decay** may vary.
- Let λ be the "rate", the corresponding exponential function is $e^{-\lambda x}$.
 - The larger the λ is, the faster the density decays.
- ▶ But $\int_0^\infty e^{-\lambda x} dx \neq 1!$ So we need to multiply a constant λ for adjustment.

Exponential distributions

▶ We define the **exponential distribution** as follows:

Definition 2 (Exponential distribution)

A random variable X follows the exponential distribution with rate $\lambda \in \mathbb{R}$, denoted by $X \sim \text{Exp}(\lambda)$, if its pdf is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

for all $x \in [0, \infty)$.

• λ is the rate of decay.

Exponential distributions: Applications

- ▶ The interarrival time between two consumers at a store.
- ▶ The interarrival time between two packets at a router on a computer network.
- The service time of a consumer at a counter.
- ▶ The service time of a patient in a hospital.
- ▶ The lifetime of a product.
- ► The rate λ is measured as "number of occurrences per time unit".

Expectations and variances

▶ The mean and variance of $X \sim \text{Exp}(\lambda)$ can be derived:

Proposition 3

Let $X \sim \operatorname{Exp}(\lambda)$, then

$$\mathbb{E}[X] = \frac{1}{\lambda}$$
 and $\operatorname{Var}(X) = \frac{1}{\lambda^2}$.

Proof. For the expectation, we have

$$\mathbb{E}[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = \lambda \int_0^\infty x e^{-\lambda x} dx.$$

Expectations and variances

Proof (cont'd). By applying integration by parts, we have

$$\int_0^\infty x e^{-\lambda x} dx = x \left(-\frac{1}{\lambda} e^{-\lambda x} \right) \Big|_0^\infty - \int_0^\infty -\frac{1}{\lambda} e^{-\lambda x} dx.$$

For the first term, we know $\lim_{x\to 0} \frac{x}{e^{\lambda x}} = 0$, so the first term disappears. For the second term, it is

$$\frac{1}{\lambda} \int_0^\infty e^{-\lambda x} dx = -\frac{1}{\lambda^2} e^{-\lambda x} \bigg|_0^\infty = \frac{1}{\lambda^2}.$$

Therefore, the expectation is $\mathbb{E}[X] = \lambda(0 + \frac{1}{\lambda^2}) = \frac{1}{\lambda}$. The proof for the variance is left as homework.

Intuitions for the expectations

- Recall that for X ~ Exp(λ), the rate λ is measured as the number of occurrences per time unit.
 - E.g., for the arrival process of consumers into a store, if $\lambda = 5$ per hour, then in average **five** consumers enter the store **in** an hour.
- The expectation of X is $\frac{1}{\lambda}$, which is measured as "the time between two occurrences."
 - ► E.g., if in average five consumers enter in an hour, in average **one** consumer enters **every 12 minutes**.
 - This 12-minute interarrival time is the mean of X, which is $\frac{1}{5}$ "hour" = 12 minutes.

Cumulative distribution functions

• The cdf of $X \sim \text{Exp}(\lambda)$ can be derived:

Proposition 4

Let $X \sim \operatorname{Exp}(\lambda)$, then

$$F(x|\lambda) = 1 - e^{-\lambda x}$$

Proof. We have

$$\Pr(X < x) = \int_0^x \lambda e^{-\lambda z} dz = \lambda \left(\frac{1}{-\lambda}\right) e^{-\lambda z} \Big|_0^x = -\left(e^{-\lambda x} - 1\right),$$

which implies $F(x|\lambda) = 1 - e^{-\lambda x}$.

Statistics I – Chapter 6, Fall 2012 Exponential distributions

An example

- ▶ Let X be the interarrival time of buses at a particular bus stop. Suppose X follows an exponential distribution with rate 10 per hour.
 - The pdf: $f(x|10) = 10e^{-10x}$.

•
$$\mathbb{E}[X] = \frac{1}{10} = 0.1$$
 hour = 6 minutes.

•
$$\operatorname{Var}(X) = \frac{1}{10}^2 = 0.01 \text{ hour}^2.$$

• Standard deviation = 0.1 hour = 6 minutes.

Statistics I – Chapter 6, Fall 2012 Exponential distributions

An example (cont'd)

- ▶ A Poisson RV counts the number of arrivals in a time interval.
- ▶ An Exponential RV measures the interarrival time.

Four arrivals in an hour Three arrivals in an hour

▶ May we establish a relationship between the two distributions?

▶ The following proposition connects the two distributions:

Proposition 5

Consider an arrival process within a fixed interval [0, t], t > 0. Let $X \sim \text{Poi}(\lambda t)$ be the number of arrivals, then the interarrival time $Y \sim \text{Exp}(\lambda t)$.

Nonrigorous Proof. We may divide the interval into n pieces, i.e., $[0, \frac{t}{n}), [\frac{t}{n}, \frac{2t}{n}), ..., [(n-1)\frac{t}{n}, t]$. Let X_i be the number of arrivals in piece i, i = 1, ..., n. If n is large enough (i.e., approaching infinity), $X_i \sim \text{Ber}(\frac{\lambda t}{n})$ and X_i are independent. Then $\Pr(X_i = 0) = 1 - \frac{\lambda t}{n} = 1 - \Pr(X_i = 1)$.

Nonrigorous Proof (cont'd). Now, let's consider the probability that an interarrival time is greater than t, i.e., Pr(Y > t). This means there is no arrival in [0, t], or no arrival in each of the n pieces. Therefore,

$$\Pr(Y > t) = \lim_{n \to \infty} \left[\left(1 - \frac{\lambda t}{n} \right)^n \right].$$

By elementary Calculus, we have

$$\Pr(Y > t) = e^{-\lambda t}.$$

Because the cdf of an exponential RV with rate λt is $1 - e^{-\lambda t}$, we know $Y \sim \text{Exp}(\lambda t)$.

• Because t is arbitrary, we may have the modified version:

Proposition 6

Consider an arrival process within a fixed interval. Let $X \sim \text{Poi}(\lambda)$ be the number of arrivals, then the interarrival time $Y \sim \text{Exp}(\lambda)$.

- Intuition:
 - ▶ Poisson: **frequency** (e.g., arrivals per hour).
 - ► Exponential: **cycle** (e.g., hours per arrival).

Statistics I − Chapter 6, Fall 2012 ∟Normal distributions

Road map

- ▶ Basic concepts
- Uniform distributions
- Exponential distributions
- Normal distributions
 - Basic properties
 - Approximating binomial distributions

Normal distributions

- ▶ One of the most important distribution in Statistics.
- ▶ Also known as Gaussian distributions.
 - ▶ Named after Carl Friedrich Gauss.

Definition 3 (Normal distribution)

A random variable X follows the normal distribution with mean $\mu \in \mathbb{R}$ and standard deviation $\sigma \in \mathbb{R}_+ = [0, \infty)$, denoted by $X \sim \text{ND}(\mu, \sigma)$, if its pdf is

$$f(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

for all $x \in \mathbb{R}$.

Graphing normal distributions

Normal distributions

- ► A normal distribution is always **symmetric**.
 - Mean = median = mode.
 - Below (above) the mean, the probability is $\frac{1}{2}$.
- ► The two parameters are, by definition, its **expected value** and **standard deviation**.
 - ▶ Some researchers use the variance rather than standard deviation as the second parameter.
 - Increasing the expected value μ shifts the curve to the right.
 - \blacktriangleright Increasing the standard deviation σ makes the curve flatter.
- A normal curve is perfectly **bell-shaped**.

Normal distributions: Applications

- Natural variables: heights of people, weights of dogs, lengths of leaves, temperature of a city, etc.
- Performance: transmission time of a packet through TCP, sales made by salespeople, consumer demands, student grades, etc.
- ▶ All kinds of errors: estimation errors for consumer demand, differences from a manufacturing standard, etc.
- ▶ More importantly, some most important statistics approximately follow the normal distribution when the sample size is large enough (to be discussed in Chapter 7).

Statistics I – Chapter 6, Fall 2012

Warning!

- A normal curve spread from negative infinity to positive infinity. This is **not true** for most of the practical case!
 - ▶ E.g., student grades, heights, weights, etc.
- In using a normal distribution to approximate a practical variable, we must make sure that in our normal curve, the probability for "impossible" values to occur is insignificant.

Expectations, variances, and cdf

► Given a random variable X ~ ND(μ, σ) and its pdf f(x|μ, σ), we may (should) still prove that its mean and variances are indeed μ and σ².

$$\blacktriangleright \mathbb{E}[X] = \int_{-\infty}^{\infty} x \frac{1}{\delta\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\delta})^2} dx.$$

• Var(X) =
$$\int_{-\infty}^{\infty} (x-\mu)^2 \frac{1}{\delta\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\delta})^2} dx$$

- ▶ However, it is very hard if we do that from the definitions.
- ▶ The cdf of a normal curve

$$F(x|\mu,\delta) = \int_{-\infty}^{x} \frac{1}{\delta\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{z-\mu}{\delta})^2} dz$$

does not have a closed form.

- ▶ In general, normal distributions are useful but hard to use.
 - ▶ Numerically, calculating $f(x|\mu, \sigma)$ or $F(x|\mu, \sigma)$ is hard.
 - Analytically, the complicated form forbids us from deriving properties easily.
- Amazingly, all normal distributions with different parameters can have a mapping with the unique <u>standard normal distribution</u>.
 - The standard normal distribution, typically denoted as $\phi(x)$, is a normal distribution with $\mu = 0$ and $\sigma = 1$.
- Let's see how to construct the mapping.

- Consider a random variable $X \sim ND(\mu, \sigma)$.
- Define $Z = \frac{X-\mu}{\sigma}$. Z is another random variable.
- Then $Z \sim ND(0, 1)!$

Proposition 7

If
$$X \sim \text{ND}(\mu, \sigma)$$
, then $Z = \frac{X - \mu}{\sigma} \sim \text{ND}(0, 1)$.

Proof. Later in the semester.

- For a value x, recall that its z-score is $\frac{x-\mu}{\sigma}$.
- Therefore, the standard normal distribution is sometimes called the <u>z_distribution</u>.
- People has constructed the cumulative probability table for the standard normal distribution.
 - ▶ Table A.5, 6.2, or the one inside the cover in the textbook.
- ► Problems regarding a normal distribution with µ ≠ 0 and σ ≠ 1 can be solved by transforming to the standard normal distribution.

- ▶ Let X be a randomly selected student's score in an exam. Suppose for this exam, the mean is 6.5 (out of 10), the standard deviation is 2, and the scores are approximately normally distributed.
 - What is the probability that X is above 10 or below 0?
 - What is the probability that X is larger than 8?
 - What is the percentile that maps to a 8-point score?

Statistics I − Chapter 6, Fall 2012 ∟Normal distributions

Using the standard normal distribution

• Let
$$Z = \frac{X-6.5}{2}$$
.

• What is the probability that X is above 10 or below 0?

•
$$\Pr(X \ge 10) = \Pr\left(\frac{X-6.5}{2} \ge \frac{10-6.5}{2}\right) = \Pr(Z \ge 1.75) \approx 0.04.$$

•
$$\Pr(X \ge 0) = \Pr\left(\frac{X-6.5}{2} \le \frac{0-6.5}{2}\right) = \Pr(Z \le -3.25) \approx 0.$$

- What is the probability that X is larger than 8?
 - $\Pr(X \ge 8) = \Pr(\frac{X-6.5}{2} \ge \frac{8-6.5}{2}) = \Pr(Z \ge 0.75) \approx 0.227.$

- ▶ What is the percentile that maps to a 8-point score?
 - $\Pr(X \ge 8) \approx 0.227$. So $\Pr(X \le 8) \approx 0.773$.
 - ▶ So it's around 77th or 78th percentile.

- ► So with
 - the **transformation** to the standard normal distribution and
 - the **probability** table of standard normal distribution, we are able to solve normal distribution problems regarding any values of μ and σ .
- ▶ But with MS Excel or other software, we may solve those problems directly.
- Nevertheless, we will see that the transformation plays an important role in deriving some analytical properties of inferential Statistics.

- Let $X \sim \operatorname{Bi}(n, p)$.
- When $n \to \infty$, $p \to 0$, and $np = \lambda$, $\operatorname{Bi}(n, p) \to \operatorname{Poi}(\lambda)$.
- ▶ So a Poisson RV can approximate a binomial RV.
- ▶ A normal RV can also approximate a binomial RV.
- ▶ When *n* is large and *p* is moderate (not close to 0 or 1), Bi $(n, p) \approx ND\left(np, \sqrt{np(1-p)}\right)$.
 - A rule of thumb: $n \ge 25$, np > 5, and n(1-p) > 5.

• Why
$$\operatorname{Bi}(n,p) \approx \operatorname{ND}\left(np, \sqrt{np(1-p)}\right)$$
?

- ▶ A binomial distribution is always bell-shaped.
- A binomial distribution's mean is always around its mode.
- ▶ When np > 5, the mean is "far" from zero and the distribution looks like symmetric.

- ► *Question*: Suppose we toss a fair coin 50 times. What is the probability of getting 25 to 30 heads?
- ► Let X be the number of heads out of the 50 trials, then $X \sim \text{Bi}(50, 0.5)$. Then we have

$$\Pr(25 \le X \le 30) = \sum_{x=25}^{30} \Pr(X = x) = 0.4967.$$

as an **exact** answer.

• Let Y be the normal RV that approximates X. We know $Y \sim ND(25, 3.54)$, so

 $\Pr(25 \le Y \le 30) \approx \Pr(0 \le Z \le 1.414) \approx 0.4214.$

is an **approximation**. Acurate?

Correction of continuity

- The previous approximation is not accurate because we have one more thing to do, the correction of continuity.
- ▶ Consider the previous example: Tossing a fair coin 50 times.
- ▶ What is the probability of getting **exactly** 20 heads?
 - Calculating based on the binomial distribution, we know the probability is positive.
 - But approximating based on the normal distribution, we will get Pr(Y = 20), which is **zero**!
 - Do not forget that the normal distribution is **continuous**.

Why correction of continuity?

- Use $Y \sim \text{ND}(25, 3.54)$ to approximate $X \sim \text{Bi}(50, 0.5)$.
 - $Pr(25 \le X \le 30)$: Purple area.
 - ▶ $Pr(25 \le Y \le 30)$: Area below the orange curve over [25, 30].

Why correction of continuity?

- $X \sim \text{Bi}(50, 0.5)$ and $Y \sim \text{ND}(25, 3.54)$.
 - ▶ $Pr(25 \le Y \le 30)$ underestimates $Pr(25 \le X \le 30)$.
 - ▶ How to fix it?
 - $\Pr(24.5 \le Y \le 30.5)!$
 - ▶ $\Pr(24.5 \le Y \le 30.5) \approx \Pr(-0.141 \le Z \le 1.556) \approx 0.4963$, which is close to $\Pr(25 \le X \le 30) \approx 0.4967$.

Correction of continuity

Question: What is the probability of getting 27 heads?
An exact answer: X ~ Bi(50, 0.5):

 $\Pr(X = 27) \approx 0.09596.$

• Approximation: $Y \sim ND(25, 3.54)$:

 $\Pr(Y=27)=0,$

but

$$\Pr(26.5 \le Y \le 27.5) \approx 0.09593.$$

Statistics I − Chapter 6, Fall 2012 ∟Normal distributions

Summary

- ► It is suitable for most of natural (and artificial) environments.
- ▶ The normal distribution with mean zero and standard deviation one is called the standard normal distribution.
- ▶ It approximates the binomial distribution.
- ▶ It is also the (approximate) distribution of some important statistics (to be introduced in Chapter 7).

Statistics I − Chapter 6, Fall 2012 ∟Normal distributions

Relations among distributions

