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Introduction

I In Chapter 5, we discussed discrete probability distributions.

I In this chapter, we discuss continuous probability
distributions.
I Continuous distributions describe continuous random

variables.
I Things are measured rather than counted.
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Basic concepts

Road map

I Basic concepts

I Uniform distributions

I Exponential distributions

I Normal distributions
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Basic concepts

Probabilities for a continuous RV

I For a continuous random variable, the concept of probability
should be used with cautions.
I Let X be the temperature of this room at tomorrow noon.
I Probably X ∈ [15, 25].
I What is Pr(X = 20)? Zero!
I Some probabilities that make sense: Pr(X ≥ 20),

Pr(18 ≤ X ≤ 22), Pr(X ≤ 24), etc.

I There is a probability for a range of possible values.

I There is no probability for a single value!
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Basic concepts

Probability density functions

I A continuous distribution is described by a
probability density functions (pdf).
I Typically denoted by f(x), where x is a possible value.
I Satisfies

∫
x∈S f(x)dx = 1, where S is the sample space.

I For each possible value x, the function gives the probability
density. It is not a probability!

I Recall that for a discrete distribution, we define a
probability mass function.

I And the sum/integral of density becomes mass.

I So the integral of a pdf over a range gives probability!
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Basic concepts

Probability density functions

I Suppose a random variable X has the following pdf:

f(x) = kx2 ∀x ∈ [0, 1].

Let S = [0, 1] be the sample space.
I What is the value of k?
I What is Pr(X ≥ 1

2)?
I What is the expected value E[X]?
I What is the variance Var(X)?
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Basic concepts

Probability density functions

I The pdf: f(x) = kx2 for x ∈ [0, 1].

I For it to really be a pdf, we need∫ 1

0

f(x)dx =

∫ 1

0

kx2dx = 1.

Why?

I So we have ∫ 1

0

kx2dx = k

∫ 1

0

x2dx = k

(
1

3

)
= 1,

which implies k = 3.
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Basic concepts

Probability density functions

I For Pr(X ≥ 1
2
), we have

Pr

(
X ≥ 1

2

)
=

∫ 1

1
2

f(x)dx =

∫ 1

1
2

(3x2)dx

= 3

(
1− 1

8

3

)
=

7

8
.

I For the expectation, we have

E[X] ≡
∫
x∈S

xf(x)dx =

∫ 1

0

x
(
3x2
)
dx

= 3

∫ 1

0

x3dx = 3

(
1

4

)
=

3

4
.
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Basic concepts

Probability density functions

I The pdf: f(x) = 3x2 for x ∈ [0, 1].

I For the variance, we have

Var(X) ≡ E
[
(X − E[X])2

]
=

∫
x∈S

(x− E[X])2f(x)dx

=

∫ 1

0

(
x− 3

4

)2(
3x2
)
dx

= 3

∫ 1

0

(
x4 − 3

2
x3 +

9

16
x2
)
dx

= 3

(
1

5
− 3

8
+

3

16

)
=

3

80
.



Statistics I – Chapter 6, Fall 2012 10 / 61

Basic concepts

Probability density functions

I In general, for any continuous random variable X,
Pr(X = x) = 0 for any single value x.

I Pr(X ∈ I) can be found for any interval I by doing an
integration.
I I may be of infinite length.
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Basic concepts

Cumulative distribution functions

I The cumulative distribution function
(cdf), defined as

F (x) ≡ Pr(X ≤ x),

indicates the cumulative probability up to x.

I The cdf of f(x) = 3x2 over S = [0, 1] is

F (x) =

∫ x

0
f(y)dy = 3

∫ x

0
y2dy = 3

(
x3

3

)
= x3.

I In general,
d

dx
F (x) = f(x).
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Uniform distributions

Road map

I Basic concepts

I Uniform distributions

I Exponential distributions

I Normal distributions



Statistics I – Chapter 6, Fall 2012 13 / 61

Uniform distributions

Uniform distributions

I Sometimes the probability density of a RV is constant.

I In this case, we say the RV follows a uniform distribution:

Definition 1 (Uniform distribution)

A random variable X follows the uniform distribution with
lower bound a ∈ R and upper bound b ∈ R, denoted by
X ∼ Uni(a, b), if its pdf is

f(x|a, b) =
1

b− a

for all x ∈ [a, b].
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Uniform distributions

Graphing uniform distributions
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Uniform distributions

Expectations and variances

I The mean and variance of X ∼ Uni(a, b) can be derived:

Proposition 1

Let X ∼ Uni(a, b), then

E[X] =
a+ b

2
and Var(X) =

(b− a)2

12
.

Proof. Homework!
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Uniform distributions

Cumulative distribution functions

I The cdf of X ∼ Uni(a, b) can be derived:

Proposition 2

Let X ∼ Uni(a, b), then

F (x|a, b) =
x− a
b− a

.

Proof. Trivial.
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Uniform distributions

An example

I Let X be the weight of a box of oranges sold at a particular
price. Though ideally each box should be of 5 kg, there are
some errors. Suppose X follows a uniform distribution
within 4.7 kg and 5.3 kg.
I The pdf: f(x|4.7, 5.3) = 1

5.3−4.7 = 1
0.6 ≈ 1.67.

I E[X] = 4.7+5.3
2 = 5 kg.

I Var(X) = (5.3−4.7)2
12 = 0.03 kg2.

I Standard deviation ≈ 0.17 kg.
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Uniform distributions

An example (cont’d)
I X ∼ Uni(4.7, 5.3).

I F (x|4.7, 5.3) =
x− 4.7

0.6
.
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Uniform distributions

Wait!

I How come f(x) ≈ 1.67 > 1?

I It is a density function, not a probability function!

I In general:
I For any pmf, Pr(x) ≤ 1 for all possible x.
I For any pdf, f(x) may be > 1 for some possible x.
I For any cdf, F (x) ≤ 1 for all possible x.
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Uniform distributions

Remarks for uniform distributions

I For a uniformly distributed random variable, the probability
density is constant.

I Except in some artificial situations, this assumption is
typically not true, especially in natural environments.
I A normal distribution may be a better alternative.

I Nevertheless, uniform distributions are widely used in
operations research, management science, and economics
due to its tractability.



Statistics I – Chapter 6, Fall 2012 21 / 61

Exponential distributions

Road map

I Basic concepts

I Uniform distributions

I Exponential distributions
I Basic properties
I Exponential and Poisson distributions

I Normal distributions
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Exponential distributions

Exponential distributions

I For some situations, the probability density decreases
geometrically.
I Similar to radioactive decay (though it is not a probability).

I In Statistics, we are particularly interested in those
functions decreasing exponentially.

I For example, e−x for x ∈ [0,∞).
I Note that ∫ ∞

0
e−xdx = −e−x

∣∣∞
0

= −(0− 1) = 1.

So e−x is indeed a pdf.
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Exponential distributions

Exponential distributions

I In general, the rate of decay may vary.

I Let λ be the “rate”, the corresponding exponential function
is e−λx.
I The larger the λ is, the faster the density decays.

I But
∫∞
0
e−λxdx 6= 1! So we need to multiply a constant λ for

adjustment.
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Exponential distributions

Exponential distributions

I We define the exponential distribution as follows:

Definition 2 (Exponential distribution)

A random variable X follows the exponential distribution
with rate λ ∈ R, denoted by X ∼ Exp(λ), if its pdf is

f(x|λ) = λe−λx

for all x ∈ [0,∞).

I λ is the rate of decay.
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Exponential distributions

Exponential distributions: Applications

I The interarrival time between two consumers at a store.

I The interarrival time between two packets at a router on a
computer network.

I The service time of a consumer at a counter.

I The service time of a patient in a hospital.

I The lifetime of a product.

I The rate λ is measured as “number of occurrences per time
unit”.
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Exponential distributions

Expectations and variances

I The mean and variance of X ∼ Exp(λ) can be derived:

Proposition 3

Let X ∼ Exp(λ), then

E[X] =
1

λ
and Var(X) =

1

λ2
.

Proof. For the expectation, we have

E[X] =

∫ ∞
0

xλe−λxdx = λ

∫ ∞
0

xe−λxdx.
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Exponential distributions

Expectations and variances

Proof (cont’d). By applying integration by parts, we have∫ ∞
0

xe−λxdx = x

(
− 1

λ
e−λx

)∣∣∣∣∞
0

−
∫ ∞
0

−1

λ
e−λxdx.

For the first term, we know limx→0
x
eλx

= 0, so the first term
disappears. For the second term, it is

1

λ

∫ ∞
0

e−λxdx = − 1

λ2
e−λx

∣∣∣∣∞
0

=
1

λ2
.

Therefore, the expectation is E[X] = λ(0 + 1
λ2

) = 1
λ
. The

proof for the variance is left as homework.
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Exponential distributions

Intuitions for the expectations

I Recall that for X ∼ Exp(λ), the rate λ is measured as the
number of occurrences per time unit.
I E.g., for the arrival process of consumers into a store, if λ = 5

per hour, then in average five consumers enter the store in
an hour.

I The expectation of X is 1
λ
, which is measured as “the time

between two occurrences.”
I E.g., if in average five consumers enter in an hour, in average

one consumer enters every 12 minutes.
I This 12-minute interarrival time is the mean of X, which is 1

5
“hour” = 12 minutes.
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Exponential distributions

Cumulative distribution functions

I The cdf of X ∼ Exp(λ) can be derived:

Proposition 4

Let X ∼ Exp(λ), then

F (x|λ) = 1− e−λx.

Proof. We have

Pr(X < x) =

∫ x

0

λe−λzdz = λ

(
1

−λ

)
e−λz

∣∣∣∣x
0

= −
(
e−λx − 1

)
,

which implies F (x|λ) = 1− e−λx.
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Exponential distributions

An example

I Let X be the interarrival time of buses at a particular bus
stop. Suppose X follows an exponential distribution with
rate 10 per hour.
I The pdf: f(x|10) = 10e−10x.
I E[X] = 1

10 = 0.1 hour = 6 minutes.

I Var(X) = 1
10

2
= 0.01 hour2.

I Standard deviation = 0.1 hour = 6 minutes.
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Exponential distributions

An example (cont’d)

I X ∼ Exp(10)
I F (x|10)

= 1− e−10x.
I Pr(X > 0.2)

= 1− F (0.2|10)
= e−2 ≈ 0.135.
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Exponential distributions

Exponential and Poisson distributions

I A Poisson RV counts the number of arrivals in a time
interval.

I An Exponential RV measures the interarrival time.

-?? ? ? ? ? ?

Four arrivals in an hour Three arrivals in an hour

An interarrival time

I May we establish a relationship between the two
distributions?
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Exponential distributions

Exponential and Poisson distributions

I The following proposition connects the two distributions:

Proposition 5

Consider an arrival process within a fixed interval [0, t],
t > 0. Let X ∼ Poi(λt) be the number of arrivals, then the
interarrival time Y ∼ Exp(λt).

Nonrigorous Proof. We may divide the interval into n
pieces, i.e., [0, t

n
), [ t

n
, 2t
n

), ..., [(n− 1) t
n
, t]. Let Xi be the

number of arrivals in piece i, i = 1, ..., n. If n is large
enough (i.e., approaching infinity), Xi ∼ Ber(λt

n
) and Xi are

independent. Then Pr(Xi = 0) = 1− λt
n

= 1− Pr(Xi = 1).
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Exponential distributions

Exponential and Poisson distributions

Nonrigorous Proof (cont’d). Now, let’s consider the
probability that an interarrival time is greater than t, i.e.,
Pr(Y > t). This means there is no arrival in [0, t], or no
arrival in each of the n pieces. Therefore,

Pr(Y > t) = lim
n→∞

[(
1− λt

n

)n]
.

By elementary Calculus, we have

Pr(Y > t) = e−λt.

Because the cdf of an exponential RV with rate λt is
1− e−λt, we know Y ∼ Exp(λt).
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Exponential distributions

Exponential and Poisson distributions

I Because t is arbitrary, we may have the modified version:

Proposition 6

Consider an arrival process within a fixed interval. Let
X ∼ Poi(λ) be the number of arrivals, then the interarrival
time Y ∼ Exp(λ).

I Intuition:
I Poisson: frequency (e.g., arrivals per hour).
I Exponential: cycle (e.g., hours per arrival).
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Normal distributions

Road map

I Basic concepts

I Uniform distributions

I Exponential distributions

I Normal distributions
I Basic properties
I Approximating binomial distributions
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Normal distributions

Normal distributions

I One of the most important distribution in Statistics.

I Also known as Gaussian distributions.
I Named after Carl Friedrich Gauss.

Definition 3 (Normal distribution)

A random variable X follows the normal distribution with
mean µ ∈ R and standard deviation σ ∈ R+ = [0,∞),
denoted by X ∼ ND(µ, σ), if its pdf is

f(x|µ, σ) =
1

σ
√

2π
e−

1
2(x−µσ )

2

for all x ∈ R.
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Normal distributions

Graphing normal distributions
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Normal distributions

Normal distributions

I A normal distribution is always symmetric.
I Mean = median = mode.
I Below (above) the mean, the probability is 1

2 .

I The two parameters are, by definition, its expected value
and standard deviation.
I Some researchers use the variance rather than standard

deviation as the second parameter.
I Increasing the expected value µ shifts the curve to the right.
I Increasing the standard deviation σ makes the curve flatter.

I A normal curve is perfectly bell-shaped.
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Normal distributions

Normal distributions: Applications

I Natural variables: heights of people, weights of dogs, lengths
of leaves, temperature of a city, etc.

I Performance: transmission time of a packet through TCP,
sales made by salespeople, consumer demands, student
grades, etc.

I All kinds of errors: estimation errors for consumer demand,
differences from a manufacturing standard, etc.

I More importantly, some most important statistics
approximately follow the normal distribution when the
sample size is large enough (to be discussed in Chapter 7).
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Normal distributions

Warning!

I A normal curve spread from negative infinity to positive
infinity. This is not true for most of the practical case!
I E.g., student grades, heights, weights, etc.

I In using a normal distribution to approximate a practical
variable, we must make sure that in our normal curve, the
probability for “impossible” values to occur is insignificant.
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Normal distributions

Expectations, variances, and cdf

I Given a random variable X ∼ ND(µ, σ) and its pdf
f(x|µ, σ), we may (should) still prove that its mean and
variances are indeed µ and σ2.

I E[X] =
∫∞
−∞ x

1
δ
√
2π
e−

1
2
(x−µ

δ
)2dx.

I Var(X) =
∫∞
−∞(x− µ)2 1

δ
√
2π
e−

1
2
(x−µ

δ
)2dx

I However, it is very hard if we do that from the definitions.

I The cdf of a normal curve

F (x|µ, δ) =

∫ x

−∞

1

δ
√

2π
e−

1
2
( z−µ
δ

)2dz

does not have a closed form.
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Normal distributions

Standard normal distributions

I In general, normal distributions are useful but hard to use.
I Numerically, calculating f(x|µ, σ) or F (x|µ, σ) is hard.
I Analytically, the complicated form forbids us from deriving

properties easily.

I Amazingly, all normal distributions with different
parameters can have a mapping with the unique
standard normal distribution.
I The standard normal distribution, typically denoted as φ(x),

is a normal distribution with µ = 0 and σ = 1.

I Let’s see how to construct the mapping.
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Normal distributions

Standard normal distributions

I Consider a random variable X ∼ ND(µ, σ).

I Define Z = X−µ
σ

. Z is another random variable.

I Then Z ∼ ND(0, 1)!

Proposition 7

If X ∼ ND(µ, σ), then Z = X−µ
σ
∼ ND(0, 1).

Proof. Later in the semester.
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Normal distributions

Standard normal distributions

I For a value x, recall that its z-score is x−µ
σ

.

I Therefore, the standard normal distribution is sometimes
called the z distribution.

I People has constructed the cumulative probability table for
the standard normal distribution.
I Table A.5, 6.2, or the one inside the cover in the textbook.

I Problems regarding a normal distribution with µ 6= 0 and
σ 6= 1 can be solved by transforming to the standard normal
distribution.
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Normal distributions

Using the standard normal distribution

I Let X be a randomly selected student’s score in an exam.
Suppose for this exam, the mean is 6.5 (out of 10), the
standard deviation is 2, and the scores are approximately
normally distributed.
I What is the probability that X is above 10 or below 0?
I What is the probability that X is larger than 8?
I What is the percentile that maps to a 8-point score?
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Normal distributions

Using the standard normal distribution
I Let Z = X−6.5

2
.
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Normal distributions

Using the standard normal distribution

I What is the probability that X is above 10 or below 0?
I Pr(X ≥ 10) = Pr

(
X−6.5

2 ≥ 10−6.5
2

)
= Pr(Z ≥ 1.75) ≈ 0.04.

I Pr(X ≥ 0) = Pr
(
X−6.5

2 ≤ 0−6.5
2

)
= Pr(Z ≤ −3.25) ≈ 0.
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Normal distributions

Using the standard normal distribution

I What is the probability that X is larger than 8?
I Pr(X ≥ 8) = Pr(X−6.52 ≥ 8−6.5

2 ) = Pr(Z ≥ 0.75) ≈ 0.227.
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Normal distributions

Using the standard normal distribution

I What is the percentile that maps to a 8-point score?
I Pr(X ≥ 8) ≈ 0.227. So Pr(X ≤ 8) ≈ 0.773.
I So it’s around 77th or 78th percentile.
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Normal distributions

Standard normal distributions

I So with
I the transformation to the standard normal distribution and
I the probability table of standard normal distribution,

we are able to solve normal distribution problems regarding
any values of µ and σ.

I But with MS Excel or other software, we may solve those
problems directly.

I Nevertheless, we will see that the transformation plays an
important role in deriving some analytical properties of
inferential Statistics.
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Normal distributions

Approximating binomial with normal

I Let X ∼ Bi(n, p).

I When n→∞, p→ 0, and np = λ, Bi(n, p)→ Poi(λ).

I So a Poisson RV can approximate a binomial RV.

I A normal RV can also approximate a binomial RV.

I When n is large and p is moderate (not close to 0 or 1),

Bi(n, p) ≈ ND
(
np,
√
np(1− p)

)
.

I A rule of thumb: n ≥ 25, np > 5, and n(1− p) > 5.
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Normal distributions

Approximating binomial with normal
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Normal distributions

Approximating binomial with normal

I Why Bi(n, p) ≈ ND
(
np,
√
np(1− p)

)
?

I A binomial distribution is always bell-shaped.
I A binomial distribution’s mean is always around its mode.
I When np > 5, the mean is “far” from zero and the

distribution looks like symmetric.
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Normal distributions

Approximating binomial with normal
I Question: Suppose we toss a fair coin 50 times. What is the

probability of getting 25 to 30 heads?
I Let X be the number of heads out of the 50 trials, then
X ∼ Bi(50, 0.5). Then we have

Pr(25 ≤ X ≤ 30) =
30∑

x=25

Pr(X = x) = 0.4967.

as an exact answer.
I Let Y be the normal RV that approximates X. We know
Y ∼ ND(25, 3.54), so

Pr(25 ≤ Y ≤ 30) ≈ Pr(0 ≤ Z ≤ 1.414) ≈ 0.4214.

is an approximation. Acurate?
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Normal distributions

Correction of continuity

I The previous approximation is not accurate because we have
one more thing to do, the correction of continuity.

I Consider the previous example: Tossing a fair coin 50 times.

I What is the probability of getting exactly 20 heads?
I Calculating based on the binomial distribution, we know the

probability is positive.
I But approximating based on the normal distribution, we will

get Pr(Y = 20), which is zero!
I Do not forget that the normal distribution is continuous.
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Normal distributions

Why correction of continuity?
I Use Y ∼ ND(25, 3.54) to approximate X ∼ Bi(50, 0.5).

I Pr(25 ≤ X ≤ 30): Purple area.
I Pr(25 ≤ Y ≤ 30): Area below the orange curve over [25, 30].
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Normal distributions

Why correction of continuity?

I X ∼ Bi(50, 0.5) and Y ∼ ND(25, 3.54).
I Pr(25 ≤ Y ≤ 30) underestimates Pr(25 ≤ X ≤ 30).
I How to fix it?
I Pr(24.5 ≤ Y ≤ 30.5)!
I Pr(24.5 ≤ Y ≤ 30.5) ≈ Pr(−0.141 ≤ Z ≤ 1.556) ≈ 0.4963,

which is close to Pr(25 ≤ X ≤ 30) ≈ 0.4967.
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Normal distributions

Correction of continuity

I Question: What is the probability of getting 27 heads?

I An exact answer : X ∼ Bi(50, 0.5):

Pr(X = 27) ≈ 0.09596.

I Approximation: Y ∼ ND(25, 3.54):

Pr(Y = 27) = 0,

but
Pr(26.5 ≤ Y ≤ 27.5) ≈ 0.09593.
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Normal distributions

Summary

I It is suitable for most of natural (and artificial)
environments.

I The normal distribution with mean zero and standard
deviation one is called the standard normal distribution.

I It approximates the binomial distribution.

I It is also the (approximate) distribution of some important
statistics (to be introduced in Chapter 7).
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Normal distributions

Relations among distributions

Ber(p)
��

��
��
��1

∑n
i=1; indep.

Bi(n, p)

PPPPPPPPq∑n
i=1; dep.

HG(N,A, n)

6
p = A

N

n
N
→ 0

PPPPPPPPq

n→∞
p→ 0
λ = np

Poi(λ)
6

?

Exp(λ)

Poisson: frequency

Exponential: cycle

��
��

��
��1

n ≥ 25
np > 5
n(1− p) > 5

µ = np, σ =
√
np(1− p)

ND(µ, σ)


	Basic concepts
	Uniform distributions
	Exponential distributions
	Normal distributions

