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Introduction

» In Chapter 5, we discussed discrete probability distributions.
» In this chapter, we discuss continuous probability
distributions.
» Continuous distributions describe continuous random
variables.
» Things are measured rather than counted.
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LBasic concepts

Road map

» Basic concepts

Uniform distributions

v

v

Exponential distributions

Normal distributions

v
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LBasic concepts

Probabilities for a continuous RV

» For a continuous random variable, the concept of probability
should be used with cautions.
» Let X be the temperature of this room at tomorrow noon.
» Probably X € [15,25].
» What is Pr(X = 20)? Zero!
» Some probabilities that make sense: Pr(X > 20),
Pr(18 < X < 22), Pr(X < 24), etc.

» There is a probability for a range of possible values.

» There is no probability for a single value!
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LBasic concepts

Probability density functions

v

A continuous distribution is described by a
probability density functions (pdf).

» Typically denoted by f(x), where x is a possible value.

» Satisfies fxES f(z)dz = 1, where S is the sample space.

» For each possible value x, the function gives the probability
density. It is not a probability!

v

Recall that for a discrete distribution, we define a
probability mass function.

v

And the sum/integral of density becomes mass.

v

So the integral of a pdf over a range gives probability!
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LBasic concepts

Probability density functions

» Suppose a random variable X has the following pdf:
f(x) =ka® Vx€l0,1].

Let S = [0, 1] be the sample space.

» What is the value of k7

> What is Pr(X > 1)?

» What is the expected value E[X]?
» What is the variance Var(X)?
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LBasic concepts

Probability density functions

» The pdf: f(z) = kx? for x € [0,1].
» For it to really be a pdf, we need

/01 f(z)dz = /01 ka?dx = 1.

Why?

» So we have

1 1 1
/ kxidr = k:/ idr = k(—) =1,
0 0 3

which implies k£ = 3.
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LBasic concepts

Probability density functions

» For Pr(X > 1), we have

=32
1
Pr (X > —) = / |
2 1 25
2
1—3 7 >
e 3 = —
( : ) ;
» For the expectation, we have
1
E[X] E/ zf(x)de = / z(32%)dx 0s - -
€S 0
! 1 3 0 -
= 3 3d = 3 -]=-. 0 025 05 075 1
e =ol) =3 x
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LBasic concepts

Probability density functions

» The pdf: f(z) = 322 for z € [0,1]. =3
» For the variance, we have ]

25 9

Var(X) = E[(X — E[X))’
_ / e~ EX)f ()
:/01 (:L‘—i)2(31‘2)d1‘ 1 /
_ 3/01 <m4 _ g:ﬁ + 9x2>dz /

=3 1_§+ 3 _i 0 s o ,
= 5 8 16 — 80. 0 025 Ox.5 0.75 1
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LBasic concepts

Probability density functions

» In general, for any continuous random variable X,
Pr(X = z) = 0 for any single value x.

» Pr(X € I) can be found for any interval I by doing an
integration.

» [ may be of infinite length.
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LBasic concepts

Cumulative distribution functions

. .. . . =322
» The cumulative distribution function f=3

(cdf), defined as

25 A

F(z) =Pr(X < z),
indicates the cumulative probability up to x.

» The cdf of f(z) = 3z% over S = [0,1] is

F(z) = /0 )y =3 /0 my2dy=3<%3> B -

d 1 —
> In general, d—F(LL‘) = f(a:) ’ 0 025 05 075 1
xr x
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Road map

» Basic concepts

Uniform distributions

v

v

Exponential distributions

Normal distributions

v
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L Uniform distributions

Uniform distributions

» Sometimes the probability density of a RV is constant.
» In this case, we say the RV follows a

Definition 1 (Uniform distribution)

A random variable X follows the uniform distribution with
lower bound a € R and upper bound b € R, denoted by
X ~ Uni(a,b), if its pdf is

1
—a

f(ala,b) = -

for all x € [a,b).



Statistics I — Chapter 6, Fall 2012
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Graphing uniform distributions

14 /61
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L Uniform distributions

Expectations and variances

» The mean and variance of X ~ Uni(a, b) can be derived:

Proposition 1

Let X ~ Uni(a,b), then

E[X] = “;b and Var(x) = L=

Proof. Homework! O
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L Uniform distributions

Cumulative distribution functions

» The cdf of X ~ Uni(a,b) can be derived:

Proposition 2

Let X ~ Uni(a,b), then

T —a

F(ela,b) = 7—

Proof. Trivial. n
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An example

» Let X be the weight of a box of oranges sold at a particular
price. Though ideally each box should be of 5 kg, there are
some errors. Suppose X follows a uniform distribution
within 4.7 kg and 5.3 kg.

» The pdf: f(z]4.7,5.3) =
» E[X] = 20553 = 5 kg,

> Var(X) = 8372D% — 003 ke?.
» Standard dev1at10n 0.17 kg.

L 1 o
5347 — 0.6 ~ 1.67.
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An example (cont’d)
> X ~ Uni(4.7,5.3).

—4.

Integrating Uni(4.7, 5.3)

1.9

18

15 ——

14

4.6 4.7 48 49 5 51 52 53

54

18 /61
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Wait!

» How come f(z)~ 1.67 > 17
» It is a density function, not a probability function!

» In general:

» For any pmf, Pr(z) <1 for all possible z.
» For any pdf, f(z) may be > 1 for some possible x.
» For any cdf, F(z) <1 for all possible z.

19 /61
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Remarks for uniform distributions

» For a uniformly distributed random variable, the probability
density is constant.

» Except in some artificial situations, this assumption is
typically not true, especially in natural environments.
» A normal distribution may be a better alternative.

» Nevertheless, uniform distributions are widely used in

operations research, management science, and economics
due to its tractability.
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LExponential distributions

Road map

» Basic concepts

Uniform distributions

v

v

Exponential distributions
» Basic properties
» Exponential and Poisson distributions

Normal distributions

v

21/61
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LExponential distributions

Exponential distributions

» For some situations, the probability density decreases
geometrically.

» Similar to radioactive decay (though it is not a probability).

» In Statistics, we are particularly interested in those
functions decreasing exponentially.

» For example, e~ for x € [0, 00).
» Note that

/0 e fder=—e " 80 =—(0-1)=1.

So e™* is indeed a pdf.
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LExponential distributions

Exponential distributions

» In general, the rate of decay may vary.

» Let A\ be the “rate”, the corresponding exponential function
is e,
» The larger the A is, the faster the density decays.

» But fooo e dx # 1! So we need to multiply a constant \ for
adjustment.
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LExponential distributions

Exponential distributions

» We define the as follows:

Definition 2 (Exponential distribution)

A random variable X follows the exponential distribution
with rate A € R, denoted by X ~ Exp(X), if its pdf is

f(z]A) = e
for all z € [0, 00).

» A is the rate of decay.
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LExponential distributions

Exponential distributions: Applications

» The interarrival time between two consumers at a store.

» The interarrival time between two packets at a router on a
computer network.

» The service time of a consumer at a counter.
» The service time of a patient in a hospital.
» The lifetime of a product.

» The rate X\ is measured as “number of occurrences per time
unit”.
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LExponential distributions

Expectations and variances

» The mean and variance of X ~ Exp(\) can be derived:

Proposition 3

Let X ~ Exp(\), then

1 1
E[X] = X and Var(X) = Yk

Proof. For the expectation, we have

E[X] :/ e Mdy = )\/ re Mdr.
0 0
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LExponential distributions

Expectations and variances

Proof (cont’d). By applying integration by parts, we have

/ re Mdr = x(— le’“"”) —/ —le’)‘xdx.
0 )‘ 0 0 >‘

For the first term, we know lim, ;o Xz = 0, so the first term
disappears. For the second term, it is

1 OO -z 1 -z
X/{) e dx:—pe

* 1
ﬁ.

0

Therefore, the expectation is E[X] = A(0 + 55) = 1. The
proof for the variance is left as homework. O
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LExponential distributions

Intuitions for the expectations

» Recall that for X ~ Exp()), the rate A is measured as the
number of occurrences per time unit.

» E.g., for the arrival process of consumers into a store, if A =5
per hour, then in average five consumers enter the store in
an hour.

» The expectation of X is %, which is measured as “the time
between two occurrences.”
» E.g., if in average five consumers enter in an hour, in average
one consumer enters every 12 minutes.
» This 12-minute interarrival time is the mean of X, which is
“hour” = 12 minutes.

1
5
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LExponential distributions

Cumulative distribution functions

» The cdf of X ~ Exp(\) can be derived:

Proposition 4

Let X ~ Exp()\), then

F(z|])) =1—e"

Proof. We have

v 1
Pr(X <z) = / e Mdz = /\(—)\) e
: _

which implies F(z|\) =1 — e O
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LExponential distributions

An example

» Let X be the interarrival time of buses at a particular bus
stop. Suppose X follows an exponential distribution with
rate 10 per hour.

The pdf: f(x|10) = 10e~102,

E[X] = 5 = 0.1 hour = 6 minutes.

Var(X) = %02 = 0.01 hour?.

Standard deviation = 0.1 hour = 6 minutes.

v

v

v

v
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An example (cont’d)
Integrating Exp(10)
12
10
» X ~ Exp(10)
» F(z10) s \
=1 e—le‘ g .
> Pr(X >0.2) \
=1— F(0.2]10) 4
=e 2~ 0.135. \
2
0
0 02 04 0.6 0.8




Statistics I — Chapter 6, Fall 2012 32/61

LExponential distributions

Exponential and Poisson distributions

» A Poisson RV counts the number of arrivals in a time
interval.

» An Exponential RV measures the interarrival time.

An interarrival time

—

N

Four arrivals in an hour  Three arrivals in an hour

» May we establish a relationship between the two
distributions?
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LExponential distributions

Exponential and Poisson distributions

» The following proposition connects the two distributions:

Proposition 5

Consider an arrival process within a fized interval [0, t],
t > 0. Let X ~ Poi(\t) be the number of arrivals, then the
interarrival time Y ~ Exp(At).

Nonrigorous Proof. We may divide the interval into n
pieces, ie., [0,L), [£, 2) . [(n—1)Lf, ¢]. Let X; be the
number of arrivals in piece ¢, 1 = 1, ..., n. If n is large
enough (i.e., approaching infinity), X; ~ Ber(%) and X; are

independent. Then Pr(X; =0)=1—2 =1 —Pr(X; =1).
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LExponential distributions

Exponential and Poisson distributions

Nonrigorous Proof (cont’d). Now, let’s consider the
probability that an interarrival time is greater than t, i.e.,
Pr(Y > t). This means there is no arrival in [0, ], or no
arrival in each of the n pieces. Therefore,

Pr(Y > 1) = lim Kl_ﬁﬂ

n—oo n
By elementary Calculus, we have
Pr(Y >t)=e M.

Because the cdf of an exponential RV with rate At is
1 —e M we know Y ~ Exp(\t). O
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LExponential distributions

Exponential and Poisson distributions

» Because t is arbitrary, we may have the modified version:

Proposition 6

Consider an arrival process within a fixed interval. Let
X ~ Poi(A) be the number of arrivals, then the interarrival
time Y ~ Exp(\).

» Intuition:

» Poisson: frequency (e.g., arrivals per hour).
» Exponential: cycle (e.g., hours per arrival).
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Road map

» Basic concepts

Uniform distributions

v

v

Exponential distributions

v

Normal distributions
» Basic properties
» Approximating binomial distributions

36 /61
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Normal distributions

» One of the most important distribution in Statistics.
» Also known as Gaussian distributions.
» Named after Carl Friedrich Gauss.

Definition 3 (Normal distribution)

A random variable X follows the normal distribution with
mean 1 € R and standard deviation o € R, = [0, 00),
denoted by X ~ ND(u, o), if its pdf is

flalp, o) = Nl%e—é(%“f

for all z € R.
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L Normal distributions

Graphing normal distributions

38/61
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Normal distributions

» A normal distribution is always symmetric.
» Mean = median = mode.
> Below (above) the mean, the probability is 1.

» The two parameters are, by definition, its expected value
and standard deviation.
» Some researchers use the variance rather than standard

deviation as the second parameter.

» Increasing the expected value p shifts the curve to the right.
» Increasing the standard deviation o makes the curve flatter.

» A normal curve is perfectly bell-shaped.
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L Normal distributions

Normal distributions: Applications

» Natural variables: heights of people, weights of dogs, lengths
of leaves, temperature of a city, etc.

» Performance: transmission time of a packet through TCP,
sales made by salespeople, consumer demands, student
grades, etc.

» All kinds of errors: estimation errors for consumer demand,
differences from a manufacturing standard, etc.
» More importantly, some most important statistics

approximately follow the normal distribution when the
sample size is large enough (to be discussed in Chapter 7).
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Warning!

» A normal curve spread from negative infinity to positive
infinity. This is not true for most of the practical case!

» E.g., student grades, heights, weights, etc.

» In using a normal distribution to approximate a practical
variable, we must make sure that in our normal curve, the
probability for “impossible” values to occur is insignificant.
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L Normal distributions

Expectations, variances, and cdf

» Given a random variable X ~ ND(u, o) and its pdf
f(x|p, o), we may (should) still prove that its mean and
variances are indeed p and o?.

» E[X] = [*, xéjﬂe*%(“'*”ydx

> Var(X) = ffooo(:v - N)25\/7 ) da

» However, it is very hard if we do that from the definitions.

» The cdf of a normal curve

* 1 1z
F(a:\,u,d):/ 5\/%6 (55 a2

does not have a closed form.

D=
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Standard normal distributions

» In general, normal distributions are useful but hard to use.
» Numerically, calculating f(z|u, o) or F(z|u,0) is hard.
» Analytically, the complicated form forbids us from deriving
properties easily.
» Amazingly, all normal distributions with different
parameters can have a mapping with the unique
standard normal distribution.

» The standard normal distribution, typically denoted as ¢(x),
is a normal distribution with ¢ =0 and o = 1.

» Let’s see how to construct the mapping.
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Standard normal distributions

» Consider a random variable X ~ ND(y, o).
» Define Z = 2= =—£. Z is another random variable.
» Then Z ~ ND(O, 1!

Proposition 7

If X ~ ND(u,0), then Z = X=£ ~ ND(0, 1).

Proof. Later in the semester. m
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Standard normal distributions

» For a value z, recall that its z-score is *>£.

» Therefore, the standard normal distribution is sometimes
called the .

» People has constructed the cumulative probability table for
the standard normal distribution.
» Table A.5, 6.2, or the one inside the cover in the textbook.

» Problems regarding a normal distribution with p # 0 and

o # 1 can be solved by transforming to the standard normal
distribution.
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Using the standard normal distribution

» Let X be a randomly selected student’s score in an exam.
Suppose for this exam, the mean is 6.5 (out of 10), the
standard deviation is 2, and the scores are approximately
normally distributed.

» What is the probability that X is above 10 or below 07
» What is the probability that X is larger than 87
» What is the percentile that maps to a 8-point score?
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47 /61

Using the standard normal distribution

>LetZ:¥.

o

Transforming ND(7.5,2) to ND(0, 1)

&

4+

a4
O

Sx)

/ \ X~ND(65,2)

\ / AN

2 4 6 8 10 12
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Using the standard normal distribution

» What is the probability that X is above 10 or below 07
> Pr(X >10) = Pr (£582 > 10563) — pr(Z > 1.75) ~ 0.04.

> Pr(X >0) = Pr (%582 < 8505) = Pr(Z < —3.25) ~ 0.

ND(0, 1)

Sx)
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Using the standard normal distribution

» What is the probability that X is larger than 87
» Pr(X > 8) = Pr(£582 > 8505) = Pr(Z > 0.75) =~ 0.227.

ND(0, 1)
0.3
_ 025 x
) /. \
0
4 3 2 1 0 1 2 3 4
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Using the standard normal distribution

» What is the percentile that maps to a 8-point score?
» Pr(X >8)~0.227. So Pr(X < 8) ~0.773.
» So it’s around 77" or 78" percentile.

ND(0, 1)
.
/..
g / . \
/. \
/.
0.05
4 3 2 1 0 1 2 3 4
X
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Standard normal distributions

» So with
» the transformation to the standard normal distribution and
» the probability table of standard normal distribution,
we are able to solve normal distribution problems regarding
any values of u and o.

» But with MS Excel or other software, we may solve those
problems directly.

» Nevertheless, we will see that the transformation plays an
important role in deriving some analytical properties of
inferential Statistics.
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Approximating binomial with normal

v

Let X ~ Bi(n,p).
When n — oo, p — 0, and np = A, Bi(n,p) — Poi(}\).

v

v

So a Poisson RV can approximate a binomial RV.

v

A normal RV can also approximate a binomial RV.
» When n is large and p is moderate (not close to 0 or 1),

Bi(n,p) ~ ND (np, m).

» A rule of thumb: n > 25, np > 5, and n(1 — p) > 5.
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Approximating binomial with normal

Normal approximates Binomial

0.2500

—Bi(30,0.1)
—ND(3, 1.64)
0.2000 mGooy
/ —ND(8, 2.53)
~ 0.1500 —Bi(30,04)
% ~— —ND(12,2.68)
5
= 0.1000
s / \
- X \X

0.0000
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Approximating binomial with normal

» Why Bi(n,p) =~ ND <np, np(1l — p))?

» A binomial distribution is always bell-shaped.

» A binomial distribution’s mean is always around its mode.

» When np > 5, the mean is “far” from zero and the
distribution looks like symmetric.
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Approximating binomial with normal

» Question: Suppose we toss a fair coin 50 times. What is the
probability of getting 25 to 30 heads?

» Let X be the number of heads out of the 50 trials, then
X ~ Bi(50,0.5). Then we have

30
Pr(25 < X <30) = » Pr(X =) = 0.4967.

r=25

as an exact answer.
» Let Y be the normal RV that approximates X. We know
Y ~ ND(25,3.54), so

Pr(25 <Y < 30) ~ Pr(0 < Z < 1.414) ~ 0.4214.

is an approximation. Acurate?
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Correction of continuity

» The previous approximation is not accurate because we have
one more thing to do, the

» Consider the previous example: Tossing a fair coin 50 times.

» What is the probability of getting exactly 20 heads?

» Calculating based on the binomial distribution, we know the
probability is positive.

» But approximating based on the normal distribution, we will
get Pr(Y = 20), which is zero!

» Do not forget that the normal distribution is continuous.
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Why correction of continuity?

» Use Y ~ ND(25,3.54) to approximate X ~ Bi(50,0.5).

» Pr(25 < X < 30): Purple area.

» Pr(25 <Y < 30): Area below the orange curve over [25, 30].

0.12

Bi(50,0.5) and ND(25,3.54)

0.10
0.08
go.os
0.04
0.02

0.00
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Statistics I — Chapter 6, Fall 2012 58 /61
L Normal distributions

Why correction of continuity?

» X ~ Bi(50,0.5) and Y ~ ND(25,3.54).

Pr(25 <Y < 30) underestimates Pr(25 < X < 30).
How to fix it?

Pr(24.5 <Y < 30.5)!

Pr(24.5 <Y < 30.5) ~ Pr(—0.141 < Z < 1.556) ~ 0.4963,
which is close to Pr(25 < X < 30) ~ 0.4967.

v

v

v

v
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Correction of continuity

» Question: What is the probability of getting 27 heads?
» An exact answer: X ~ Bi(50,0.5):

Pr(X = 27) ~ 0.09596.
» Approzimation: Y ~ ND(25,3.54):
Pr(Y = 27) = 0,

but
Pr(26.5 <Y < 27.5) ~ 0.09593.

59 /61
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Summary

» It is suitable for most of natural (and artificial)
environments.

» The normal distribution with mean zero and standard
deviation one is called the standard normal distribution.

» [t approximates the binomial distribution.

» It is also the (approximate) distribution of some important
statistics (to be introduced in Chapter 7).
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L Normal distributions

Relations among distributions

n > 25
np>5 1\]]:)([1117 0—)
n(l—p)>5
w=mnp, o =+/np(l —p)
n : Bl(n7 p) n — oo
> iy; indep. p o0
P=% .
Ber(p) Poi()\)
Zn—l; dep. Poisson: frequency
Z HG(N, A, n) Exponential: cycle

Exp(})
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