Statistics I - Chapter 6 Continuous Probability Distributions

Ling-Chieh Kung

Department of Information Management
National Taiwan University

October 17, 2012

Introduction

- In Chapter 5, we discussed discrete probability distributions.
- In this chapter, we discuss continuous probability distributions.
- Continuous distributions describe continuous random variables.
- Things are measured rather than counted.

Road map

- Basic concepts
- Uniform distributions
- Exponential distributions
- Normal distributions

Probabilities for a continuous RV

- For a continuous random variable, the concept of probability should be used with cautions.
- Let X be the temperature of this room at tomorrow noon.
- Probably $X \in[15,25]$.
- What is $\operatorname{Pr}(X=20)$? Zero!
- Some probabilities that make sense: $\operatorname{Pr}(X \geq 20)$,

$$
\operatorname{Pr}(18 \leq X \leq 22), \operatorname{Pr}(X \leq 24), \text { etc. }
$$

- There is a probability for a range of possible values.
- There is no probability for a single value!

Probability density functions

- A continuous distribution is described by a probability density functions (pdf).
- Typically denoted by $f(x)$, where x is a possible value.
- Satisfies $\int_{x \in S} f(x) d x=1$, where S is the sample space.
- For each possible value x, the function gives the probability density. It is not a probability!
- Recall that for a discrete distribution, we define a probability mass function.
- And the sum/integral of density becomes mass.
- So the integral of a pdf over a range gives probability!

Probability density functions

- Suppose a random variable X has the following pdf:

$$
f(x)=k x^{2} \quad \forall x \in[0,1] .
$$

Let $S=[0,1]$ be the sample space.

- What is the value of k ?
-What is $\operatorname{Pr}\left(X \geq \frac{1}{2}\right)$?
- What is the expected value $\mathbb{E}[X]$?
- What is the variance $\operatorname{Var}(X)$?

Probability density functions

- The pdf: $f(x)=k x^{2}$ for $x \in[0,1]$.
- For it to really be a pdf, we need

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} k x^{2} d x=1 .
$$

Why?

- So we have

$$
\int_{0}^{1} k x^{2} d x=k \int_{0}^{1} x^{2} d x=k\left(\frac{1}{3}\right)=1,
$$

which implies $k=3$.

Probability density functions

- For $\operatorname{Pr}\left(X \geq \frac{1}{2}\right)$, we have

$$
\begin{aligned}
\operatorname{Pr}\left(X \geq \frac{1}{2}\right) & =\int_{\frac{1}{2}}^{1} f(x) d x=\int_{\frac{1}{2}}^{1}\left(3 x^{2}\right) d x \\
& =3\left(\frac{1-\frac{1}{8}}{3}\right)=\frac{7}{8}
\end{aligned}
$$

- For the expectation, we have

$$
\begin{aligned}
\mathbb{E}[X] & \equiv \int_{x \in S} x f(x) d x=\int_{0}^{1} x\left(3 x^{2}\right) d x \\
& =3 \int_{0}^{1} x^{3} d x=3\left(\frac{1}{4}\right)=\frac{3}{4}
\end{aligned}
$$

Probability density functions

- The pdf: $f(x)=3 x^{2}$ for $x \in[0,1]$.
- For the variance, we have

$$
\begin{aligned}
\operatorname{Var}(X) & \equiv \mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] \\
& =\int_{x \in S}(x-\mathbb{E}[X])^{2} f(x) d x \\
& =\int_{0}^{1}\left(x-\frac{3}{4}\right)^{2}\left(3 x^{2}\right) d x \\
& =3 \int_{0}^{1}\left(x^{4}-\frac{3}{2} x^{3}+\frac{9}{16} x^{2}\right) d x \\
& =3\left(\frac{1}{5}-\frac{3}{8}+\frac{3}{16}\right)=\frac{3}{80} .
\end{aligned}
$$

Probability density functions

- In general, for any continuous random variable X, $\operatorname{Pr}(X=x)=0$ for any single value x.
- $\operatorname{Pr}(X \in I)$ can be found for any interval I by doing an integration.
- I may be of infinite length.

Cumulative distribution functions

- The cumulative distribution function (cdf), defined as

$$
F(x) \equiv \operatorname{Pr}(X \leq x)
$$

indicates the cumulative probability up to x.

- The cdf of $f(x)=3 x^{2}$ over $S=[0,1]$ is

$$
F(x)=\int_{0}^{x} f(y) d y=3 \int_{0}^{x} y^{2} d y=3\left(\frac{x^{3}}{3}\right)=x^{3}
$$

- In general, $\frac{d}{d x} F(x)=f(x)$.

Road map

- Basic concepts
- Uniform distributions
- Exponential distributions
- Normal distributions

Uniform distributions

- Sometimes the probability density of a RV is constant.
- In this case, we say the RV follows a uniform distribution:

Definition 1 (Uniform distribution)

A random variable X follows the uniform distribution with lower bound $a \in \mathbb{R}$ and upper bound $b \in \mathbb{R}$, denoted by $X \sim \operatorname{Uni}(a, b)$, if its pdf is

$$
f(x \mid a, b)=\frac{1}{b-a}
$$

for all $x \in[a, b]$.

Graphing uniform distributions

Expectations and variances

- The mean and variance of $X \sim \operatorname{Uni}(a, b)$ can be derived:

Proposition 1
Let $X \sim \operatorname{Uni}(a, b)$, then

$$
\mathbb{E}[X]=\frac{a+b}{2} \quad \text { and } \quad \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

Proof. Homework!

Cumulative distribution functions

- The cdf of $X \sim \operatorname{Uni}(a, b)$ can be derived:

Proposition 2

$$
\text { Let } X \sim \operatorname{Uni}(a, b), \text { then }
$$

$$
F(x \mid a, b)=\frac{x-a}{b-a}
$$

Proof. Trivial.

An example

- Let X be the weight of a box of oranges sold at a particular price. Though ideally each box should be of 5 kg , there are some errors. Suppose X follows a uniform distribution within 4.7 kg and 5.3 kg .
- The pdf: $f(x \mid 4.7,5.3)=\frac{1}{5.3-4.7}=\frac{1}{0.6} \approx 1.67$.
- $\mathbb{E}[X]=\frac{4.7+5.3}{2}=5 \mathrm{~kg}$.
- $\operatorname{Var}(X)=\frac{(5.3-4.7)^{2}}{12}=0.03 \mathrm{~kg}^{2}$.
- Standard deviation $\approx 0.17 \mathrm{~kg}$.

An example (cont'd)

- $X \sim \operatorname{Uni}(4.7,5.3)$.
- $F(x \mid 4.7,5.3)=\frac{x-4.7}{0.6}$.

Wait!

- How come $f(x) \approx 1.67>1$?
- It is a density function, not a probability function!
- In general:
- For any pmf, $\operatorname{Pr}(x) \leq 1$ for all possible x.
- For any pdf, $f(x)$ may be >1 for some possible x.
- For any cdf, $F(x) \leq 1$ for all possible x.

Remarks for uniform distributions

- For a uniformly distributed random variable, the probability density is constant.
- Except in some artificial situations, this assumption is typically not true, especially in natural environments.
- A normal distribution may be a better alternative.
- Nevertheless, uniform distributions are widely used in operations research, management science, and economics due to its tractability.

Road map

- Basic concepts
- Uniform distributions
- Exponential distributions
- Basic properties
- Exponential and Poisson distributions
- Normal distributions

Exponential distributions

- For some situations, the probability density decreases geometrically.
- Similar to radioactive decay (though it is not a probability).
- In Statistics, we are particularly interested in those functions decreasing exponentially.
- For example, e^{-x} for $x \in[0, \infty)$.
- Note that

$$
\int_{0}^{\infty} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{\infty}=-(0-1)=1
$$

So e^{-x} is indeed a pdf.

Exponential distributions

- In general, the rate of decay may vary.
- Let λ be the "rate", the corresponding exponential function is $e^{-\lambda x}$.
- The larger the λ is, the faster the density decays.
- But $\int_{0}^{\infty} e^{-\lambda x} d x \neq 1$! So we need to multiply a constant λ for adjustment.

Exponential distributions

- We define the exponential distribution as follows:

Definition 2 (Exponential distribution)

A random variable X follows the exponential distribution with rate $\lambda \in \mathbb{R}$, denoted by $X \sim \operatorname{Exp}(\lambda)$, if its pdf is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

for all $x \in[0, \infty)$.

- λ is the rate of decay.

Exponential distributions: Applications

- The interarrival time between two consumers at a store.
- The interarrival time between two packets at a router on a computer network.
- The service time of a consumer at a counter.
- The service time of a patient in a hospital.
- The lifetime of a product.
- The rate λ is measured as "number of occurrences per time unit".

Expectations and variances

- The mean and variance of $X \sim \operatorname{Exp}(\lambda)$ can be derived:

Proposition 3

$$
\begin{aligned}
& \text { Let } X \sim \operatorname{Exp}(\lambda) \text {, then } \\
& \qquad \mathbb{E}[X]=\frac{1}{\lambda} \quad \text { and } \quad \operatorname{Var}(X)=\frac{1}{\lambda^{2}} .
\end{aligned}
$$

Proof. For the expectation, we have

$$
\mathbb{E}[X]=\int_{0}^{\infty} x \lambda e^{-\lambda x} d x=\lambda \int_{0}^{\infty} x e^{-\lambda x} d x .
$$

Expectations and variances

Proof (cont'd). By applying integration by parts, we have

$$
\int_{0}^{\infty} x e^{-\lambda x} d x=\left.x\left(-\frac{1}{\lambda} e^{-\lambda x}\right)\right|_{0} ^{\infty}-\int_{0}^{\infty}-\frac{1}{\lambda} e^{-\lambda x} d x
$$

For the first term, we know $\lim _{x \rightarrow 0} \frac{x}{e^{\lambda x}}=0$, so the first term disappears. For the second term, it is

$$
\frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda x} d x=-\left.\frac{1}{\lambda^{2}} e^{-\lambda x}\right|_{0} ^{\infty}=\frac{1}{\lambda^{2}} .
$$

Therefore, the expectation is $\mathbb{E}[X]=\lambda\left(0+\frac{1}{\lambda^{2}}\right)=\frac{1}{\lambda}$. The proof for the variance is left as homework.

Intuitions for the expectations

- Recall that for $X \sim \operatorname{Exp}(\lambda)$, the rate λ is measured as the number of occurrences per time unit.
- E.g., for the arrival process of consumers into a store, if $\lambda=5$ per hour, then in average five consumers enter the store in an hour.
- The expectation of X is $\frac{1}{\lambda}$, which is measured as "the time between two occurrences."
- E.g., if in average five consumers enter in an hour, in average one consumer enters every 12 minutes.
- This 12 -minute interarrival time is the mean of X, which is $\frac{1}{5}$ "hour" = 12 minutes.

Cumulative distribution functions

- The cdf of $X \sim \operatorname{Exp}(\lambda)$ can be derived:

Proposition 4
Let $X \sim \operatorname{Exp}(\lambda)$, then

$$
F(x \mid \lambda)=1-e^{-\lambda x} .
$$

Proof. We have

$$
\operatorname{Pr}(X<x)=\int_{0}^{x} \lambda e^{-\lambda z} d z=\left.\lambda\left(\frac{1}{-\lambda}\right) e^{-\lambda z}\right|_{0} ^{x}=-\left(e^{-\lambda x}-1\right),
$$

which implies $F(x \mid \lambda)=1-e^{-\lambda x}$.

An example

- Let X be the interarrival time of buses at a particular bus stop. Suppose X follows an exponential distribution with rate 10 per hour.
- The pdf: $f(x \mid 10)=10 e^{-10 x}$.
- $\mathbb{E}[X]=\frac{1}{10}=0.1$ hour $=6$ minutes.
- $\operatorname{Var}(X)=\frac{1}{10}^{2}=0.01$ hour 2.
- Standard deviation $=0.1$ hour $=6$ minutes.

An example (cont'd)

- $X \sim \operatorname{Exp}(10)$
- $F(x \mid 10)$
$=1-e^{-10 x}$.
- $\operatorname{Pr}(X>0.2)$
$=1-F(0.2 \mid 10)$
$=e^{-2} \approx 0.135$.

Exponential and Poisson distributions

- A Poisson RV counts the number of arrivals in a time interval.
- An Exponential RV measures the interarrival time.

An interarrival time

Four arrivals in an hour Three arrivals in an hour

- May we establish a relationship between the two distributions?

Exponential and Poisson distributions

- The following proposition connects the two distributions:

Proposition 5

Consider an arrival process within a fixed interval $[0, t]$, $t>0$. Let $X \sim \operatorname{Poi}(\lambda t)$ be the number of arrivals, then the interarrival time $Y \sim \operatorname{Exp}(\lambda t)$.

Nonrigorous Proof. We may divide the interval into n pieces, i.e., $\left[0, \frac{t}{n}\right),\left[\frac{t}{n}, \frac{2 t}{n}\right), \ldots,\left[(n-1) \frac{t}{n}, t\right]$. Let X_{i} be the number of arrivals in piece $i, i=1, \ldots, n$. If n is large enough (i.e., approaching infinity), $X_{i} \sim \operatorname{Ber}\left(\frac{\lambda t}{n}\right)$ and X_{i} are independent. Then $\operatorname{Pr}\left(X_{i}=0\right)=1-\frac{\lambda t}{n}=1-\operatorname{Pr}\left(X_{i}=1\right)$.

Exponential and Poisson distributions

Nonrigorous Proof (cont'd). Now, let's consider the probability that an interarrival time is greater than t, i.e., $\operatorname{Pr}(Y>t)$. This means there is no arrival in $[0, t]$, or no arrival in each of the n pieces. Therefore,

$$
\operatorname{Pr}(Y>t)=\lim _{n \rightarrow \infty}\left[\left(1-\frac{\lambda t}{n}\right)^{n}\right] .
$$

By elementary Calculus, we have

$$
\operatorname{Pr}(Y>t)=e^{-\lambda t} .
$$

Because the cdf of an exponential RV with rate λt is $1-e^{-\lambda t}$, we know $Y \sim \operatorname{Exp}(\lambda t)$.

Exponential and Poisson distributions

- Because t is arbitrary, we may have the modified version:

Proposition 6

Consider an arrival process within a fixed interval. Let $X \sim \operatorname{Poi}(\lambda)$ be the number of arrivals, then the interarrival time $Y \sim \operatorname{Exp}(\lambda)$.

- Intuition:
- Poisson: frequency (e.g., arrivals per hour).
- Exponential: cycle (e.g., hours per arrival).

Road map

- Basic concepts
- Uniform distributions
- Exponential distributions
- Normal distributions
- Basic properties
- Approximating binomial distributions

Normal distributions

- One of the most important distribution in Statistics.
- Also known as Gaussian distributions.
- Named after Carl Friedrich Gauss.

Definition 3 (Normal distribution)

A random variable X follows the normal distribution with mean $\mu \in \mathbb{R}$ and standard deviation $\sigma \in \mathbb{R}_{+}=[0, \infty)$, denoted by $X \sim \mathrm{ND}(\mu, \sigma)$, if its $p d f$ is

$$
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

for all $x \in \mathbb{R}$.

Graphing normal distributions

Normal distributions

- A normal distribution is always symmetric.
- Mean $=$ median $=$ mode .
- Below (above) the mean, the probability is $\frac{1}{2}$.
- The two parameters are, by definition, its expected value and standard deviation.
- Some researchers use the variance rather than standard deviation as the second parameter.
- Increasing the expected value μ shifts the curve to the right.
- Increasing the standard deviation σ makes the curve flatter.
- A normal curve is perfectly bell-shaped.

Normal distributions: Applications

- Natural variables: heights of people, weights of dogs, lengths of leaves, temperature of a city, etc.
- Performance: transmission time of a packet through TCP, sales made by salespeople, consumer demands, student grades, etc.
- All kinds of errors: estimation errors for consumer demand, differences from a manufacturing standard, etc.
- More importantly, some most important statistics approximately follow the normal distribution when the sample size is large enough (to be discussed in Chapter 7).

Warning!

- A normal curve spread from negative infinity to positive infinity. This is not true for most of the practical case!
- E.g., student grades, heights, weights, etc.
- In using a normal distribution to approximate a practical variable, we must make sure that in our normal curve, the probability for "impossible" values to occur is insignificant.

Expectations, variances, and cdf

- Given a random variable $X \sim \mathrm{ND}(\mu, \sigma)$ and its pdf $f(x \mid \mu, \sigma)$, we may (should) still prove that its mean and variances are indeed μ and σ^{2}.
- $\mathbb{E}[X]=\int_{-\infty}^{\infty} x \frac{1}{\delta \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\delta}\right)^{2}} d x$.
- $\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} \frac{1}{\delta \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\delta}\right)^{2}} d x$
- However, it is very hard if we do that from the definitions.
- The cdf of a normal curve

$$
F(x \mid \mu, \delta)=\int_{-\infty}^{x} \frac{1}{\delta \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{z-\mu}{\delta}\right)^{2}} d z
$$

does not have a closed form.

Standard normal distributions

- In general, normal distributions are useful but hard to use.
- Numerically, calculating $f(x \mid \mu, \sigma)$ or $F(x \mid \mu, \sigma)$ is hard.
- Analytically, the complicated form forbids us from deriving properties easily.
- Amazingly, all normal distributions with different parameters can have a mapping with the unique standard normal distribution.
- The standard normal distribution, typically denoted as $\phi(x)$, is a normal distribution with $\mu=0$ and $\sigma=1$.
- Let's see how to construct the mapping.

Standard normal distributions

- Consider a random variable $X \sim \mathrm{ND}(\mu, \sigma)$.
- Define $Z=\frac{X-\mu}{\sigma} . Z$ is another random variable.
- Then $Z \sim \mathrm{ND}(0,1)$!

Proposition 7
If $X \sim \mathrm{ND}(\mu, \sigma)$, then $Z=\frac{X-\mu}{\sigma} \sim \mathrm{ND}(0,1)$.
Proof. Later in the semester.

Standard normal distributions

- For a value x, recall that its z-score is $\frac{x-\mu}{\sigma}$.
- Therefore, the standard normal distribution is sometimes called the z distribution.
- People has constructed the cumulative probability table for the standard normal distribution.
- Table A.5, 6.2, or the one inside the cover in the textbook.
- Problems regarding a normal distribution with $\mu \neq 0$ and $\sigma \neq 1$ can be solved by transforming to the standard normal distribution.

Using the standard normal distribution

- Let X be a randomly selected student's score in an exam. Suppose for this exam, the mean is 6.5 (out of 10), the standard deviation is 2 , and the scores are approximately normally distributed.
- What is the probability that X is above 10 or below 0 ?
- What is the probability that X is larger than 8 ?
- What is the percentile that maps to a 8 -point score?

Using the standard normal distribution

- Let $Z=\frac{X-6.5}{2 .}$.

Using the standard normal distribution

- What is the probability that X is above 10 or below 0 ?
- $\operatorname{Pr}(X \geq 10)=\operatorname{Pr}\left(\frac{X-6.5}{2} \geq \frac{10-6.5}{2}\right)=\operatorname{Pr}(Z \geq 1.75) \approx 0.04$.
- $\operatorname{Pr}(X \geq 0)=\operatorname{Pr}\left(\frac{X-6.5}{2} \leq \frac{0-6.5}{2}\right)=\operatorname{Pr}(Z \leq-3.25) \approx 0$.

Using the standard normal distribution

- What is the probability that X is larger than 8 ?
- $\operatorname{Pr}(X \geq 8)=\operatorname{Pr}\left(\frac{X-6.5}{2} \geq \frac{8-6.5}{2}\right)=\operatorname{Pr}(Z \geq 0.75) \approx 0.227$.

Using the standard normal distribution

- What is the percentile that maps to a 8 -point score?
- $\operatorname{Pr}(X \geq 8) \approx 0.227$. So $\operatorname{Pr}(X \leq 8) \approx 0.773$.
- So it's around $77^{\text {th }}$ or $78^{\text {th }}$ percentile.

Standard normal distributions

- So with
- the transformation to the standard normal distribution and
- the probability table of standard normal distribution, we are able to solve normal distribution problems regarding any values of μ and σ.
- But with MS Excel or other software, we may solve those problems directly.
- Nevertheless, we will see that the transformation plays an important role in deriving some analytical properties of inferential Statistics.

Approximating binomial with normal

- Let $X \sim \operatorname{Bi}(n, p)$.
- When $n \rightarrow \infty, p \rightarrow 0$, and $n p=\lambda, \operatorname{Bi}(n, p) \rightarrow \operatorname{Poi}(\lambda)$.
- So a Poisson RV can approximate a binomial RV.
- A normal RV can also approximate a binomial RV.
- When n is large and p is moderate (not close to 0 or 1), $\operatorname{Bi}(n, p) \approx \operatorname{ND}(n p, \sqrt{n p(1-p)})$.
- A rule of thumb: $n \geq 25, n p>5$, and $n(1-p)>5$.

Approximating binomial with normal

Approximating binomial with normal

- Why $\operatorname{Bi}(n, p) \approx \operatorname{ND}(n p, \sqrt{n p(1-p)})$?
- A binomial distribution is always bell-shaped.
- A binomial distribution's mean is always around its mode.
- When $n p>5$, the mean is "far" from zero and the distribution looks like symmetric.

Approximating binomial with normal

- Question: Suppose we toss a fair coin 50 times. What is the probability of getting 25 to 30 heads?
- Let X be the number of heads out of the 50 trials, then $X \sim \operatorname{Bi}(50,0.5)$. Then we have

$$
\operatorname{Pr}(25 \leq X \leq 30)=\sum_{x=25}^{30} \operatorname{Pr}(X=x)=0.4967 .
$$

as an exact answer.

- Let Y be the normal RV that approximates X. We know $Y \sim \mathrm{ND}(25,3.54)$, so

$$
\operatorname{Pr}(25 \leq Y \leq 30) \approx \operatorname{Pr}(0 \leq Z \leq 1.414) \approx 0.4214
$$

is an approximation. Acurate?

Correction of continuity

- The previous approximation is not accurate because we have one more thing to do, the correction of continuity.
- Consider the previous example: Tossing a fair coin 50 times.
- What is the probability of getting exactly 20 heads?
- Calculating based on the binomial distribution, we know the probability is positive.
- But approximating based on the normal distribution, we will get $\operatorname{Pr}(Y=20)$, which is zero!
- Do not forget that the normal distribution is continuous.

Why correction of continuity?

- Use $Y \sim \mathrm{ND}(25,3.54)$ to approximate $X \sim \operatorname{Bi}(50,0.5)$.
- $\operatorname{Pr}(25 \leq X \leq 30)$: Purple area.
- $\operatorname{Pr}(25 \leq Y \leq 30)$: Area below the orange curve over $[25,30]$.

Why correction of continuity?

- $X \sim \operatorname{Bi}(50,0.5)$ and $Y \sim \mathrm{ND}(25,3.54)$.
- $\operatorname{Pr}(25 \leq Y \leq 30)$ underestimates $\operatorname{Pr}(25 \leq X \leq 30)$.
- How to fix it?
- $\operatorname{Pr}(24.5 \leq Y \leq 30.5)$!
- $\operatorname{Pr}(24.5 \leq Y \leq 30.5) \approx \operatorname{Pr}(-0.141 \leq Z \leq 1.556) \approx 0.4963$, which is close to $\operatorname{Pr}(25 \leq X \leq 30) \approx 0.4967$.

Correction of continuity

- Question: What is the probability of getting 27 heads?
- An exact answer: $X \sim \operatorname{Bi}(50,0.5)$:

$$
\operatorname{Pr}(X=27) \approx 0.09596 .
$$

- Approximation: $Y \sim \mathrm{ND}(25,3.54)$:

$$
\operatorname{Pr}(Y=27)=0,
$$

but

$$
\operatorname{Pr}(26.5 \leq Y \leq 27.5) \approx 0.09593 .
$$

Summary

- It is suitable for most of natural (and artificial) environments.
- The normal distribution with mean zero and standard deviation one is called the standard normal distribution.
- It approximates the binomial distribution.
- It is also the (approximate) distribution of some important statistics (to be introduced in Chapter 7).

Relations among distributions

