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Introduction

I Today we will study an important mathematical tool for
Probability and Statistics: The moment generating function.

I It is useful in deriving means and variances.

I It is useful in finding the distribution of a random variable.

I It is required to understand materials in Chapters 7 to 9.
I To memorize them, you do not need it.
I To know why they are true, you need it.

I But it may be hard...
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Moment generating functions (MGF)

Road map

I Moment generating functions (MGF).

I MGF for distributions.

I MGF for independent sums.
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Moment generating functions (MGF)

Moments

I For a random variable, we typically use its mean and
variance to describe it.

I In general, we may use moments:

Definition 1 (Moments)

The kth moment of a random variable X is defined as

µ′k ≡ E
[
Xk
]
.
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Moment generating functions (MGF)

Moments: an example

I Consider the uniform distribution Uni(0, 1):
I f(x) = 1.

I µ′1 = E[X] = 1
2 .

I µ′2 = E[X2] =
∫ 1
0 x

2dx = 1
3 .

I µ′3 = E[X3] =
∫ 1
0 x

3dx = 1
4 .

I In general, µ′k = 1
k+1 .
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Moment generating functions (MGF)

Moments: the general case

I The first moment:
I µ′1 ≡ E[X1] = E[X] = µ.

I The second moment:
I µ′2 ≡ E[X2].
I Moreover, σ2 = E[X2]− E[X]2 = µ′2 − µ2.

I For most practical random variables, there are infinitely
many moments.
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Moment generating functions (MGF)

Moments and distributions

I When we use moments to describe distributions:
I When two RV have the same mean and variance (and thus the

same second moment), they may follow different distributions.
I When their first, second, and third moments are all the same,

it is more likely that they are the same.
I When their first four moments are all the same...

I In all moments are the same:

Proposition 1 (Moments and distributions)

If two random variables have all their moments identical,
they must follow exactly the same distribution.

Proof. Beyond the scope of this course.
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Moment generating functions (MGF)

Moment generating functions

I The proposition is attractive but hard to use.

I It will be a nightmare to calculate all the (infinitely many)
moments of a random variable.

I Fortunately, statisticians have found an easier way through
moment generating functions (MGF).

Definition 2

The moment-generating function m(t) for a random
variable X is defined as

m(t) ≡ E
[
etX
]
.
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Moment generating functions (MGF)

Moment generating functions

I m(t) ≡ E[etX ] is called the moment generating function
because it generates moments. Why?

I Recall that you may do a Taylor expansion on etx as

etx = 1 + tx+
(tx)2

2!
+

(tx)3

3!
+ · · · .
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Moment generating functions (MGF)

Moment generating functions

I With this, the MGF (assuming X is discrete) satisfies

E
[
etX
]

=
∑
x∈S

etx Pr(x)

=
∑
x∈S

[
1 + tx+

(tx)2

2!
+

(tx)3

3!
+ · · ·

]
Pr(x)

=
∑
x∈S

Pr(x) + t
∑
x∈S

xPr(x) +
t2

2!

∑
x∈S

x2 Pr(x) +
t3

3!

∑
x∈S

x3 Pr(x) + · · ·

= 1 + tµ′1 +
t2

2!
µ′2 +

t3

3!
µ′3 + · · · .
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Moment generating functions (MGF)

Moment generating functions

I Now consider the first-order derivative of m(t):

d

dt
m(t) = µ′1 +

t

1!
µ′2 +

t2

2!
µ′3 + · · · .

I If we plug in t = 0 into the above equation, we get

d

dt
m(t)

∣∣∣∣
t=0

= µ′1,

which is the first moment.
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Moment generating functions (MGF)

Moment generating functions
I Now consider the second-order derivative of m(t):

d2

dt2
m(t) = µ′2 +

t

1!
µ′3 + · · ·

I If we plug in t = 0 into the above equation, we get

d2

dt2
m(t)

∣∣∣∣
t=0

= µ′2,

which is the second moment.

I The kth-order derivative generates the kth moment:

dk

dtk
m(t)

∣∣∣∣
t=0

= µ′k.
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Moment generating functions (MGF)

MGF of the Poisson distribution

I As our first example, we derive the MGF of a Poisson RV:

Proposition 2 (MGF of the Poisson distribution)

The moment generating function for X ∼ Poi(λ) is

m(t) = eλ(e
t−1).

Proof. First, we have

m(t) = E
[
etX ] =

∞∑
x=0

etx
λxe−λ

x!
= e−λ

∞∑
x=0

(
λet
)x

x!
.
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Moment generating functions (MGF)

MGF of the Poisson distribution

Proof (cont’d). Now, note that the summation is another
Taylor expansion:

eλe
t

=
∞∑
x=0

(
λet
)x

x!
.

Therefore, we have

m(t) = e−λeλe
t

= eλ(e
t−1)

and the proof is complete.
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Moment generating functions (MGF)

MGF of the Poisson distribution

I Let’s apply the MGF of the Poisson distribution:

Proposition 3

Let X ∼ Poi(λ), then

E[X] = Var(X) = λ.

Proof. We have

m′(t) =
d

dt

[
eλ(e

t−1)
]

= λet · eλ(et−1)

and thus m′(0) = E[X] = λ.
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Moment generating functions (MGF)

MGF of the Poisson distribution

Proof (cont’d). Moreover, we have

m′′(t) =
d

dt

[
λet · eλ(et−1)

]
= λet · eλ(et−1) +

(
λet
)2 · eλ(et−1)

= λet · eλ(et−1)
(
1 + λet

)
and thus m′′(0) = E[X2] = λ(1 + λ) = λ+ λ2. It then
follows that Var(X) = E[X2]− E[X]2 = λ.
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Moment generating functions (MGF)

MGF of the Bernoulli distribution

I So with the MGF, it can (sometimes) be much easier to
find the mean and variance of a given random variable.

I As another example, let’s consider the Bernoulli distribution.

Proposition 4

Let X ∼ Ber(p), then E[X] = p and Var(X) = p(1− p).

Proof. The MGF m(t) = E[etX ] = p · et + (1− p) · 1. Then
we have m′(t) = pet and m′(0) = E[X] = p. Moreover, we
have m′′(t) = pet and m′′(0) = E[X2] = p. Then
Var(X) = E[X2]− E[X]2 = p− p2 = p(1− p).
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Moment generating functions (MGF)

Summary

I You may treat the MGF as a pure mathematical tool.

I It is an expectation and thus not a random variable.

I It generates moments through differentiation.

I It can be used to find means and variances.
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MGF for distributions

Road map

I Moment generating functions (MGF).

I MGF for distributions.

I MGF for independent sums.
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MGF for distributions

Two properties of MGFs

I There are two very important properties of MGFs:

Proposition 5 (Uniqueness of MGF)

For any random variable, its MGF is unique.

Proof. Beyond the scope of this course.

Proposition 6 (MGF and distributions)

If two random variables have the same MGF, then they
follow the same distribution.

Proof. Having identical MGF means having all moments
identical, which mean the distributions are identical.
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MGF for distributions

MGFs for distributions

I How may we apply the above proposition to derive the
distribution of a random variable?
I As an example, suppose for a random variable X we find its

MGF is e4(e
t−1).

I Also we know the MGF of Poi(λ) is eλ(e
t−1).

I Then we may conclude that X ∼ Poi(4).

I In other words, we need to first find the MGF or those
well-known distributions (binomial, Poisson, exponential,
normal, etc.) before we use this method.
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MGF for distributions

MGFs for distributions

Distribution MGF m(t) Distribution MGF m(t)

Ber(p) pet + (1− p) Uni(a, b) ?

Bi(n, p) ? Exp(λ) ?

HG(N,A, n) ? ND(µ, σ) ?

Poi(λ) eλ(e
t−1) Gamma(α, β) ?

χ2(n) ?
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MGF for distributions

MGF of the exponential distribution
I Let’s try the exponential distribution.

Proposition 7 (MGF of an exponential RV)

The moment generating function for X ∼ Exp(λ) is

m(t) =
λ

λ− t
or

1

1− t
λ

∀t < λ.

Proof. For all t < λ, we have

m(t) = E
[
etX
]

=

∫ ∞
0

etxλe−λxdx = λ

∫ ∞
0

e(t−λ)x
∣∣∣∞
0

=
λ

λ− t
,

which is equivalent to the second expression.
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MGF for distributions

MGF of the exponential distribution

I The mean and variance may then be derived:

Proposition 8

Let X ∼ Exp(λ), then

E[X] =
1

λ
and Var(X) =

1

λ2
.

Proof. We have m′(t) = λ
(λ−t)2 and m′(0) = E[X] = 1

λ
.

Moreover, we have m′′(t) = λ
(λ−t)3 and m′′(0) = E[X2] = 2

λ2
.

It then follows that Var(X) = E[X2]− E[X]2 = 1
λ2

.
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MGF for distributions

MGF of the uniform distribution

I Let’s try the uniform distribution.

Proposition 9 (MGF of the uniform distribution)

The moment generating function m(t) for X ∼ Uni(a, b) is

m(t) =
etb − eta

t(b− a)
.

Proof. Homework!
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MGF for distributions

MGF of the normal distribution

I Let’s try the normal distribution.

Proposition 10 (MGF of the normal distribution)

The moment generating function m(t) for X ∼ ND(µ, σ) is

m(t) = eµt+
σ2

2
t2 = exp

(
µt+

σ2

2
t2
)
.

I Suppose this is true, would you verify that the mean and
standard deviation are indeed µ and σ?
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MGF for distributions

MGF of the normal distribution

Proof. By definition, we have

m(t) =

∫ ∞
−∞

etx
1

σ
√

2π
exp

[
− 1

2

(x− µ
σ

)2]
dx

=

∫ ∞
−∞

1

σ
√

2π
exp

[
tx− 1

2

(x2 − 2µx+ µ2

σ2

)]
dx

=

∫ ∞
−∞

1

σ
√

2π
exp

{
− 1

2σ2

[
x2 − 2(µ+ tσ2)x+ µ2

]}
dx.
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MGF for distributions

MGF of the normal distribution

Proof (cont’d). Now, let’s try to complete the square for
the exponent by adding and subtracting a term:

x2 − 2
(
µ+ tσ2

)
+ µ2

= x2 − 2
(
µ+ tσ2

)
+
(
µ+ tσ2

)2 − 2µσ2t− σ4t2

=
[
x−

(
µ+ tσ2

)]2 − (2µσ2t+ σ4t2
)
.

In the original derivation, this means multiplying and

dividing eµt+
σ2

2
t2 = exp

(
µt+ σ2

2
t2
)
.
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MGF for distributions

MGF of the normal distribution

Proof (cont’d). We thus have

m(t) = eµt+
σ2

2
t2
∫ ∞
−∞

1

σ
√

2π
exp

{
− 1

2

[x− (µ+ tσ2)

σ

]2}
dx

= eµt+
σ2

2
t2 ,

where the last equality follows because the integral is the
pdf of ND(µ+ tσ2, σ).
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MGF for distributions

MGF of the normal distribution

I Now we can show that the mean and variance of a normal
random variable are indeed µ and σ2.

Proposition 11

Let X ∼ ND(µ, σ), then

E[X] = µ and Var(X) = σ2.

Proof. We have m′(t) = (µ+ σ2t)eµt+
σ2

2
t2 and m′(0) = µ.

Moreover, we have m′′(t) = eµt+
σ2

2
t[σ2 + (µ+ σ2t)2] and

m′′(0) = σ2 + µ2. It then follows that Var(X) = σ2.
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MGF for distributions

MGFs for distributions

Distribution MGF m(t) Distribution MGF m(t)

Ber(p) pet + (1− p) Uni(a, b) etb−eta
t(b−a)

Bi(n, p) ? Exp(λ) λ
λ−t

HG(N,A, n) ? ND(µ, σ) eµt+
σ2

2
t2

Poi(λ) eλ(e
t−1) Gamma(α, β) ?

χ2(n) ?
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MGF for independent sums

Road map

I Moment generating functions (MGF).

I MGF for distributions.

I MGF for independent sums.
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MGF for independent sums

MGF for independent sums

I MGFs are particularly useful for deriving the distribution of
a sum of independent random variables.

Proposition 12

Let X1, X2, ..., and Xn be independent random variables
with MGFs m1(t), m2(t), ..., and mn(t), respectively. If
X = X1 + · · ·+Xn, then its MGF

m(t) = m1(t)×m2(t)× · · · ×mn(t).
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MGF for independent sums

MGF for independent sums

Proof. By definition, we have

m(t) = E[etX ] = E[et(X1+···+Xn)]

= E[etX1etX2 · · · etXn ].

Because Xis are independent, we have

m(t) = E[etX1 ]E[etX2 ] · · ·E[etXn ]

= m1(t)×m2(t)× · · ·mn(t),

which completes the proof.
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MGF for independent sums

Sum of independent Bernoulli RVs

I Let’s apply the proposition on the binomial distribution.

Proposition 13

The moment generating function of X ∼ Bi(n, p) is

m(t) =
[
pet + (1− p)

]n
.

Proof. Let Xi ∼ Ber(p), i = 1, ..., n, and Xis be independent.
Then we know X =

∑n
i=1Xi ∼ Bi(n, p). Let the MGF of Xi

be mi(t) = pet + (1− p) and that of X be m(t). It then
follows that m(t) =

∏n
i=1mi(t) = [pet + (1− p)]n.
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MGF for independent sums

Sum of independent exponential RVs

I Now let’s try to prove that the sum of independent
Exponential RVs is a gamma RV.

Proposition 14

Let Xi ∼ Exp(λ), i = 1, ..., n, and Xis be independent.
Then X =

∑n
i=1Xi ∼ Gamma(n, 1

λ
).

Proof. We first find the MGF of the gamma distribution.
Let h = β

1−βt , we have

E
[
etX
]

=

∫ ∞
0

etx
(
xα−1e−

x
β

βαΓ(α)

)
dx =

1

βαΓ(α)

∫ ∞
0

xα−1e−
x
hdx.
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MGF for independent sums

Sum of independent exponential RVs

Proof (cont’d). Let’s remove the integral by making the
integrand a gamma pdf (if h > 0 or t < 1

β
):

E
[
etX
]

=
hαΓ(α)

βαΓ(α)

∫ ∞
0

xα−1e−
x
h

hαΓ(α)
dx =

(
h

β

)α
=

1

(1− βt)α
.

Now consider Xi ∼ Exp(λ), i = 1, ..., n. Their MGFs are
λ
λ−t = 1

1− t
λ

. As X is an independent sum of Xis, the MGF

of X is (
1

1− t
λ

)n
,

which is identical to the MGF of a gamma distribution
with parameters α = n and β = 1

λ
.
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MGF for independent sums

Properties of normal RVs

I Now we are ready to derive some very important properties
of the normal distribution.
I The linear function of a normal RV is normal.
I The linear combination of independent normal RVs is normal.
I The standardization of a normal RV.
I The distribution of a sample mean from a normal population.
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MGF for independent sums

Linear function of a normal RV

I Consider a linear function of a normal RV:

Proposition 15

Let X ∼ ND(µ, σ), then aX + b ∼ ND(aµ+ b, aσ).

Proof. We know the MGF of ND(µ, σ) is eµt + σ2

2
t2. By

definition, the MGF of aX + b is

E
[
et(aX+b)

]
= E

[
etaX · etb

]
= etbE

[
etaX

]
= etb · eµ(at)+

σ2

2
(at)2 = e(aµ+b)t+

(aσ)2

2
t2 ,

which is the MGF of a normal RV with mean aµ+ b and
standard deviation aσ.
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MGF for independent sums

Linear combination of indep. NDs

I Consider a linear combination of independent normal RVs:

Proposition 16

Let Xi ∼ ND(µi, σi) and Xis be independent, then

X =
n∑
i=1

aiXi ∼ ND

( n∑
i=1

aiµi,
√∑n

i=1 a
2
iσ

2
i

)
.
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MGF for independent sums

Linear combination of indep. NDs

Proof. First, note that aiXi ∼ ND(aiµi, aiσi) as this is a
linear function of Xi. Now, we apply the result for
independent sum and get

E
[
etX
]

=
n∏
i=1

{
exp

[
aiµit+

(aiσi)
2

2
t2
]}

= exp

(
a1µ1t+

a21σ
2
1

2
t2
)
· · · exp

(
anµnt+

a2nσ
2
n

2
t2
)

= exp

[
(a1µ1 + · · ·+ anµn)t+

1

2

(
a21σ

2
1 + · · ·+ a2nσ

2
n

)
t2
]
.

Compare this with the normal MGF and we are done.
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MGF for independent sums

Standardization of a normal RV

I Consider the standardization of a normal RV:

Proposition 17

Let X ∼ ND(µ, σ), then

X − µ
σ

∼ ND(0, 1).

Proof. A direct application of the proposition for linear
functions of normal random variables.



Statistics I – Chapters 5 and 6 Supplements, Fall 2012 43 / 46

MGF for independent sums

The distribution of a sample mean
I The sample mean is one of the most important statistics.

Definition 3

Let {Xi}i=1,...,n be a sample from a (probably not normal)
population , then

X =

∑n
i=1Xi

n

is the sample mean.

I A sample mean is also a random variable.
I We have computed its mean and variance. Suppose the

population has mean µ and standard deviation σ:

E[X] = µ and Var(X) =
σ2

n
.
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MGF for independent sums

The distribution of a sample mean

I When the sample mean is draw from a normal population:

Proposition 18

Let {Xi}i=1,...,n be a sample from a normal population with
mean µ and standard deviation σ. Then

X ∼ ND

(
µ,

σ√
n

)
.

Proof. Homework!
I The sample mean of a normal population is also normal.
I More about sample means and sampling distributions will be

discussed in Chapter 7.
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MGF for independent sums

Summary of discrete distributions

Distribution Mean Variance MGF m(t)

Ber(p) p p(1− p) pet + (1− p)

Bi(n, p) np np(1− p) [pet + (1− p)]n

HG(N,A, n)
np

np(1− p)N−n
N−1 N/A

(p = A
N

)

Poi(λ) λ λ eλ(e
t−1)
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MGF for independent sums

Summary of continuous distributions

Distribution Mean Variance MGF m(t)

Uni(a, b) a+b
2

(b−a)2
12

etb−eta
t(b−a)

Exp(λ) 1
λ

1
λ2

λ
λ−t

ND(µ, σ) µ σ eµt+
σ2

2
t2

Gamma(α, β) αβ αβ2 ( 1
1−βt)

α

χ2(n) n 2n (1− 2t)−
n
2
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