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Introduction

I In this chapter, we will study sampling techniques and
sampling distributions.
I Different sampling techniques may be applied in different

environments.
I Once we obtain a statistic, we need to know its distribution

to understand its behavior and make inferences.

I Two particular statistics we will study in this chapter are
the sample mean and sample proportion.

I The central limit theorem is the foundation of many
statistical inference processes.
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Sampling techniques

Road map

I Sampling techniques.

I Sampling distributions.

I Distribution of the sample mean.
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Sampling techniques

Sampling vs. census

I We have compared three pairs of concepts in Chapter 1:
I Populations vs. samples.
I Parameters vs. statistics.
I Census vs. sampling.

I If we can always conduct a census, we will not need
statistical inferences at all. So why sampling?
I Saving money and time.
I More detailed information under the same resources.
I Destructive research processes.
I Impossibility of a census.
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Sampling techniques

Frames

I When sampling from a population, we need a list, map,
directory, or some other sources that represent the
population.

I Such a source is called a frame.
I A list of all students in NTU.
I A list of all professors in Taiwan.
I A list of all telephone numbers registered in Taipei.

I A frame may not be 100% accurate.
I Frames with overregistration contain the target population

plus some additional units.
I Frames with underregistration have some units missing.
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Sampling techniques

Random vs. nonrandom sampling

I Sampling is the process of selecting a subset of entities from
the whole population.

I Sampling can be random or nonrandom.

I If random, whether an entity is selected is probabilistic.
I Randomly select 1000 phone numbers on the telephone book

and then call them.

I If nonrandom, it is deterministic.
I Ask all your classmates for their preferences on iOS/Android.

I Most statistical methods are only for random sampling.
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Sampling techniques

Random sampling techniques

I We will introduce four basic random sampling techniques:
I Simple random sampling.
I Stratified random sampling.
I Systematic random sampling.
I Cluster (or area) random sampling.
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Sampling techniques

Simple random sampling

I In simple random sampling, each entity has the same
probability of being selected.

I Each entity is assigned a label (from 1 to N). Then a
sequence of n random numbers, each between 1 and N , are
generated.

I One needs either a table of random numbers or a
random number generator.
I A table with many random numbers.
I A software function that generate random numbers.
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Sampling techniques

Simple random sampling

I Suppose we want to study all students graduated from NTU
IM regarding the number of units they took before their
graduation.
I N = 1000.
I For each student, whether she/he double majored, the year of

graduation, and the number of units are recorded.

i 1 2 3 4 5 6 7 ... 1000

Double
Yes No No No Yes No No Yes

major

Class 1997 1998 2002 1997 2006 2010 1997 ... 2011

Unit 198 168 172 159 204 163 155 171

I Suppose we want to sample n = 200 students.
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Sampling techniques

Simple random sampling

I To run simple random sampling, we first generate a
sequence of 200 random numbers:
I Suppose they are 2, 198, 7, 268, 852, ..., 93, and 674.

I Then the corresponding 200 students will be sampled. Their
information will then be collected.

i 1 2 3 4 5 6 7 ... 1000

Double
Yes No No No Yes No No Yes

major

Class 1997 1998 2002 1997 2006 2010 1997 ... 2011

Unit 198 168 172 159 204 163 155 171
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Sampling techniques

Simple random sampling

I The good part of simple random sampling is simple.

I However, it may result in nonrepresentative samples.

I In simple random sampling, there are some possibilities that
too much data we sample fall in the same stratum.
I They have the same property.
I For example, it is possible that all 200 students in our sample

did not double major.
I The sample is thus nonrepresentative.
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Sampling techniques

Simple random sampling

I As another example, suppose we want to sample 1000 voters
in Taiwan regarding their preferences on two candidates. If
we use simple random sampling, what may happen?
I It is possible that 65% of the 1000 voters are men while in

Taiwan only around 51% voters are men.
I It is possible that 40% of the 1000 voters are from Taipei

while in Taiwan only around 28% voters live in Taipei.

I How to fix this problem?
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Sampling techniques

Stratified random sampling

I We may apply stratified random sampling.

I We first split the whole population into several strata.
I Data in one stratum should be (relatively) homogeneous.
I Data in different strata should be (relatively)

heterogeneous.

I We then use simple random sampling for each stratum.

I Suppose 100 students double majored, then we can split the
whole population into two strata:

Stratum Strata size

Double major 100
No double major 900
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Sampling techniques

Stratified random sampling

I Now we want to sample 200 students.

I If we sample 200× 100
1000

= 20 students from the double-major
stratum and 180 ones from the other stratum, we have
adopted proportionate stratified random sampling.

Stratum Strata size Number of samples

Double major 100 20
No double major 900 180

I If the opinions in some strata are more important, we may
adopt disproportionate stratified random sampling.
I E.g., opening a nuclear power station at a particular place.
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Sampling techniques

Stratified random sampling

I We may further split the population into more strata.
I Double major: Yes or no.
I Class: 1994-1998, 1999-2003, 2004-2008, or 2009-2012.
I This stratification makes sense only if students in different

classes tend to take different numbers of units.

I Stratified random sampling is typically good in reducing
sample error.

I But it can be hard to identify a reasonable stratification.

I It is also more costly and time-consuming.
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Sampling techniques

Systematic random sampling

I When even simple random sampling is too time-consuming,
we may use systematic random sampling.
I In simple random sampling, we need at least n different

random numbers.
I In systematic random sampling, we need only one.

I We first determine a number k:

k =

⌊
N

n

⌋
.

I Then we generate one random number s ∈ {1, 2, ..., k}.
I The data we will sample are those with labels s, s+ k,
s+ 2k, ..., and s+ nk.
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Sampling techniques

Systematic random sampling

I As we want to sample n = 200 students from N = 1000
students, k =

⌊
1000
200

⌋
= 5.

I Suppose the random number is s = 3.

I Then we will sample:

i 3 8 13 18 23 28 ... 993 998

Double
No No No Yes No No No Yes

major

Class 2002 2000 1997 1998 2002 2005 ... 1999 2001

Unit 172 168 155 156 171 159 180 183
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Sampling techniques

Systematic random sampling

I Systematic random sampling is extremely simple.

I In some cases, its quality is not lower than that of simple
random sampling.

I However, if the data are labeled base on some periodicity
and the sampling is in a similar periodicity, there will be a
huge sample error.

I Also the possible outcomes of sampling is quite limited.
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Sampling techniques

Cluster (or area) random sampling

I Imagine that you are going to introduce a new product into
all the retail stores in Taiwan.

I If the product is actually unpopular, an introduction with a
large quantity will incur a huge lost.

I How to get an idea about the popularity?

I Typically we first try to introduce the product in a small
area. We put the product on the shelves only in those
stores in the specified area.

I This is the idea of cluster (or area) random sampling.
I Those consumers in the area form a sample.
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Sampling techniques

Cluster (or area) random sampling

I In stratified random sampling, we define strata.

I Similarly, in cluster random sampling, we define clusters.

I However, instead of doing simple random sampling in each
strata, we will only choose one or some clusters and then
collect all the data in these clusters.
I If a cluster is too large, we may further split it into multiple

second-stage clusters.

I Therefore, we want data in a cluster to be heterogeneous.
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Sampling techniques

Cluster (or area) random sampling

I In the example of sampling 200 students, we may define
clusters based on classes.

I Then we randomly select four classes and sample the 200
students in the four classes.

I This may or may not be representative.
I Do students in a single class tend to be heterogeneous?
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Sampling techniques

Cluster (or area) random sampling

I In practice, the main application of cluster random sampling
is to understand the popularity of new products. Those
chosen cities (counties, states, etc.) are called test market
cities (counties, states, etc.).

I People use cluster random sampling in this case because of
its feasibility and convenience.
I Is it easy to deliver the product to consumers selected by the

other random sampling techniques?

I We should select test market cities whose population profiles
are similar to that of the entire country.
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Sampling techniques

Nonrandom sampling

I Convenience sampling.
I The researcher sample data that are easy to sample.

I Judgment sampling.
I The researcher decides who to ask or what data to collect.

I Quota sampling.
I In each stratum, we use whatever method that is easy to fill

the quota, a predetermined number of samples in the stratum.

I Snowball sampling.
I Once we ask one person, we ask her/him to suggest others.

I Nonrandom sampling cannot be analyzed by the statistical
methods we introduce in this course.
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Sampling distributions

Road map

I Sampling techniques.

I Sampling distributions.

I Distribution of the sample mean.
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Sampling distributions

Distributions

I To describe a random variable or an experiment, we need
to specify two things,
I all the possible outcomes and
I the probability (density) for each outcome to occur.

I E.g., rolling a dice:

Outcome 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6
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Sampling distributions

Distributions

I E.g., drawing one ball from a box containing three white
balls and two black balls.

Outcome White Black

Probability 2
5

2
3

I E.g., drawing two balls from a box containing three white
balls and two black balls.

Outcome
White White Black

and white and black and black

Probability (2
5
)2 = 4

25
2(2

5
)(3

5
) = 12

25
(3
5
)2 = 9

25
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Sampling distributions

Distributions

I Suppose we are facing a population and we want to
randomly draw one item.
I E.g., rolling a dice: Population = {1, 2, 3, 4, 5, 6}; the

probability of drawing each of them is 1
6 .

I The outcome of “drawing one item” is certainly random.

I Suppose we are facing a population and we want to
randomly draw n < N item.
I E.g., rolling n dice: The outcome is an n-dimensional vector

(X1, X2, ..., Xn), where Xi ∈ {1, 2, 3, 4, 5, 6} is the outcome of
the ith dice.

I The outcome of “drawing n < N items” is also random.
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Sampling distributions

Sampling distributions

I The outcome of drawing n items forms a sample.

I A sample with n > 1 and n < N is a random vector.

I The distributions of samples are sampling distributions.

I In Statistics, we typically do not care about the distributions
of a sample directly. Instead, we care about the distribution
of a statistic, which is a function of the sample.
I A sample: (X1, X2, ..., Xn).
I A statistic: the sample mean: X ≡ 1

n

∑n
i=1Xi.

I Other statistics: the sample variance, sample median, sample
range, sample max, etc.
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Sampling distributions

Sampling distributions

I The distributions of statistics, as they are derived from the
distributions of samples, are also called sampling
distributions.

I The reason to care about sampling distributions:
I We will use a statistic to infer a parameter.
I We can scientifically describe or estimate the parameter

only if we know the distribution of the statistic.

I Some concrete examples will be given in Chapters 8 and 9.

I In Chapter 7, let’s derive some sampling distributions.
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Sampling distributions

Sampling distributions

I What are those sampling distributions we will derive?

I In Chapter 7 of the textbook:
I Sample mean.
I Sample proportion.

I In Chapter 8 of the textbook:
I Sample variance.

I Outside the textbook:
I Sample minimum.

I Before we derive those distributions, let’s first get more
general ideas about sampling distributions.
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Sampling distributions

Sampling distributions of rolling dices

I We know how to describe the experiment of rolling a dice:

Outcome 1 2 3 4 5 6

Probability 1
6

1
6

1
6

1
6

1
6

1
6

I Suppose we roll a dice twice. How to describe this?

Outcome (1, 1) (1, 2) (1, 3) · · · (6, 5) (6, 6)

Probability 1
36

1
36

1
36

· · · 1
36

1
36
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Sampling distributions

Sampling distributions of rolling dices

I Let
I X1 be the outcome of rolling the first dice and
I X2 be the outcome of rolling the second dice.

I We have derived the distributions of X1 and (X1, X2).

I What is the distribution of X1 +X2?

I First we need to have the set of all possible outcomes:
I {2, 3, 4, ..., 11, 12}.

I Then we need to know the probability for each outcome to
occur. How?
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Sampling distributions

Distributions of sum of two dices

I The distribution of X1 +X2 comes from that of (X1, X2).
I For the outcome 2, we have

Pr(X1 +X2 = 2) = Pr(X1 = 1, X2 = 1)

= Pr(X1 = 1) Pr(X2 = 1) = 1
36 .

I For the outcome 3, we have

Pr(X1 +X2 = 3)

= Pr(X1 = 1, X2 = 2 ∪X1 = 2, X2 = 1)

= Pr(X1 = 1, X2 = 2) + Pr(X1 = 2, X2 = 1)

= Pr(X1 = 1) Pr(X2 = 2) + Pr(X1 = 2) Pr(X2 = 1) = 2
36 .

I The probabilities of all outcomes can be derived similarly.
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Sampling distributions

Distributions of sum of two dices

I It may be easier to look at the table:

X1

X2

1 2 3 4 5 6

1
{

1
36

} [
1
36

] (
1
36

)
· · · 1

36
1
36

2
[

1
36

] (
1
36

)
1
36

· · · 1
36

1
36

3
(

1
36

)
1
36

1
36

· · · 1
36

1
36

4 1
36

1
36

1
36

· · · 1
36

1
36

5 1
36

1
36

1
36

· · · 1
36

1
36

6 1
36

1
36

1
36

· · · 1
36

1
36

I { }: X1 +X2 = 2; [ ]: X1 +X2 = 3; ( ): X1 +X2 = 4.
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Sampling distributions

Distributions of sum of two dices

I The distribution of sum of two dices, X1 +X2, is:

Outcome 2 3 4 5 6 7 8 9 10 11 12

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

I It then follows that the distribution of the sample mean of
sample size 2, 1

2
(X1 +X2), is:

Outcome 1 3
2 2 5

2 3 7
2 4 9

2 5 11
2 6

Probability 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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Sampling distributions

Distributions of sum of two dices

I The distribution of the sample mean of sample size 2:

I Why most occurrences are around the mean?
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Sampling distributions

Sampling distributions

I The distribution of X1 or X2 is a population distribution.
I Or a sampling distribution with sample size 1.

I The distributions of (X1, X2), X1 +X2, and 1
2
(X1 +X2) are

sampling distributions.

I Analytically, we may derive the distribution of the sample
mean of rolling n dices for any n ∈ N .
I Nevertheless, the derivation will be tedious and costly for

large sample sizes and general population distributions.

I To make our lives easier and to give you some ideas about
random sampling, let’s find the distributions numerically:
I Roll dices for many times and then draw a histogram.
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Sampling distributions

Numerical sampling distributions

I Let’s do the experiment of rolling two dices for 500 times.

I Think in this way:

I Tomorrow I will roll two dices and get X
1

= 1
2(X1

1 +X1
2 ).

I Two days later I will do it again and get X
2

= 1
2(X2

1 +X2
2 ).

I Three days later I will get X
3

= 1
2(X3

1 +X3
2 ).

I 500 days later I will get X
500

= 1
2(X500

1 +X500
2 ).

I Each of X is is a sample. At this time, they are all random.
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Sampling distributions

Numerical sampling distributions
I We may apply the same idea to realistic sampling. Suppose

I want to know the average height of all NTU students:
I Tomorrow I will ask one hundred students and get

X
1

=
1

2
(X1

1 + · · ·+X1
100).

I 500 days later I will get X
500

.

I Each of X is is a sample.
I They are random now but will be known after 500 days.

I Because I do not know the population distribution, I cannot
analytically derive the sampling distribution.

I But I can numerically draw a histogram for the 500 values.
I That histogram will “describe” the distribution of X.
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Sampling distributions

Numerical sampling distributions

I Let’s focus on rolling dices now.

I Suppose the data I collected are:

i 1 2 3 4 5 6 7 · · · 500

xi1 6 3 1 1 6 6 3 5

xi2 3 1 4 4 3 6 2 · · · 3

x 4.5 2 2.5 2.5 4.5 6 2.5 4

I They are (xi1, x
i
2), not (Xi

1, X
i
2); they are known, not random.

I Let’s draw a histogram for these 500 values.
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Sampling distributions

Numerical sampling distributions
I The sampling distribution of 1

2
(X1 +X2) looks like

I It slightly deviates from the population distribution (a
discrete uniform distribution).
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Sampling distributions

Numerical sampling distributions

I What if each time we roll three dices and then get the mean?

I It deviates from the population distribution more.
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Sampling distributions

Numerical sampling distributions

I If we roll five or eight dices at each time:

I As the sample size becomes larger:
I It deviates from the population distribution more.
I It gradually becomes a bell-shaped distribution.
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Sampling distributions

Sampling distributions: summary

I The population has its population distribution.
I Rolling one dice.
I Randomly selecting one student in NTU.

I Note that these are two interpretations of a population!
I Alternatively, you may think in this way: I am not rolling a

dice. Instead, someone has rolled a dice for 1000000 times,
then I randomly draw one. What is the distribution of the
1000000 rolls?

I A statistic, which is random, has its sampling
distribution.
I Mean of rolling n dices.
I Mean of n randomly selected NTU students heights.



Statistics I – Chapter 7 (Part 1), Fall 2012 45 / 64

Sampling distributions

Sampling distributions: summary

I Sometimes we may analytically derive sampling
distributions.
I Mean of rolling n dices.

I Sometimes we may not:
I What’s the population distribution of NTU students’ heights?

I If we want to numerically depict a sampling distribution,
we may repeat the sampling for many times, recording the
value of the statistic each time, and then draw a histogram.
I E.g., rolling two dices for 500 times.

I When we do this:
I The sample size is 2, not 500!
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Distribution of the sample mean

Road map

I Sampling techniques.

I Sampling distributions.

I Distribution of the sample mean.
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Distribution of the sample mean

Sample means

I The sample mean is one of the most important statistics.

Definition 1

Let {Xi}i=1,...,n be a sample from a population, then

X =

∑n
i=1Xi

n

is the sample mean.

I Unless otherwise specified, a sample mean comes from an
independent sum.
I Xi and Xj are independent for all i 6= j.
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Distribution of the sample mean

Means and variances of sample means

I A sample mean is also a random variable.

I No matter what the population distribution is, as long as
the population mean is µ and the population variance is σ2,
the mean and variance of the sample mean of size n are:
I E[X] = µ.
I Var(X) = σ2

n .
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Distribution of the sample mean

Means and variances of sample means

I Do the terms confuse you?
I The sample mean vs. the mean of the sample mean.
I The sample variance vs. the variance of the sample mean.

I By definition, they are:
I X = 1

n

∑n
i=1Xi; a random variable.

I E[X]; a constant.

I S2 = 1
n−1

∑n
i=1(Xi −X)2; a random variable.

I Var(X); a constant.

I How about the mean and variance of the sample variance?
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Distribution of the sample mean

Distribution of the sample mean

I If we do not know the population distribution, we cannot
explicitly derive the distribution of the sample mean.
I But at least we know its mean and variance.

I If we know the population distribution, what can we say?
I When we are rolling dices?
I When the population follows a normal distribution?

I Let’s focus on sampling from a normal population first.
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Distribution of the sample mean

Sampling from a normal population

I In the last homework you have proved the following:

Proposition 1

Let {Xi}i=1,...,n be a sample from a normal population with
mean µ and standard deviation σ. Then

X ∼ ND

(
µ,

σ√
n

)
.

I Let’s see some examples.
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Distribution of the sample mean

Sampling from a normal population

I Suppose we sampled 4 values from a normal population with
mean 80 and standard deviation 10.
I What is the mean of the sample mean?
I What is the standard deviation of the sample mean?
I What is the distribution of the sample mean?
I What is the probability that the sample mean is above 82?
I What is the probability that the sample mean is below 76?
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Distribution of the sample mean

Sampling from a normal population

I What is the mean of the sample mean?
I E[X] = µ = 80.

I What is the standard deviation of the sample mean?
I Var(X) = σ2

n = 100
4 = 25. The standard deviation is

√
25 = 5.

I What is the distribution of the sample mean?
I ND(80, 5).

I What is the probability that the sample mean is above 82?
I Pr(X > 82) = Pr(Z > 0.4) ≈ 0.345.

I What is the probability that the sample mean is below 76?
I Pr(X < 76) = Pr(Z < −0.8) ≈ 0.212.
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Distribution of the sample mean

Sampling from a normal population

I May we verify whether the theory is true?
I At least we can verify it numerically for this example.

I The process:
I We first generate 1000 values from ND(80, 4).
I Then randomly select 4 values and calculate the sample mean.
I Repeat the size-4 sampling for 500 times.
I Calculate the mean and standard deviation for the 500 values.
I Finally, draw the histogram.
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Distribution of the sample mean

Sampling from a normal population

I Mean = 80.24. Standard deviation = 4.97.
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Distribution of the sample mean

Distribution of the sample mean

I So now we have one general conclusion: When we sample
from a normal population, the sample mean is also normal.

I What if the population is non-normal?
I In general, it is hard to analytically derive the distributions of

sample means from non-normal populations.
I Numerically we can do anything, but each time we get

different results and conclusions.

I Fortunately, we have a very powerful theorem, the
central limit theorem, which applies to any population
distribution.
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Distribution of the sample mean

Central limit theorem

I The theorem says that a sample mean is approximately
normal when the sample size is large enough.

Proposition 2 (Central limit theorem)

Let {Xi}i=1,...,n be an independent sample from a population
with mean µ and standard deviation σ, i.e., E[Xi] = µ and
Var(Xi) = σ2. Let X be the sample mean. If σ <∞, then

Zn ≡
X − µ
σ/
√
n

converges to Z ∼ ND(0, 1) as n→∞.

I Before we prove it, that see how it works.



Statistics I – Chapter 7 (Part 1), Fall 2012 58 / 64

Distribution of the sample mean

Central limit theorem

I Suppose we roll a dice (again). Let Xi be the outcome of the
ith roll.
I Pr(Xi = x) = 1

6 for all x ∈ {1, 2, ..., 6}.
I What is the distribution of X when n is large?

I The central limit theorem says: As n is large enough, X
follows a normal distribution (approximately).

I Is this true?
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Distribution of the sample mean

CLT for rolling dices
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Distribution of the sample mean

CLT for Poisson population

I As another example, let’s consider a population following
the Poisson distribution with rate λ = 3: Xi ∼ Poi(3).
I The population mean and variance are both 3.

I We try four sample sizes: n = 2, 4, 7, and 10.

I For each sample size, we run 500 times of sampling.

n E[X] Var(X) x̄ = 1
n

∑n
i=1 xi

1
n

∑n
i=1(xi − x̄)2

2 3 3
2

= 1.5 2.972 1.702

4 3 3
4

= 0.75 2.966 0.804

7 3 3
7
≈ 0.429 2.947 0.485

10 3 3
10

= 0.3 2.950 0.328
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Distribution of the sample mean

CLT for Poisson population
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Distribution of the sample mean

CLT for Poisson population

I So indeed
I The means of sample means are all close to 3.
I The variance of sample means are all close to 3

n .
I The distribution of sample mean becomes more centered

when n becomes larger.

I Does it really approach a normal distribution?
I The two histograms for n = 7 and n = 10 are not like normal!
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CLT for Poisson population

I Do not forget to adjust the interval length:
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Timing for central limit theorem

I In short, the central limit theorem says that, for any
population, the sample mean will be approximately normally
distributed as long as the sample size is large enough.

I How large is “large enough”?

I In practice, typically n ≥ 30 is believed to be large enough.

I Do not forget that the central limit theorem only applies
to the sample mean. It does not applies to other statistics.
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