Statistics I – Chapter 7 Sampling Distributions (Part 1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

November 14, 2012

Introduction

- In this chapter, we will study sampling techniques and sampling distributions.
 - ▶ Different sampling techniques may be applied in different environments.
 - Once we obtain a statistic, we need to know its distribution to understand its behavior and make inferences.
- ► Two particular statistics we will study in this chapter are the **sample mean** and **sample proportion**.
- ► The **central limit theorem** is the foundation of many statistical inference processes.

Statistics I - Chapter 7 (Part 1), Fall 2012 L Sampling techniques

Road map

- ► Sampling techniques.
- ▶ Sampling distributions.
- Distribution of the sample mean.

Sampling vs. census

- We have compared three pairs of concepts in Chapter 1:
 - ▶ Populations vs. samples.
 - Parameters vs. statistics.
 - Census vs. **sampling**.
- ► If we can always conduct a census, we will not need statistical inferences at all. So why sampling?
 - Saving money and time.
 - More detailed information under the same resources.
 - Destructive research processes.
 - Impossibility of a census.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟_{Sampling techniques}

Frames

- When sampling from a population, we need a list, map, directory, or some other sources that represent the population.
- Such a source is called a <u>frame</u>.
 - A list of all students in NTU.
 - A list of all professors in Taiwan.
 - A list of all telephone numbers registered in Taipei.
- ▶ A frame may not be 100% accurate.
 - ► Frames with **overregistration** contain the target population plus some additional units.
 - ▶ Frames with **underregistration** have some units missing.

Random vs. nonrandom sampling

- ► Sampling is the process of selecting a **subset** of entities from the whole population.
- Sampling can be <u>random</u> or <u>nonrandom</u>.
- ▶ If random, whether an entity is selected is **probabilistic**.
 - ▶ Randomly select 1000 phone numbers on the telephone book and then call them.
- ▶ If nonrandom, it is **deterministic**.
 - ▶ Ask all your classmates for their preferences on iOS/Android.
- ▶ Most statistical methods are **only** for random sampling.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟ Sampling techniques

Random sampling techniques

▶ We will introduce four basic random sampling techniques:

- Simple random sampling.
- Stratified random sampling.
- ▶ Systematic random sampling.
- Cluster (or area) random sampling.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟ Sampling techniques

- In simple random sampling, each entity has the same probability of being selected.
- Each entity is assigned a label (from 1 to N). Then a sequence of n random numbers, each between 1 and N, are generated.
- One needs either a <u>table of random numbers</u> or a random number generator.
 - A table with many random numbers.
 - A software function that generate random numbers.

Simple random sampling

- Suppose we want to study all students graduated from NTU IM regarding the number of units they took before their graduation.
 - ► N = 1000.
 - ▶ For each student, whether she/he double majored, the year of graduation, and the number of units are recorded.

i	1	2	3	4	5	6	7	 1000
Double major	Yes	No	No	No	Yes	No	No	Yes
Class	1997	1998	2002	1997	2006	2010	1997	 2011
Unit	198	168	172	159	204	163	155	171

• Suppose we want to sample n = 200 students.

-

- ▶ To run simple random sampling, we first generate a sequence of 200 random numbers:
 - ▶ Suppose they are 2, 198, 7, 268, 852, ..., 93, and 674.
- ▶ Then the corresponding 200 students will be sampled. Their information will then be collected.

i	1	2	3	4	5	6	7	 1000
Double major	Yes	No	No	No	Yes	No	No	Yes
Class	1997	1998	2002	1997	2006	2010	1997	 2011
Unit	198	168	172	159	204	163	155	171

- The good part of simple random sampling is **simple**.
- ▶ However, it may result in **nonrepresentative** samples.
- ► In simple random sampling, there are some possibilities that too much data we sample fall in the same stratum.
 - They have the same property.
 - ▶ For example, it is possible that all 200 students in our sample did not double major.
 - ▶ The sample is thus nonrepresentative.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟ Sampling techniques

- ▶ As another example, suppose we want to sample 1000 voters in Taiwan regarding their preferences on two candidates. If we use simple random sampling, what may happen?
 - ► It is possible that 65% of the 1000 voters are men while in Taiwan only around 51% voters are men.
 - ▶ It is possible that 40% of the 1000 voters are from Taipei while in Taiwan only around 28% voters live in Taipei.
- ▶ How to fix this problem?

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Sampling techniques

Stratified random sampling

- We may apply stratified random sampling.
- ▶ We first split the whole population into several **strata**.
 - ► Data in **one** stratum should be (relatively) **homogeneous**.
 - Data in different strata should be (relatively) heterogeneous.
- ▶ We then use simple random sampling for each stratum.
- Suppose 100 students double majored, then we can split the whole population into two strata:

Stratum	Strata size
Double major	100
No double major	900

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟_{Sampling techniques}

Stratified random sampling

- ▶ Now we want to sample 200 students.
- ► If we sample 200 × ¹⁰⁰/₁₀₀₀ = 20 students from the double-major stratum and 180 ones from the other stratum, we have adopted proportionate stratified random sampling.

Stratum	Strata size	Number of samples
Double major	100	20
No double major	900	180

▶ If the opinions in some strata are more important, we may adopt **disproportionate stratified random sampling**.

• E.g., opening a nuclear power station at a particular place.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟ Sampling techniques

Stratified random sampling

- ▶ We may further split the population into more strata.
 - Double major: Yes or no.
 - ► Class: 1994-1998, 1999-2003, 2004-2008, or 2009-2012.
 - ► This stratification makes sense **only if** students in different classes tend to take different numbers of units.
- Stratified random sampling is typically good in reducing sample error.
- ▶ But it can be hard to identify a reasonable stratification.
- ► It is also more **costly** and **time-consuming**.

Systematic random sampling

- When even simple random sampling is too time-consuming, we may use systematic random sampling.
 - In simple random sampling, we need at least n different random numbers.
 - ▶ In systematic random sampling, we need only **one**.
- We first determine a number k:

$$k = \left\lfloor \frac{N}{n} \right\rfloor.$$

- Then we generate one random number $s \in \{1, 2, ..., k\}$.
- The data we will sample are those with labels s, s + k, s + 2k, ..., and s + nk.

Systematic random sampling

- ► As we want to sample n = 200 students from N = 1000 students, $k = \lfloor \frac{1000}{200} \rfloor = 5$.
- Suppose the random number is s = 3.
- ▶ Then we will sample:

i	3	8	13	18	23	28	 993	998
Double major	No	No	No	Yes	No	No	No	Yes
Class	2002	2000	1997	1998	2002	2005	 1999	2001
Unit	172	168	155	156	171	159	180	183

Systematic random sampling

- ► Systematic random sampling is **extremely simple**.
- ▶ In some cases, its quality is not lower than that of simple random sampling.
- ► However, if the data are labeled base on some periodicity and the sampling is in a similar **periodicity**, there will be a huge sample error.
- ▶ Also the possible outcomes of sampling is quite limited.

- ▶ Imagine that you are going to introduce a new product into all the retail stores in Taiwan.
- ▶ If the product is actually unpopular, an introduction with a large quantity will incur a huge lost.
- ▶ How to get an idea about the popularity?
- Typically we first try to introduce the product in a small area. We put the product on the shelves only in those stores in the specified area.
- ► This is the idea of cluster (or area) random sampling.
 - Those consumers in the area form a sample.

- ▶ In stratified random sampling, we define strata.
- ▶ Similarly, in cluster random sampling, we define **clusters**.
- ▶ However, instead of doing simple random sampling in each strata, we will only choose **one or some clusters** and then collect **all** the data in these clusters.
 - ► If a cluster is too large, we may further split it into multiple second-stage clusters.
- ► Therefore, we want data in a cluster to be **heterogeneous**.

- ▶ In the example of sampling 200 students, we may define clusters based on classes.
- ▶ Then we randomly select four classes and sample the 200 students in the four classes.
- ▶ This may or may not be representative.
 - Do students in a single class tend to be heterogeneous?

- In practice, the main application of cluster random sampling is to understand the popularity of **new products**. Those chosen cities (counties, states, etc.) are called **test market cities** (counties, states, etc.).
- People use cluster random sampling in this case because of its feasibility and convenience.
 - ► Is it easy to deliver the product to consumers selected by the other random sampling techniques?
- ▶ We should select test market cities whose population profiles are similar to that of the entire country.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Sampling techniques

Nonrandom sampling

- Convenience sampling.
 - The researcher sample data that are easy to sample.
- Judgment sampling.
 - The researcher decides who to ask or what data to collect.
- Quota sampling.
 - In each stratum, we use whatever method that is easy to fill the quota, a predetermined number of samples in the stratum.
- Snowball sampling.
 - Once we ask one person, we ask her/him to suggest others.
- Nonrandom sampling cannot be analyzed by the statistical methods we introduce in this course.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Sampling distributions

Road map

- ▶ Sampling techniques.
- ► Sampling distributions.
- Distribution of the sample mean.

Statistics I - Chapter 7 (Part 1), Fall 2012

Distributions

- ► To describe a random variable or an experiment, we need to specify two things,
 - ▶ all the possible **outcomes** and
 - ▶ the **probability** (density) for each outcome to occur.
- E.g., rolling a dice:

Outcome	1	2	3	4	5	6
Probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Distributions

 E.g., drawing one ball from a box containing three white balls and two black balls.

Outcome	White	Black
Probability	$\frac{2}{5}$	$\frac{2}{3}$

• E.g., drawing two balls from a box containing three white balls and two black balls.

Outcome	White	White	Black
	and white	and black	and black
Probability	$(\frac{2}{5})^2 = \frac{4}{25}$	$2(\frac{2}{5})(\frac{3}{5}) = \frac{12}{25}$	$(\frac{3}{5})^2 = \frac{9}{25}$

Distributions

- Suppose we are facing a population and we want to randomly draw one item.
 - ► E.g., rolling a dice: Population = {1, 2, 3, 4, 5, 6}; the probability of drawing each of them is ¹/₆.
- ► The outcome of "drawing one item" is certainly random.
- ► Suppose we are facing a population and we want to randomly draw *n* < *N* item.
 - E.g., rolling *n* dice: The outcome is an *n*-dimensional vector $(X_1, X_2, ..., X_n)$, where $X_i \in \{1, 2, 3, 4, 5, 6\}$ is the outcome of the *i*th dice.
- The outcome of "drawing n < N items" is also random.

Sampling distributions

- The outcome of drawing n items forms a **sample**.
- A sample with n > 1 and n < N is a **random vector**.
- ► The distributions of samples are **sampling distributions**.
- ▶ In Statistics, we typically do not care about the distributions of a sample directly. Instead, we care about the distribution of a **statistic**, which is a **function of the sample**.
 - A sample: $(X_1, X_2, ..., X_n)$.
 - A statistic: the <u>sample mean</u>: $\overline{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_i$.
 - Other statistics: the sample variance, sample median, sample range, sample max, etc.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Sampling distributions

Sampling distributions

- ▶ The distributions of statistics, as they are derived from the distributions of samples, are also called sampling distributions.
- The reason to care about sampling distributions:
 - We will use a statistic to **infer** a **parameter**.
 - ► We can **scientifically** describe or estimate the parameter only if we know the distribution of the statistic.
- ▶ Some concrete examples will be given in Chapters 8 and 9.
- ▶ In Chapter 7, let's derive some sampling distributions.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Sampling distributions

Sampling distributions

- ▶ What are those sampling distributions we will derive?
- ▶ In Chapter 7 of the textbook:
 - Sample mean.
 - Sample proportion.
- ▶ In Chapter 8 of the textbook:
 - Sample variance.
- Outside the textbook:
 - Sample minimum.
- Before we derive those distributions, let's first get more general ideas about sampling distributions.

-

Sampling distributions of rolling dices

▶ We know how to describe the experiment of rolling a dice:

Outcome	1	2	3	4	5	6
Probability	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

▶ Suppose we roll a dice twice. How to describe this?

Outcome	(1, 1)	(1, 2)	(1, 3)	•••	(6, 5)	(6, 6)
Probability	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	•••	$\frac{1}{36}$	$\frac{1}{36}$

Sampling distributions of rolling dices

- ► Let
 - X_1 be the outcome of rolling the first dice and
 - X_2 be the outcome of rolling the second dice.
- We have derived the distributions of X_1 and (X_1, X_2) .
- What is the distribution of $X_1 + X_2$?
- ▶ First we need to have the set of all possible outcomes:
 - $\blacktriangleright \ \{2,3,4,...,11,12\}.$
- ▶ Then we need to know the probability for each outcome to occur. How?

- The distribution of $X_1 + X_2$ comes from that of (X_1, X_2) .
 - ▶ For the outcome 2, we have

$$Pr(X_1 + X_2 = 2) = Pr(X_1 = 1, X_2 = 1)$$

= Pr(X_1 = 1) Pr(X_2 = 1) = $\frac{1}{36}$.

▶ For the outcome 3, we have

$$Pr(X_1 + X_2 = 3)$$

= $Pr(X_1 = 1, X_2 = 2 \cup X_1 = 2, X_2 = 1)$
= $Pr(X_1 = 1, X_2 = 2) + Pr(X_1 = 2, X_2 = 1)$
= $Pr(X_1 = 1) Pr(X_2 = 2) + Pr(X_1 = 2) Pr(X_2 = 1) = \frac{2}{36}.$

▶ The probabilities of all outcomes can be derived similarly.

▶ It may be easier to look at the table:

X_1			X_2			
Λ_1	1	2	3	4	5	6
1	$\left\{\frac{1}{36}\right\}$	$\left[\frac{1}{36}\right]$	$\left(\frac{1}{36}\right)$		$\frac{1}{36}$	$\frac{1}{36}$
2	$\left[\frac{1}{36}\right]$		$\begin{pmatrix} \frac{1}{36} \\ \frac{1}{36$	• • •	$\frac{1}{36}$	$ \frac{\frac{1}{36}}{\frac{1}{36}} $ $ \frac{1}{36} $
3	$\left(\frac{1}{36}\right)$	$\frac{1}{36}$	$\frac{1}{36}$		$\frac{1}{36}$	$\frac{1}{36}$
4	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$		$\frac{\frac{1}{36}}{\frac{1}{36}}$	$\frac{1}{36}$
5	$\frac{1}{36}$	$\begin{pmatrix} \frac{1}{36} \\ \frac{1}{36$	$\frac{1}{36}$		$\frac{1}{36}$	$\frac{1}{36}$
6	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	•••	$\frac{1}{36}$	$\frac{1}{36}$

► { }:
$$X_1 + X_2 = 2$$
; []: $X_1 + X_2 = 3$; (): $X_1 + X_2 = 4$.

• The distribution of sum of two dices, $X_1 + X_2$, is:

Outcome	2	3	4	5	6	7	8	9	10	11	12
Probability	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

▶ It then follows that the distribution of the sample mean of sample size 2, $\frac{1}{2}(X_1 + X_2)$, is:

Outcome	1	$\frac{3}{2}$	2	$\frac{5}{2}$	3	$\frac{7}{2}$	4	$\frac{9}{2}$	5	$\frac{11}{2}$	6
Probability	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

▶ The distribution of the sample mean of sample size 2:

▶ Why most occurrences are around the mean?

Sampling distributions

- The distribution of X_1 or X_2 is a population distribution.
 - Or a sampling distribution with sample size 1.
- ▶ The distributions of (X_1, X_2) , $X_1 + X_2$, and $\frac{1}{2}(X_1 + X_2)$ are sampling distributions.
- ▶ Analytically, we may derive the distribution of the sample mean of rolling n dices for any $n \in N$.
 - Nevertheless, the derivation will be tedious and costly for large sample sizes and general population distributions.
- ► To make our lives easier and to give you some ideas about random sampling, let's find the distributions **numerically**:
 - ▶ Roll dices for many times and then draw a histogram.

- ▶ Let's do the experiment of rolling two dices for 500 times.
- Think in this way:
 - Tomorrow I will roll two dices and get $\overline{X}^1 = \frac{1}{2}(X_1^1 + X_2^1)$.
 - Two days later I will do it again and get $\overline{X}^2 = \frac{1}{2}(X_1^2 + X_2^2)$.
 - Three days later I will get $\overline{X}^3 = \frac{1}{2}(X_1^3 + X_2^3)$.
 - ▶ 500 days later I will get $\overline{X}^{500} = \frac{1}{2}(X_1^{500} + X_2^{500}).$
- Each of X^i s is a **sample**. At this time, they are all **random**.

- ▶ We may apply the same idea to realistic sampling. Suppose I want to know the average height of all NTU students:
 - ▶ Tomorrow I will ask one hundred students and get

$$\overline{X}^1 = \frac{1}{2}(X_1^1 + \dots + X_{100}^1).$$

- ▶ 500 days later I will get \overline{X}^{500} .
- Each of X^i s is a **sample**.
 - They are **random** now but will be **known** after 500 days.
- Because I do not know the population distribution, I cannot analytically derive the sampling distribution.
- ▶ But I can numerically draw a histogram for the 500 values.
 - That histogram will "describe" the distribution of \overline{X} .

- Let's focus on rolling dices now.
- Suppose the data I collected are:

i	1	2	3	4	5	6	7	•••	500
x_1^i	6	3	1	1	6	6	3		5
x_2^i	3	1	4	4	3	6	2	•••	3
\overline{x}	4.5	2	2.5	2.5	4.5	6	2.5		4

• They are (x_1^i, x_2^i) , not (X_1^i, X_2^i) ; they are known, not random.

▶ Let's draw a histogram for these 500 values.

• The sampling distribution of $\frac{1}{2}(X_1 + X_2)$ looks like

It slightly deviates from the population distribution (a discrete uniform distribution).

▶ What if each time we roll three dices and then get the mean?

▶ It deviates from the population distribution more.

▶ If we roll five or eight dices at each time:

- ▶ As the sample size becomes larger:
 - ▶ It **deviates** from the population distribution more.
 - ▶ It gradually becomes a **bell-shaped** distribution.

Sampling distributions: summary

- The population has its **population distribution**.
 - Rolling one dice.
 - ▶ Randomly selecting one student in NTU.
- ▶ Note that these are two interpretations of a population!
 - Alternatively, you may think in this way: I am not rolling a dice. Instead, someone has rolled a dice for 1000000 times, then I randomly draw one. What is the distribution of the 1000000 rolls?
- A statistic, which is random, has its sampling distribution.
 - Mean of rolling n dices.
 - Mean of n randomly selected NTU students heights.

Sampling distributions: summary

- Sometimes we may analytically derive sampling distributions.
 - Mean of rolling n dices.
- ▶ Sometimes we may not:
 - ▶ What's the population distribution of NTU students' heights?
- ▶ If we want to **numerically** depict a sampling distribution, we may repeat the sampling for many times, recording the value of the statistic each time, and then draw a histogram.
 - E.g., rolling two dices for 500 times.
- When we do this:
 - ► The **sample size** is 2, not 500!

Statistics I - Chapter 7 (Part 1), Fall 2012 Distribution of the sample mean

Road map

- ▶ Sampling techniques.
- ▶ Sampling distributions.
- Distribution of the sample mean.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Distribution of the sample mean

Sample means

▶ The sample mean is one of the most important statistics.

Definition 1

Let $\{X_i\}_{i=1,\dots,n}$ be a sample from a population, then

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

is the sample mean.

- Unless otherwise specified, a sample mean comes from an independent sum.
 - X_i and X_j are independent for all $i \neq j$.

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Distribution of the sample mean

Means and variances of sample means

- A sample mean is also a random variable.
- No matter what the population distribution is, as long as the population mean is μ and the population variance is σ^2 , the mean and variance of the sample mean of size n are:

•
$$\mathbb{E}[\overline{X}] = \mu$$
.
• $\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n}$

Means and variances of sample means

- ▶ Do the terms confuse you?
 - The sample mean vs. the mean of the sample mean.
 - The sample variance vs. the variance of the sample mean.
- ▶ By definition, they are:
 - $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$; a random variable.
 - $\mathbb{E}[\overline{X}]$; a constant.
 - $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$; a random variable.
 - $\operatorname{Var}(\overline{X})$; a constant.
- ▶ How about the mean and variance of the sample variance?

Distribution of the sample mean

- ► If we **do not know** the population distribution, we cannot explicitly derive the distribution of the sample mean.
 - But at least we know its mean and variance.
- ▶ If we **know** the population distribution, what can we say?
 - When we are rolling dices?
 - When the population follows a normal distribution?
- Let's focus on sampling from a normal population first.

▶ In the last homework you have proved the following:

Proposition 1

Let $\{X_i\}_{i=1,\dots,n}$ be a sample from a normal population with mean μ and standard deviation σ . Then

$$\overline{X} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

▶ Let's see some examples.

- Suppose we sampled 4 values from a normal population with mean 80 and standard deviation 10.
 - What is the mean of the sample mean?
 - What is the standard deviation of the sample mean?
 - What is the distribution of the sample mean?
 - What is the probability that the sample mean is above 82?
 - What is the probability that the sample mean is below 76?

- What is the mean of the sample mean?
 - $\mathbb{E}[\overline{X}] = \mu = 80.$
- ▶ What is the standard deviation of the sample mean?
 - $\operatorname{Var}(\overline{X}) = \frac{\sigma^2}{n} = \frac{100}{4} = 25$. The standard deviation is $\sqrt{25} = 5$.
- ▶ What is the distribution of the sample mean?
 - ▶ ND(80,5).
- What is the probability that the sample mean is above 82?
 Pr(X > 82) = Pr(Z > 0.4) ≈ 0.345.
- ▶ What is the probability that the sample mean is below 76?
 ▶ Pr(X < 76) = Pr(Z < -0.8) ≈ 0.212.

- ▶ May we verify whether the theory is true?
 - At least we can verify it numerically for this example.
- ► The process:
 - We first generate 1000 values from ND(80, 4).
 - ▶ Then randomly select 4 values and calculate the sample mean.
 - ▶ Repeat the size-4 sampling for 500 times.
 - Calculate the mean and standard deviation for the 500 values.
 - ▶ Finally, draw the histogram.

• Mean = 80.24. Standard deviation = 4.97.

Distribution of the sample mean

- ▶ So now we have one general conclusion: When we sample from a normal population, the sample mean is also normal.
- ▶ What if the population is **non-normal**?
 - ▶ In general, it is hard to analytically derive the distributions of sample means from non-normal populations.
 - ▶ Numerically we can do anything, but each time we get different results and conclusions.
- Fortunately, we have a very powerful theorem, the <u>central limit theorem</u>, which applies to any population distribution.

Central limit theorem

► The theorem says that a sample mean is **approximately normal** when the sample size is large enough.

Proposition 2 (Central limit theorem)

Let $\{X_i\}_{i=1,\dots,n}$ be an independent sample from a population with mean μ and standard deviation σ , i.e., $\mathbb{E}[X_i] = \mu$ and $\operatorname{Var}(X_i) = \sigma^2$. Let \overline{X} be the sample mean. If $\sigma < \infty$, then

$$Z_n \equiv \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

converges to $Z \sim ND(0,1)$ as $n \to \infty$.

• Before we prove it, that see how it works.

Central limit theorem

- Suppose we roll a dice (again). Let X_i be the outcome of the *i*th roll.
 - $\Pr(X_i = x) = \frac{1}{6}$ for all $x \in \{1, 2, ..., 6\}.$
- What is the distribution of \overline{X} when n is large?
- The central limit theorem says: As n is large enough, \overline{X} follows a normal distribution (approximately).
- ▶ Is this true?

Statistics I – Chapter 7 (Part 1), Fall 2012

Distribution of the sample mean

CLT for rolling dices

CLT for Poisson population

- ► As another example, let's consider a population following the Poisson distribution with rate $\lambda = 3$: $X_i \sim \text{Poi}(3)$.
 - The population mean and variance are both 3.
- We try four sample sizes: n = 2, 4, 7, and 10.
- ▶ For each sample size, we run 500 times of sampling.

n	$\mathbb{E}[\overline{X}]$	$\operatorname{Var}(\overline{X})$	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2$
2	3	$\frac{3}{2} = 1.5$	2.972	1.702
4	3	$\frac{3}{4} = 0.75$	2.966	0.804
7	3	$\frac{3}{7} \approx 0.429$	2.947	0.485
10	3	$\frac{3}{10} = 0.3$	2.950	0.328

Distribution of the sample mean

CLT for Poisson population

Statistics I − Chapter 7 (Part 1), Fall 2012 ∟Distribution of the sample mean

CLT for Poisson population

- ► So indeed
 - ▶ The means of sample means are all close to 3.
 - The variance of sample means are all close to $\frac{3}{n}$.
 - ▶ The distribution of sample mean becomes more centered when *n* becomes larger.
- ▶ Does it really approach a normal distribution?
 - The two histograms for n = 7 and n = 10 are not like normal!

Statistics I - Chapter 7 (Part 1), Fall 2012 Distribution of the sample mean

CLT for Poisson population

• Do not forget to adjust the interval length:

Timing for central limit theorem

- In short, the central limit theorem says that, for any population, the sample mean will be approximately normally distributed as long as the sample size is large enough.
- ▶ How large is "large enough"?
- In practice, typically $n \ge 30$ is believed to be large enough.
- Do not forget that the central limit theorem only applies to the sample mean. It does not applies to other statistics.