Statistics I – Chapter 7 Sampling Distributions (Part 2)

Ling-Chieh Kung

Department of Information Management National Taiwan University

November 21, 2012

Statistics I - Chapter 7 (Part 2), Fall 2012 L Sample proportions

Road map

- ▶ Distribution of the sample proportion.
- Correction for finite populations.
- ▶ Distribution of the sample variance.
- ▶ Proof of the central limit theorem.

Statistics I − Chapter 7 (Part 2), Fall 2012 ∟_{Sample proportions}

Means vs. proportions

- ▶ For interval or ratio data, we have defined sample means.
 - We have studied the distributions of sample means.
- ▶ For ordinal or nominal data, there is no sample mean.
 - ► Instead, there are sample **proportions**.

Population proportions

- ▶ How to know the **proportions** of girls and boys in NTU?
- We first **label** girls as 0 and boys as 1.
- Let $X_i \in \{0, 1\}$ be the sex of student i, i = 1, ..., N.
- ▶ Then the **population proportion** of boys is defined as

$$p = \frac{1}{N} \sum_{i=1}^{N} X_i$$

• The population proportion of girls is 1 - p.

Sample proportions

- Let $\{X_i\}_{i=1,\dots,N}$ be the population.
- ▶ With a sample size n, let $\{X_i\}_{i=1,...,n}$ be a sample. Suppose X_i and X_j are independent for all $i \neq j$.
 - E.g., 100 randomly selected students.
- ► Then the **sample proportion** is defined as

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

- ▶ The population proportion p is deterministic (though unknown) while the sample proportion \hat{p} is random.
- We are interested in the distribution of \hat{p} .

Statistics I − Chapter 7 (Part 2), Fall 2012 ∟_{Sample proportions}

Examples of sample proportions

- ▶ Proportion of voters preferring a particular candidate.
- ▶ Proportion of employees in the manufacturing industry.
- ▶ Proportion of faculty members hired in six years.
- ▶ Proportion of people higher than 180 cm.

Distributions of sample proportions

▶ What is the distribution of the sample proportion

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i?$$

- As X_i is the outcome of a randomly selected entity, it follows the population distribution.
 - Therefore, $X_i \sim \text{Ber}(p)$.
- It then follows that $\sum_{i=1}^{n} X_i \sim \operatorname{Bi}(n, p)$.
- But is $\frac{1}{n} \sum_{i=1}^{n} X_i$ also binomial?

Distributions of sample proportions

- ▶ Let $X_1 \sim \operatorname{Bi}(n_1, p)$ and $X_2 \sim \operatorname{Bi}(n_2, p)$ where X_1 and X_2 are independent. Consider $\frac{1}{2}(X_1 + X_2)$.
- ▶ Can it follow a binomial distribution?
- ► No! Why?
- ▶ Then what may we do?

Statistics I − Chapter 7 (Part 2), Fall 2012 ∟_{Sample proportions}

Distributions of sample proportions

- One thing we have learned is to use a **normal** distribution to approximate a binomial distribution.
 - If $n \ge 25$, np < 5, and n(1-p) < 5, we have

$$\sum_{i=1}^{n} X_i \sim \mathrm{ND}\Big(np, \sqrt{np(1-p)}\Big).$$

• So
$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim \operatorname{ND}(p, \sqrt{\frac{p(1-p)}{n}}).$$

- Or we may apply the **central limit theorem**:
 - If $n \ge 30$, a sample mean $(\hat{p} \text{ in this case})$ is approximately normally distributed:

$$\mathbb{E}[\hat{p}] = \mu = p$$
 and $\operatorname{Var}(\hat{p}) = \frac{\sigma^2}{n} = \frac{p(1-p)}{n}.$

• If n is small, we need to derive the distribution by ourselves.

Sample proportions: An example

- \blacktriangleright In 2011, there are 19756 boys and 13324 girls in NTU.
- ▶ The population proportion of boys is

$$p = \frac{19756}{33080} \approx 0.597.$$

- Suppose we sample 100 students and calculate the sample proportion \hat{p} .
 - What is the distribution of \hat{p} ?
 - ▶ What is the probability that in the sample there are fewer boys than girls?

Sample proportions: An example

- What is the distribution of \hat{p} ?
 - As $n \ge 30$, it follows a normal distribution.
 - Its mean is $p \approx 0.597$.
 - Its standard deviation is $\sqrt{\frac{p(1-p)}{n}} \approx 0.049$.
- What is the probability that $\hat{p} < 0.5$?

$$\Pr(\hat{p} < 0.5) = \Pr\left(Z < \frac{0.5 - 0.597}{0.049}\right)$$

 $\approx \Pr(Z < -1.98) \approx 0.024.$

Sample proportions: Remarks

- ▶ A sample proportion "is" a sample mean of qualitative data.
- ▶ It is normal when the sample size is large enough.
 - A binomial distribution approaches a normal distribution.
 - A sample mean approaches a normal distribution.
- ▶ In using statistics to estimate parameters:
 - We use a sample proportion \hat{p} to estimate the population proportion p.
 - We use a sample mean \overline{X} to estimate the population mean μ .
- ▶ It is intuitive, but is it good?
- We will study this in Chapter 8.

Statistics I - Chapter 7 (Part 2), Fall 2012 — Finite populations

Road map

- ▶ Distribution of the sample proportion.
- ► Correction for finite populations.
- ▶ Distribution of the sample variance.
- ▶ Proof of the central limit theorem.

Sample means revisited

- ► For the sample mean and sample proportion, the sample should be **independent**.
 - $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. X_i and X_j are independent for all $i \neq j$.
- ▶ What if they are not independent?
 - Is the variance still $\frac{\sigma^2}{n}$ or $\frac{p(1-p)}{n}$?
 - ▶ Is the sample mean still normal with a normal population?
 - ▶ Is the sample sum still binomial with a Bernoulli population?
 - Does the central limit theorem still hold?

Sample means revisited

- Most of the sampling in practice are sampling without replacement.
- ▶ Only if the population size is **large** enough (compared with the sample size), samples generated by sampling without replacement can be treated as independent.
 - A rule of thumb is n < 0.05N.
- ▶ When the population size is not large enough, we say we sample from a **finite population**.
- ▶ What should we do in this case?

Finite populations: variances?

- Question 1: Is the variance still $\frac{\sigma^2}{n}$ or $\frac{p(1-p)}{n}$?
- ▶ When sampling from a finite population, we may fix the variance of the sample mean.
- Recall that for $X \sim \operatorname{HG}(N, A, n)$, we have

$$\operatorname{Var}(X) = np(1-p)\left(\frac{N-n}{N-1}\right), \text{ where } p = \frac{A}{N}.$$

- The coefficient $\frac{N-n}{N-1}$ is called the finite correction factor of variance.
- $\sqrt{\frac{N-n}{N-1}}$ is the finite correction factor of standard deviation.

Finite populations: variances?

► It can be shown that, when sampling from a finite population, the **sample mean's variance** should also contain the finite correction factor:

$$\operatorname{Var}(\overline{X}) = \left(\frac{\sigma^2}{n}\right) \left(\frac{N-n}{N-1}\right).$$

▶ The derivation is similar to what we have done in homework.

Statistics I - Chapter 7 (Part 2), Fall 2012 L Finite populations

Finite populations: normal?

- Question 2: Is the sample mean still normal when the population is normal?
- ▶ If we sample from a **normal population**, the sample mean is normal even if the sample is not independent.
 - ► Sum of two (or *n*) **dependent** normal random variables is still normal.

Finite populations: binomial?

- Question 3: Is the sample sum still binomial when the population is Bernoulli?
- ► For qualitative populations, we know if the population size is large, the sample sum follows a **binomial** distribution.
- ► If the population size is small, the sample sum follows a **hypergeometric** distribution.
- ► The distribution of sample proportion can then be determined (though the calculation is quite tedious).
- ▶ When it is impossible to derive the distribution of sample proportion, use approximations.

Finite populations: CLT?

- ▶ Question 4: Does the central limit theorem hold?
- ▶ The central limit theorem we learned in the last lecture does require independence.
- Without independence, there are generalized versions of the central limit theorem.
 - We may still have normality when we lose independence.
 - We will not touch these generalized versions.
- Nevertheless, we will still "pretend" that the usual central limit theorem applies and assume the sample mean and sample proportion are normally distributed.

Finite populations: conclusions

- If we sample from a finite population (i.e., n > 0.05N):
 - If $n \ge 30$, we will still assume the sample mean and sample proportion are normally distributed.
 - Their variances will be multiplied by $\frac{N-n}{N-1}$.
 - ► If n < 30, we need to derive the sampling distributions for the two statistics by ourselves.

Statistics I − Chapter 7 (Part 2), Fall 2012 ∟ Sample variances

Road map

- ▶ Distribution of the sample proportion.
- Correction for finite populations.
- ▶ Distribution of the sample variance.
- ▶ Proof of the central limit theorem.

Sample variances

• Let $\{X_i\}_{i=1,\dots,n}$ be a random sample. The sample variance is defined as

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}.$$

- The sample standard deviation is $S = \sqrt{S^2}$.
- A sample variance is **not** the variance of a sample mean!
 - The sample variance is a random variable.
 - The variance of the sample mean is a fixed number.

Sample variances

- ▶ As a sample variance is random, it has its own distribution.
- While it is hard to derive the distribution of S^2 , it is easier (though still not very easy) to derive the distribution of

$$\chi^2 = \frac{(n-1)S^2}{\sigma^2}.$$

- ▶ Why do we care about the distribution of this statistic?
 - If we know the distribution of this statistics χ^2 , we will be able to infer σ^2 from the realization of S^2 .
 - ▶ This will be discussed in Chapter 8.

Distribution of sample variances

► As the statistic is called χ^2 , you probably can guess what is the sampling distribution:

Proposition 1

Let $\{X_i\}_{i=1,...,n}$ be a random sample from a normal population with variance σ^2 , i.e., $Var(X_i) = \sigma^2$. Then

$$\chi^2 \equiv \frac{(n-1)S^2}{\sigma^2}$$

follows the chi-square distribution with degree of freedom n-1, i.e., $\chi^2 \sim \text{Chi}(n-1)$.

Chi-square distributions

• We have defined the chi-square (χ^2) distribution in Chapter 6:

Definition 1 (Chi-square distribution)

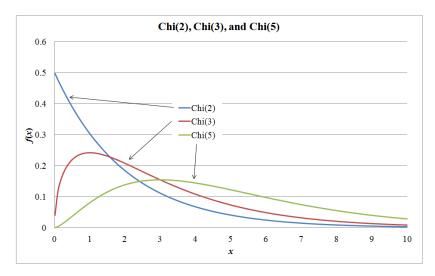
A random variable X follows the chi-square distribution with degree of freedom $n \in N$, denoted by $X \sim \chi^2(n)$ or $X \sim \text{Chi}(n)$ if it follows the gamma distribution with $\alpha = \frac{n}{2}$ and $\beta = 2$.

• With $\Gamma(x) = \int_0^\infty e^{-x} x^{z-1} dx$, the pdf of $X \sim \operatorname{Chi}(n)$ is

$$f(x|n) = \frac{x^{\frac{n}{2}-1}e^{-\frac{x}{2}}}{\sqrt{2^n}\Gamma(\frac{n}{2})} \quad \forall x \ge 0.$$

Statistics I - Chapter 7 (Part 2), Fall 2012 L Sample variances

Chi-square distributions



Statistics I − Chapter 7 (Part 2), Fall 2012 ∟ Sample variances

28 / 30

Proof of the proposition

• Let's now prove the proposition with markers and the white board.

Statistics I – Chapter 7 (Part 2), Fall 2012 $\hfill \square$ Proof of CLT

Road map

- ▶ Distribution of the sample proportion.
- Correction for finite populations.
- Distribution of the sample variance.
- ▶ Proof of the central limit theorem.

Proof of the central limit theorem

▶ Let's now prove the central limit theorem with markers and the white board.