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Introduction

I We have studied Descriptive Statistics (Chapters 2 and 3)
and Probability (Chapters 4 to 7).

I Now we are ready to study inferential Statistics.

I In particular, we want to:
I Estimate population parameters (Chapters 8 and 10).
I Test hypotheses about parameters (Chapter 9 to 11).
I And more.

I The concepts introduced in Chapters 8 and 9 are the heart
of Inferential Statistics!
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Introduction

I Consider the quality control problem again.

I For all LED lamps of brand IM, we are interested in µ, the
average number of hours of luminance.

I Let’s select a random sample of 40 lamps. A test shows that
the sample mean is x̄ = 28000 hours.
I What’s the probability that µ = x̄?
I What’s the probability that µ ∈ [27000, 29000]?
I What’s the probability that µ ∈ [26000, 30000]?
I Why don’t we use the median?

I Now we are able to answer these questions.
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Point estimation

Road map

I Point estimation.

I Interval estimation.

I Estimating the population mean.
I When the population variance is known.
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Point estimation

Estimators

I From a population, we may collect a subset as a sample.

I From a sample, we may calculate statistics.

I A statistic is a function of values in a sample.
I E.g., the sample mean X = 1

n

∑n
i=1Xi.

I E.g., the sample variance S2 = 1
n−1

∑n
i=1(Xi −X)2.

I When a statistic is used to estimate a population
parameter, it is called an estimator of that parameter.

I E.g., X can be used as an estimator of µ.
I E.g., S2 can be used as an estimator of σ2.
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Point estimation

Estimators

I A statistic is an estimator of a parameter.
I It is meaningless to say “The sample mean is an estimator.”

An estimator of what?

I An estimator is nothing but a statistic of a particular use.
I It is still a function of values in a sample.
I It is a random variable.
I It has a specific target: the parameter.

I The realized value of an estimator is called an estimate.
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Point estimation

Estimators

I For a parameter, there are multiple estimators.

I Suppose we want to estimate the population mean µ.
I One (intuitive) estimator is the sample mean X.
I One may also use the sample median as an estimator.
I One may even use the sample maximum Xmax ≡ max

i=1,...,n
{Xi},

sample minimum Xmin ≡ min
i=1,...,n

{Xi}, or something creative

such as 1
2(Xmax +Xmin), 1

3(X1 + 2X2), etc.

I Which estimator is good?
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Point estimation

Point estimation

I One way to estimate a parameter is as follows:
I Define an estimator.
I Conduct sampling and generate a sample.
I Calculate the realized value, the estimate, of the estimator.
I Claim that “I think the parameter is close to the estimate.”

I In short, we “guess” that the parameter is close to the
realized value of an estimator, the estimate.

I The above process is called point estimation.
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Point estimation

Point estimation: An example

I Suppose we want to estimate the average number of hours
one spend in homework per week in this class. Let it be µ.

I Suppose we ask 10 students and get

6 2 4 2 5 3 12 4 2 1.

I If we have defined the sample mean as our estimator, the
estimate will be 4.1. We will guess that µ is close to 4.1.

I If we have defined the sample maximum as our estimator
(which is obviously bad), the estimate will be 12.

I If we have define the sample median as our estimator, the
estimate will be 3.5.



Statistics I – Chapter 8 (Part 1), Fall 2012 10 / 55

Point estimation

Point estimation

I Probably it is obvious that in estimating the population
mean, the best idea is to use the sample mean.

I But some things are not so obvious.

I Consider the population variance σ2 = 1
N

∑N
i=1(xi − µ)2:

I We define the sample variance as S2 = 1
n−1

∑n
i=1(Xi −X)2.

I Why n− 1?
I Why don’t we define it as 1

n

∑n
i=1(Xi −X)2?

I Is S2 a good estimator of σ2?
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Point estimation

Properties of a point estimator

I To answer all these questions, we need to first define “good”.

I Among many properties, three of them are:
I Unbiasedness,
I Relative efficiency, and
I Consistency.

I An estimator is “good” if it is unbiased, relatively efficient,
and consistent.
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Point estimation

Unbiasedness

I Believed by most statisticians, the first thing is for an
estimator to be unbiased.

Definition 1

Let θ be a parameter and θ̂ be an estimator of θ. θ̂ is
unbiased if

E
[
θ̂
]

= θ.

I The parameter θ is a constant.
I The estimator θ̂ is a random variable.
I θ̂ may take different values, but in expectation it is θ.
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Point estimation

Unbiasedness

I θ̂1 is unbiased while θ̂2 is biased.
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Point estimation

Unbiasedness of the sample variance

I Now we may answer why the denominator of the sample
variance is n− 1 instead of n.

Proposition 1

The sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2

is unbiased for the population variance σ2, i.e., E[S2] = σ2.

Proof. Because
∑n

i=1

(
Xi −X

)2
=
∑n

i=1X
2
i − nX

2
, we have

E
[∑n

i=1

(
Xi − X̄

)2]
=
∑n

i=1 E
(
X2
i

)
− nE

(
X

2)
.
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Point estimation

Unbiasedness of the sample variance

I Proof (cont’d). Because E[X2
i ] = Var(Xi) + E[Xi]

2 = σ2 + µ2

and E
[
X

2]
= Var(X) + E[X̄]2 = σ2

n
+ µ2, we have,

E
[ n∑
i=1

(
Xi −X

)2]
=

n∑
i=1

(σ2 + µ2)− n
(
σ2

n
+ µ2

)
= nσ2 − σ2 = (n− 1)σ2.

It follows that

E(S2) =
1

n− 1
E

[
n∑
i=1

(
Xi −X

)2]
=

1

n− 1
(n− 1)σ2 = σ2,

so we see that S2 is an unbiased estimator for σ2.
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Point estimation

Unbiasedness

I For the population mean µ:
I The sample mean X is unbiased:

E
[
X
]

= E
[

1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n
(nµ) = µ.

I The sample median is biased.
I The sample maximum is biased as long as n > 1. E.g.,

suppose Xi ∼ Uni(0, 2), we have

E[Xmax] =

∫ 2

0
x

(
nxn−1

2n

)
dx =

2n

n+ 1
> 1.

I How about this statistic: 1
3(X1 + 2X2)?
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Point estimation

Relative efficiency

I Between two unbiased estimators, we prefer the one that is
relatively efficient, i.e., with smaller variance.

Definition 2

Let θ be a parameter and θ̂1 and θ̂2 be two estimators of θ.
The efficiency of θ̂1 relative to θ̂2 is the ratio

Var(θ̂2)

Var(θ̂1)
.

I The smaller the variance, the larger the relative efficiency (if
they are unbiased).
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Point estimation

Relative efficiency

I θ̂1 is more efficient than θ̂2.
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Point estimation

Relative efficiency

I For the population mean µ:
I 1

2(X1 +X2) and 1
3(X1 + 2X2) are both unbiased.

I Which one is more efficient?
I We have

Var

(
X1 +X2

2

)
=

1

4
(1 + 1) =

1

2
and

Var

(
X1 + 2X2

3

)
=

1

9
(1 + 4) =

5

9
,

so 1
2(X1 +X2) is more efficient.

I In general, the sample mean is more efficient than any
weighted average with various weights (why?).
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Point estimation

Consistency

I An estimator should be consistent, i.e., get closer to the
parameter (probabilistically) as the sample size n goes up.
I In particular, it should converge to the parameter as n→∞.

Definition 3
Let θ be a parameter and θ̂n be an estimator of θ whose sample
size is n. θ̂n is consistent if for any ε > 0, we have

lim
n→∞

Pr
(∣∣θ̂n − θ∣∣ ≤ ε) = 1.

I In other words, the “guess” will be “correct” when the sample
size goes to infinity.
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Point estimation

Consistency

I θ̂n converges to θ as n→∞.
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Point estimation

Consistency

I Is a sample mean consistent? Do we have

lim
n→∞

Pr
(
|X − µ| > ε

)
= 0 ∀ε > 0.

I You have proved this in Problem 5 of Homework 6!

I This important result is called the law of large numbers.

Proposition 2 (Law of large numbers)

The sample mean converges to the population mean as the
sample size goes to infinity.
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Point estimation

Summary

I We use statistics to estimate parameters.

I When we use a single number as an estimate, we are doing
point estimation.

I For a single parameter, there are multiple point estimators.

I Some estimators are better than others.

I A good estimator should be:
I Unbiased,
I Relatively effective, and
I Consistent.
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Interval estimation

Road map

I Point estimation.

I Interval estimation.

I Estimating the population mean.
I When the population variance is known.
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Interval estimation

Drawbacks of point estimation

I Indeed some point estimators are good.
I E.g., the sample mean is a good for the population mean.

I However, there are some drawbacks of point estimation:
I We know the population mean is close to the sample mean.

But how close it is?
I No matter how good an estimator is, if we use just one value,

the probability of making a correct guess is typically zero!

I Therefore, instead of suggesting a number, it will be better
to suggest an interval.

I We need to measure how good an interval is.



Statistics I – Chapter 8 (Part 1), Fall 2012 26 / 55

Interval estimation

Interval estimation: the first illustration

I Let’s illustrate the idea with population and sample means.

I Let’s assume the population is normal with known variance
σ2 = 16. The population mean, µ, is unknown.

I Let the sample mean X be the estimator.

I The sample size n = 8.

I We have observed the value of sample mean, x̄ = 10.
I X is a statistic and x̄ is a realized value.

I Intuitively, the interval should center at x̄.

I We want to find the smallest b > 0 such that the interval
I(b) = [x̄− b, x̄+ b] covers µ with a 95% probability.

I How?
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Interval estimation

The sampling distribution

I This is possible because we know the distribution of X.

I As the population is normal, X ∼ ND(µ, σ√
n

=
√

2).
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Interval estimation

The sampling distribution

I Suppose someone randomly says: How about

I(σ) = [x̄− σ, x̄+ σ] =
[
10−

√
2, 10 +

√
2
]
?

I How to measure the quality of this interval?

I Consider an “unknown” interval centered at µ:
U(
√

2) = [µ−
√

2, µ+
√

2]. Let Z ∼ ND(0, 1), we have

Pr
(
X ∈ U

)
= Pr

(
µ−
√

2 ≤ X ≤ µ+
√

2
)

= Pr(−1 ≤ Z ≤ 1) = 0.6827.

I The location of the interval U(
√

2) is unknown because µ is
unknown. But its size is known: 2

√
2.
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Interval estimation

The sampling distribution
I We do not know where µ is, but we know the probability for
X to deviate from µ by less than σ√

n
=
√

2.
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Interval estimation

How good an interval is?
I Now, let’s consider I(

√
2) =

[
10−

√
2, 10 +

√
2
]

again.

I x̄ = 10 can be close to or far from µ.
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Interval estimation

How good an interval is?
I If, luckily, x̄ = 10 is close enough to µ, I(

√
2) covers µ.

I If, unluckily, x̄ = 10 is far from µ, I(
√

2) does not cover µ.
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Interval estimation

How good an interval is?
I The probability that “we are lucky” is exactly 0.6827!

I Pr
(∣∣X − µ∣∣ ≤ √2

)
= 0.6827.



Statistics I – Chapter 8 (Part 1), Fall 2012 33 / 55

Interval estimation

How good an interval is?

I In conclusion, given any realization x̄,
[
x̄−
√

2, x̄+
√

2
]

covers µ with probability 0.6827.
I We can reach this conclusion as we know X ∼ ND(µ,

√
2).

I But 0.6827 is not enough: We want 0.95.

I So instead of having
√

2 as the leg length, let’s try 2
√

2.
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Interval estimation

A larger interval
I We do not know where µ is, but we know the probability for
X to deviate from µ by less than 2 σ√

n
= 2
√

2.



Statistics I – Chapter 8 (Part 1), Fall 2012 35 / 55

Interval estimation

A larger interval
I The probability that “we are lucky” now becomes 0.9545!

I Pr
(∣∣X − µ∣∣ ≤ 2

√
2
)

= 0.9545.
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Interval estimation

What should be the leg size?
I We made two attempts:

I
[
10−

√
2, 10 +

√
2
]

is too small: The covering probability is
0.6827, which is Pr(−1 <= Z <= 1).

I
[
10− 2

√
2, 10 + 2

√
2
]

is too large: The covering probability is
0.9545, which is Pr(−2 <= Z <= 2).

I To get exactly 0.95, we need to solve

Pr(−z ≤ Z ≤ z) = 0.95

The answer is z = 1.96.

I So the desired interval is[
10− 1.96

√
2, 10 + 1.96

√
2
]

= [7.228, 12.772].

It covers µ with probability 0.95.
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Interval estimation

Summary

I We want to construct an interval that will cover the
population mean with a predetermined probability.

I As we have the value of the sample mean, it is natural to
make the interval centering at the sample mean.

I We may measure the quality (the probability of covering the
population mean) of each interval because:
I
[
X − b, X̄ + b

]
covers µ ⇔

∣∣X − µ∣∣ ≤ b.
I The probability of the latter can be calculated if we know the

distribution of X.
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Interval estimation

Summary

I The interval is called a confidence interval (CI).

I The probability of covering the desired parameter is called
the confidence level.

I The typical way to state a conclusion is

“With a 1− α confidence level, the population
parameter will be covered by the confidence interval.”

I In practice, 1− α is typically chosen to be 90%, 95%, or 99%.
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Mean: unknown variance

Road map

I Point estimation.

I Interval estimation.

I Estimating the population mean.
I When the population variance is known.
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Mean: unknown variance

Estimating population mean

I Let’s consider the task again: to suggest an interval that
covers the population mean µ with a certain probability.

I While we do this based on the sample mean X, the key is
to know the sampling distribution of X.

I We need to study many different cases:
I Known or unknown population variance.
I Normal or nonnormal population.
I Large or small sample size.
I Infinite or finite population (or sampling without or with

replacement).
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Mean: unknown variance

Known population variance

I In this section, we will assume that the population variance
σ2 is known.

I Is it possible that the population mean is unknown but the
population variance is known?
I Certainly this is not so common.

I Consider the following example:
I A machine produces an item.
I Once the desired length is set manually, the variance of the

lengths of items is known to be 0.04cm2.
I However, after you fire a bad employee, he modified the

setting without telling anyone...
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Mean: unknown variance

Known population variance

I In practice, if you do not know the population variance, try
to use the methods introduced in the next section.

I If only methods which assumes known population variance
are available, you will need to estimate or test the
population variance first.
I To be introduced later in this semester.
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Mean: unknown variance

General setting

I The unknown population mean is µ.

I The known population variance is σ2.

I The sample mean is X.

I The realized value of sample mean is x̄.

I The sample size is n.

I The desired confidence level is 1− α.
I α is the allowed probability for not covering µ.
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Mean: unknown variance

General setting

I In general, we are looking for a smallest b > 0 such that the
interval [x̄− b, x̄+ b] covers µ with probability 1− α.

I For simplicity, b is (almost always) measured as the
number of standard deviations of X:

b = zσX ,

where z is the z-score of b and σX ≡
√

Var(X) is the

standard error.

I The standard error of an estimator is just a special name of
standard deviations particularly for estimators.
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Mean: unknown variance

Normal populations

I If the population is normal, the sample mean X is normal
regardless of the sample size.
I With sampling with replacement or infinite population

(n < 0.05N), the standard error σX = σ√
n

.
I With sampling without replacement and finite population

(n > 0.05N), the standard error σX =
(

σ√
n

)√
N−n
N−1 .

I We say we use the z distribution to construct the interval.

I Suppose we have obtained the value of σX . How to
construct the interval for the desired confidence level?
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Mean: unknown variance

Normal populations

I The distribution of X can be divided into three regions
based on µ and α.

I Our mission is to find the two cutoffs.
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Mean: unknown variance

Normal populations

I The two cutoffs depends on σX and α.
I zt denotes the critical value such that Pr(Z > zt) = t.
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Mean: unknown variance

Normal populations

I The confidence interval can be found in the following way:
I Given the sample, calculate the sample mean x̄.
I Given the population variance σ2 and sample size n (and

population size N if n > 0.05N), calculate the standard
error σX .

I Given the confidence level 1− α, use software or table to
calculate the critical value zα

2
such that Pr(Z > zα/2) = α

2 .
I The confidence interval is[

x̄− zα
2
σX , x̄+ zα

2
σX

]
.
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Mean: unknown variance

Normal populations

I What if the population is nonnormal?

I If the sample size is large (n ≥ 30), we may apply the
central limit theorem and conclude that the sample mean
is still normal. Everything then follows.

I If the sample size is small (n < 30), we can do nothing at
this moment. We need to study Nonparametric
Statistics (in Chapter 17).
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Mean: unknown variance

Example 1

I Recall that someone messed up our machine.

I While the variance of items produced is 0.04cm2, the mean
is unknown and must be found.

I 100 items are produced and the lengths are recorded:

6.01 6.12 6.03 5.96 5.51 6.31 5.79 ... 6.25

The sample mean is 6.09 cm.

I Estimate the population mean with a 95% confidence
interval.
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Mean: unknown variance

Example 1

I What is the population? What is the parameter?

I Is the population normal? Is it finite or infinite?

I Answer:
I (Important!) Because the population variance is known and

the sample size 100 is large enough, we may use the z
distribution to construct the confidence interval.

I The sample mean is 6.09. The standard error is 0.2√
100

= 0.02.
I The critical values are z0.025 = 1.96.
I The confidence interval is

[6.09− 1.96× 0.02, 6.09 + 1.96× 0.02] ≈ [6.051, 6.129].

I Conclusion: With a 95% confidence interval, the population
mean is between 6.051 and 6.129.
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Mean: unknown variance

Example 1: remarks

I Suppose now only 10 items are produced.
I If according to past experience we know the population is

normal, we may still construct the confidence interval.
I If the population is nonnormal (or if we do not know whether

it is normal), we can do nothing.

I If you want to see whether the population is normal:
I At least you should draw a histogram.
I A rigorous way (which has the chi-square distribution

involved) will be introduced in Chapter 16.
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Mean: unknown variance

Example 2

I Let’s assume I didn’t announce the average of the midterm.
I But I announced the standard deviation as 16.72.

I You want to know the average of the 57 scores.

I Because some classmates refuse to tell you their scores, you
cannot conduct a census.

I Among your friends, you randomly asked three persons.
Their grades are 69, 72, and 92. You got 78.
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Mean: unknown variance

Example 2

I The population distribution looks like normal:

I With a 90% confidence level, what is the confidence interval?
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Mean: unknown variance

Example 2

I Answer:
I Because the population variance is known and the population

is normal, we use the z distribution to construct the interval.
I The sample mean is 77.75.

I The standard error is
(
16.72√

4

)√
57−4
57−1 = 8.13.

I The critical values are z0.05 = 1.645.
I The confidence interval is

[77.75− 1.645× 8.13, 77.75 + 1.645× 8.13]

≈ [64.371, 91.129].

I Conclusion: With a 90% confidence interval, the population
mean is between 64.371 and 91.129.

I Obviously a larger sample size will help.
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