Statistics I - Chapter 8 Estimation for One Population (Part 1)

Ling-Chieh Kung
Department of Information Management
National Taiwan University

November 28, 2012

Introduction

- We have studied Descriptive Statistics (Chapters 2 and 3) and Probability (Chapters 4 to 7).
- Now we are ready to study inferential Statistics.
- In particular, we want to:
- Estimate population parameters (Chapters 8 and 10).
- Test hypotheses about parameters (Chapter 9 to 11).
- And more.
- The concepts introduced in Chapters 8 and 9 are the heart of Inferential Statistics!

Introduction

- Consider the quality control problem again.
- For all LED lamps of brand IM, we are interested in μ, the average number of hours of luminance.
- Let's select a random sample of 40 lamps. A test shows that the sample mean is $\bar{x}=28000$ hours.
- What's the probability that $\mu=\bar{x}$?
- What's the probability that $\mu \in[27000,29000]$?
- What's the probability that $\mu \in[26000,30000]$?
- Why don't we use the median?
- Now we are able to answer these questions.

Road map

- Point estimation.
- Interval estimation.
- Estimating the population mean.
- When the population variance is known.

Estimators

- From a population, we may collect a subset as a sample.
- From a sample, we may calculate statistics.
- A statistic is a function of values in a sample.
- E.g., the sample mean $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.
- E.g., the sample variance $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
- When a statistic is used to estimate a population parameter, it is called an estimator of that parameter.
- E.g., \bar{X} can be used as an estimator of μ.
- E.g., S^{2} can be used as an estimator of σ^{2}.

Estimators

- A statistic is an estimator of a parameter.
- It is meaningless to say "The sample mean is an estimator." An estimator of what?
- An estimator is nothing but a statistic of a particular use.
- It is still a function of values in a sample.
- It is a random variable.
- It has a specific target: the parameter.
- The realized value of an estimator is called an estimate.

Estimators

- For a parameter, there are multiple estimators.
- Suppose we want to estimate the population mean μ.
- One (intuitive) estimator is the sample mean \bar{X}.
- One may also use the sample median as an estimator.
- One may even use the sample maximum $X_{\max } \equiv \max _{i=1, \ldots, n}\left\{X_{i}\right\}$, sample minimum $X_{\text {min }} \equiv \min _{i=1, \ldots, n}\left\{X_{i}\right\}$, or something creative such as $\frac{1}{2}\left(X_{\max }+X_{\min }\right), \frac{1}{3}\left(X_{1}+2 X_{2}\right)$, etc.
- Which estimator is good?

Point estimation

- One way to estimate a parameter is as follows:
- Define an estimator.
- Conduct sampling and generate a sample.
- Calculate the realized value, the estimate, of the estimator.
- Claim that "I think the parameter is close to the estimate."
- In short, we "guess" that the parameter is close to the realized value of an estimator, the estimate.
- The above process is called point estimation.

Point estimation: An example

- Suppose we want to estimate the average number of hours one spend in homework per week in this class. Let it be μ.
- Suppose we ask 10 students and get

$$
\begin{array}{llllllllll}
6 & 2 & 4 & 2 & 5 & 3 & 12 & 4 & 2 & 1 .
\end{array}
$$

- If we have defined the sample mean as our estimator, the estimate will be 4.1. We will guess that μ is close to 4.1.
- If we have defined the sample maximum as our estimator (which is obviously bad), the estimate will be 12 .
- If we have define the sample median as our estimator, the estimate will be 3.5.

Point estimation

- Probably it is obvious that in estimating the population mean, the best idea is to use the sample mean.
- But some things are not so obvious.
- Consider the population variance $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$:
- We define the sample variance as $S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
- Why $n-1$?
- Why don't we define it as $\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$?
- Is S^{2} a good estimator of σ^{2} ?

Properties of a point estimator

- To answer all these questions, we need to first define "good".
- Among many properties, three of them are:
- Unbiasedness,
- Relative efficiency, and
- Consistency.
- An estimator is "good" if it is unbiased, relatively efficient, and consistent.

Unbiasedness

- Believed by most statisticians, the first thing is for an estimator to be unbiased.

Definition 1

Let θ be a parameter and $\hat{\theta}$ be an estimator of $\theta . \hat{\theta}$ is unbiased if

$$
\mathbb{E}[\hat{\theta}]=\theta .
$$

- The parameter θ is a constant.
- The estimator $\hat{\theta}$ is a random variable.
- $\hat{\theta}$ may take different values, but in expectation it is θ.

Unbiasedness

- $\hat{\theta}_{1}$ is unbiased while $\hat{\theta}_{2}$ is biased.

Unbiasedness of the sample variance

- Now we may answer why the denominator of the sample variance is $n-1$ instead of n.

Proposition 1

The sample variance

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

is unbiased for the population variance σ^{2}, i.e., $\mathbb{E}\left[S^{2}\right]=\sigma^{2}$.
Proof. Because $\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}$, we have $\mathbb{E}\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)-n \mathbb{E}\left(\bar{X}^{2}\right)$.

Unbiasedness of the sample variance

- Proof (cont'd). Because $\mathbb{E}\left[X_{i}^{2}\right]=\operatorname{Var}\left(X_{i}\right)+\mathbb{E}\left[X_{i}\right]^{2}=\sigma^{2}+\mu^{2}$ and $\mathbb{E}\left[\bar{X}^{2}\right]=\operatorname{Var}(\bar{X})+\mathbb{E}[\bar{X}]^{2}=\frac{\sigma^{2}}{n}+\mu^{2}$, we have,

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right] & =\sum_{i=1}^{n}\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right) \\
& =n \sigma^{2}-\sigma^{2}=(n-1) \sigma^{2}
\end{aligned}
$$

It follows that

$$
\mathbb{E}\left(S^{2}\right)=\frac{1}{n-1} \mathbb{E}\left[\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right]=\frac{1}{n-1}(n-1) \sigma^{2}=\sigma^{2}
$$

so we see that S^{2} is an unbiased estimator for σ^{2}.

Unbiasedness

- For the population mean μ :
- The sample mean \bar{X} is unbiased:

$$
\mathbb{E}[\bar{X}]=\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right]=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]=\frac{1}{n}(n \mu)=\mu .
$$

- The sample median is biased.
- The sample maximum is biased as long as $n>1$. E.g., suppose $X_{i} \sim \operatorname{Uni}(0,2)$, we have

$$
\mathbb{E}\left[X_{\max }\right]=\int_{0}^{2} x\left(\frac{n x^{n-1}}{2^{n}}\right) d x=\frac{2 n}{n+1}>1
$$

- How about this statistic: $\frac{1}{3}\left(X_{1}+2 X_{2}\right)$?

Relative efficiency

- Between two unbiased estimators, we prefer the one that is relatively efficient, i.e., with smaller variance.

Definition 2

Let θ be a parameter and $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ be two estimators of θ. The efficiency of $\hat{\theta}_{1}$ relative to $\hat{\theta}_{2}$ is the ratio

$$
\frac{\operatorname{Var}\left(\hat{\theta}_{2}\right)}{\operatorname{Var}\left(\hat{\theta}_{1}\right)} .
$$

- The smaller the variance, the larger the relative efficiency (if they are unbiased).

Relative efficiency

- $\hat{\theta}_{1}$ is more efficient than $\hat{\theta}_{2}$.

Relative efficiency

- For the population mean μ :
- $\frac{1}{2}\left(X_{1}+X_{2}\right)$ and $\frac{1}{3}\left(X_{1}+2 X_{2}\right)$ are both unbiased.
- Which one is more efficient?
- We have

$$
\begin{aligned}
& \operatorname{Var}\left(\frac{X_{1}+X_{2}}{2}\right)=\frac{1}{4}(1+1)=\frac{1}{2} \text { and } \\
& \operatorname{Var}\left(\frac{X_{1}+2 X_{2}}{3}\right)=\frac{1}{9}(1+4)=\frac{5}{9},
\end{aligned}
$$

so $\frac{1}{2}\left(X_{1}+X_{2}\right)$ is more efficient.

- In general, the sample mean is more efficient than any weighted average with various weights (why?).

Consistency

- An estimator should be consistent, i.e., get closer to the parameter (probabilistically) as the sample size n goes up.
- In particular, it should converge to the parameter as $n \rightarrow \infty$.

Definition 3

Let θ be a parameter and $\hat{\theta}_{n}$ be an estimator of θ whose sample size is $n . \hat{\theta}_{n}$ is consistent if for any $\epsilon>0$, we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left(\left|\hat{\theta}_{n}-\theta\right| \leq \epsilon\right)=1
$$

- In other words, the "guess" will be "correct" when the sample size goes to infinity.

Consistency

- $\hat{\theta}_{n}$ converges to θ as $n \rightarrow \infty$.

Consistency

- Is a sample mean consistent? Do we have

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}(|\bar{X}-\mu|>\epsilon)=0 \quad \forall \epsilon>0
$$

- You have proved this in Problem 5 of Homework 6!
- This important result is called the law of large numbers.

Proposition 2 (Law of large numbers)
The sample mean converges to the population mean as the sample size goes to infinity.

Summary

- We use statistics to estimate parameters.
- When we use a single number as an estimate, we are doing point estimation.
- For a single parameter, there are multiple point estimators.
- Some estimators are better than others.
- A good estimator should be:
- Unbiased,
- Relatively effective, and
- Consistent.

Road map

- Point estimation.
- Interval estimation.
- Estimating the population mean.
- When the population variance is known.

Drawbacks of point estimation

- Indeed some point estimators are good.
- E.g., the sample mean is a good for the population mean.
- However, there are some drawbacks of point estimation:
- We know the population mean is close to the sample mean. But how close it is?
- No matter how good an estimator is, if we use just one value, the probability of making a correct guess is typically zero!
- Therefore, instead of suggesting a number, it will be better to suggest an interval.
- We need to measure how good an interval is.

Interval estimation: the first illustration

- Let's illustrate the idea with population and sample means.
- Let's assume the population is normal with known variance $\sigma^{2}=16$. The population mean, μ, is unknown.
- Let the sample mean \bar{X} be the estimator.
- The sample size $n=8$.
- We have observed the value of sample mean, $\bar{x}=10$.
- \bar{X} is a statistic and \bar{x} is a realized value.
- Intuitively, the interval should center at \bar{x}.
- We want to find the smallest $b>0$ such that the interval $I(b)=[\bar{x}-b, \bar{x}+b]$ covers μ with a 95% probability.
- How?

The sampling distribution

- This is possible because we know the distribution of \bar{X}.
- As the population is normal, $\bar{X} \sim \mathrm{ND}\left(\mu, \frac{\sigma}{\sqrt{n}}=\sqrt{2}\right)$.

The sampling distribution

- Suppose someone randomly says: How about

$$
I(\sigma)=[\bar{x}-\sigma, \bar{x}+\sigma]=[10-\sqrt{2}, 10+\sqrt{2}] ?
$$

- How to measure the quality of this interval?
- Consider an "unknown" interval centered at μ : $U(\sqrt{2})=[\mu-\sqrt{2}, \mu+\sqrt{2}]$. Let $Z \sim \mathrm{ND}(0,1)$, we have

$$
\begin{aligned}
& \operatorname{Pr}(\bar{X} \in U)=\operatorname{Pr}(\mu-\sqrt{2} \leq \bar{X} \leq \mu+\sqrt{2}) \\
= & \operatorname{Pr}(-1 \leq Z \leq 1)=0.6827 .
\end{aligned}
$$

- The location of the interval $U(\sqrt{2})$ is unknown because μ is unknown. But its size is known: $2 \sqrt{2}$.

The sampling distribution

- We do not know where μ is, but we know the probability for \bar{X} to deviate from μ by less than $\frac{\sigma}{\sqrt{n}}=\sqrt{2}$.

How good an interval is?

- Now, let's consider $I(\sqrt{2})=[10-\sqrt{2}, 10+\sqrt{2}]$ again.
- $\bar{x}=10$ can be close to or far from μ.

How good an interval is?

- If, luckily, $\bar{x}=10$ is close enough to $\mu, I(\sqrt{2})$ covers μ.
- If, unluckily, $\bar{x}=10$ is far from $\mu, I(\sqrt{2})$ does not cover μ.

How good an interval is?

- The probability that "we are lucky" is exactly 0.6827 !
- $\operatorname{Pr}(|\bar{X}-\mu| \leq \sqrt{2})=0.6827$.

How good an interval is?

- In conclusion, given any realization $\bar{x},[\bar{x}-\sqrt{2}, \bar{x}+\sqrt{2}]$ covers μ with probability 0.6827 .
- We can reach this conclusion as we know $\bar{X} \sim \mathrm{ND}(\mu, \sqrt{2})$.
- But 0.6827 is not enough: We want 0.95.
- So instead of having $\sqrt{2}$ as the leg length, let's try $2 \sqrt{2}$.

A larger interval

- We do not know where μ is, but we know the probability for \bar{X} to deviate from μ by less than $2 \frac{\sigma}{\sqrt{n}}=2 \sqrt{2}$.

A larger interval

- The probability that "we are lucky" now becomes 0.9545 !
- $\operatorname{Pr}(|\bar{X}-\mu| \leq 2 \sqrt{2})=0.9545$.

What should be the leg size?

- We made two attempts:
- $[10-\sqrt{2}, 10+\sqrt{2}]$ is too small: The covering probability is 0.6827 , which is $\operatorname{Pr}(-1<=Z<=1)$.
- $[10-2 \sqrt{2}, 10+2 \sqrt{2}]$ is too large: The covering probability is 0.9545 , which is $\operatorname{Pr}(-2<=Z<=2)$.
- To get exactly 0.95 , we need to solve

$$
\operatorname{Pr}(-z \leq Z \leq z)=0.95
$$

The answer is $z=1.96$.

- So the desired interval is

$$
[10-1.96 \sqrt{2}, 10+1.96 \sqrt{2}]=[7.228,12.772]
$$

It covers μ with probability 0.95 .

Summary

- We want to construct an interval that will cover the population mean with a predetermined probability.
- As we have the value of the sample mean, it is natural to make the interval centering at the sample mean.
- We may measure the quality (the probability of covering the population mean) of each interval because:
- $[\bar{X}-b, \bar{X}+b]$ covers $\mu \Leftrightarrow|\bar{X}-\mu| \leq b$.
- The probability of the latter can be calculated if we know the distribution of \bar{X}.

Summary

- The interval is called a confidence interval (CI).
- The probability of covering the desired parameter is called the confidence level.
- The typical way to state a conclusion is
"With a $1-\alpha$ confidence level, the population parameter will be covered by the confidence interval."
- In practice, $1-\alpha$ is typically chosen to be $90 \%, 95 \%$, or 99%.

Road map

- Point estimation.
- Interval estimation.
- Estimating the population mean.
- When the population variance is known.

Estimating population mean

- Let's consider the task again: to suggest an interval that covers the population mean μ with a certain probability.
- While we do this based on the sample mean \bar{X}, the key is to know the sampling distribution of \bar{X}.
- We need to study many different cases:
- Known or unknown population variance.
- Normal or nonnormal population.
- Large or small sample size.
- Infinite or finite population (or sampling without or with replacement).

Known population variance

- In this section, we will assume that the population variance σ^{2} is known.
- Is it possible that the population mean is unknown but the population variance is known?
- Certainly this is not so common.
- Consider the following example:
- A machine produces an item.
- Once the desired length is set manually, the variance of the lengths of items is known to be $0.04 \mathrm{~cm}^{2}$.
- However, after you fire a bad employee, he modified the setting without telling anyone...

Known population variance

- In practice, if you do not know the population variance, try to use the methods introduced in the next section.
- If only methods which assumes known population variance are available, you will need to estimate or test the population variance first.
- To be introduced later in this semester.

General setting

- The unknown population mean is μ.
- The known population variance is σ^{2}.
- The sample mean is \bar{X}.
- The realized value of sample mean is \bar{x}.
- The sample size is n.
- The desired confidence level is $1-\alpha$.
- α is the allowed probability for not covering μ.

General setting

- In general, we are looking for a smallest $b>0$ such that the interval $[\bar{x}-b, \bar{x}+b]$ covers μ with probability $1-\alpha$.
- For simplicity, b is (almost always) measured as the number of standard deviations of \bar{X} :

$$
b=z \sigma_{\bar{X}},
$$

where z is the z-score of b and $\sigma_{\bar{X}} \equiv \sqrt{\operatorname{Var}(\bar{X})}$ is the standard error.

- The standard error of an estimator is just a special name of standard deviations particularly for estimators.

Normal populations

- If the population is normal, the sample mean \bar{X} is normal regardless of the sample size.
- With sampling with replacement or infinite population $(n<0.05 N)$, the standard error $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$.
- With sampling without replacement and finite population $(n>0.05 N)$, the standard error $\sigma_{\bar{X}}=\left(\frac{\sigma}{\sqrt{n}}\right) \sqrt{\frac{N-n}{N-1}}$.
- We say we use the z distribution to construct the interval.
- Suppose we have obtained the value of $\sigma_{\bar{X}}$. How to construct the interval for the desired confidence level?

Normal populations

- The distribution of \bar{X} can be divided into three regions based on μ and α.

- Our mission is to find the two cutoffs.

Normal populations

- The two cutoffs depends on $\sigma_{\bar{X}}$ and α.
- z_{t} denotes the critical value such that $\operatorname{Pr}\left(Z>z_{t}\right)=t$.

Normal populations

- The confidence interval can be found in the following way:
- Given the sample, calculate the sample mean \bar{x}.
- Given the population variance σ^{2} and sample size n (and population size N if $n>0.05 N$), calculate the standard error $\sigma_{\bar{X}}$.
- Given the confidence level $1-\alpha$, use software or table to calculate the critical value $z_{\frac{\alpha}{2}}$ such that $\operatorname{Pr}\left(Z>z_{\alpha / 2}\right)=\frac{\alpha}{2}$.
- The confidence interval is

$$
\left[\bar{x}-z_{\frac{\alpha}{2}} \sigma_{\bar{X}}, \bar{x}+z_{\frac{\alpha}{2}} \sigma_{\bar{X}}\right]
$$

Normal populations

- What if the population is nonnormal?
- If the sample size is large $(n \geq 30)$, we may apply the central limit theorem and conclude that the sample mean is still normal. Everything then follows.
- If the sample size is small $(n<30)$, we can do nothing at this moment. We need to study Nonparametric Statistics (in Chapter 17).

Example 1

- Recall that someone messed up our machine.
- While the variance of items produced is $0.04 \mathrm{~cm}^{2}$, the mean is unknown and must be found.
- 100 items are produced and the lengths are recorded:

$$
\begin{array}{lllllllll}
6.01 & 6.12 & 6.03 & 5.96 & 5.51 & 6.31 & 5.79 & \ldots & 6.25
\end{array}
$$

The sample mean is 6.09 cm .

- Estimate the population mean with a 95% confidence interval.

Example 1

- What is the population? What is the parameter?
- Is the population normal? Is it finite or infinite?
- Answer:
- (Important!) Because the population variance is known and the sample size 100 is large enough, we may use the z distribution to construct the confidence interval.
- The sample mean is 6.09. The standard error is $\frac{0.2}{\sqrt{100}}=0.02$.
- The critical values are $z_{0.025}=1.96$.
- The confidence interval is

$$
[6.09-1.96 \times 0.02,6.09+1.96 \times 0.02] \approx[6.051,6.129]
$$

- Conclusion: With a 95% confidence interval, the population mean is between 6.051 and 6.129 .

Example 1: remarks

- Suppose now only 10 items are produced.
- If according to past experience we know the population is normal, we may still construct the confidence interval.
- If the population is nonnormal (or if we do not know whether it is normal), we can do nothing.
- If you want to see whether the population is normal:
- At least you should draw a histogram.
- A rigorous way (which has the chi-square distribution involved) will be introduced in Chapter 16.

Example 2

- Let's assume I didn't announce the average of the midterm.
- But I announced the standard deviation as 16.72.
- You want to know the average of the 57 scores.
- Because some classmates refuse to tell you their scores, you cannot conduct a census.
- Among your friends, you randomly asked three persons. Their grades are 69, 72, and 92. You got 78 .

Example 2

- The population distribution looks like normal:

- With a 90% confidence level, what is the confidence interval?

Example 2

- Answer:
- Because the population variance is known and the population is normal, we use the z distribution to construct the interval.
- The sample mean is 77.75.
- The standard error is $\left(\frac{16.72}{\sqrt{4}}\right) \sqrt{\frac{57-4}{57-1}}=8.13$.
- The critical values are $z_{0.05}=1.645$.
- The confidence interval is

$$
\begin{aligned}
& {[77.75-1.645 \times 8.13,77.75+1.645 \times 8.13] } \\
\approx & {[64.371,91.129] . }
\end{aligned}
$$

- Conclusion: With a 90% confidence interval, the population mean is between 64.371 and 91.129 .
- Obviously a larger sample size will help.

