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Introduction

I Last time we introduced the idea of interval estimation.
I Instead of suggesting a single value, we suggest an interval.
I It is an interval that we know how good it is: the

probability for the interval to cover the parameter.
I We can measure the probability because we know the

sampling distribution of the estimator.

I We introduced how to estimate the population mean
when the population variance is known.

I Today we discuss some other parameters.
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Mean: unknown variance

Road map

I Estimating the population mean.
I When the variance is unknown.

I Estimating population proportion.

I Estimating population variance.
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Mean: unknown variance

Review

I To estimate the population mean µ when the population
variance σ2 is known:
I If applicable, we use the z distribution.
I Calculate the sample mean x̄.

I Calculate the standard error σX : σ√
n

or σ√
n

√
N−n
N−1 .

I Calculate the critical value zα
2

based on the z distribution
and the confidence level 1− α.

I The bounds of the interval is x̄± zα
2
σX .
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Mean: unknown variance

Review
I The critical value zα

2
satisfies

Pr(Z > zα
2
) =

α

2
,

where Z follows the standard normal distribution.
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Mean: unknown variance

Review

I The standard error is the standard deviation of the
estimator: in this case, X.

I When we apply the z distribution, we use the fact that

X − µ
σ/
√
n
∼ ND(0, 1)

if the population is infinite.
I What if the population is finite?
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Mean: unknown variance

Review

I What are the conditions for applying the z distribution?

Sample size
Population distribution

Normal Nonnormal

n ≥ 30 z distribution z distribution (CLT)
n < 30 z distribution Nonparametric
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Mean: unknown variance

When the variance is unknown

I In most cases in practice, the population mean is unknown.

I In estimating the population mean, what is the difficulty?

I We have no way to calculate the standard error!

I σX = σ√
n

or σ√
n

√
N−n
N−1 .

I In this case, a natural way is to substitute σ by S, the
sample standard deviation.

I While X−µ
σ/
√
n
∼ ND(0, 1), do we know the distribution of

X − µ
S/
√
n

?
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Mean: unknown variance

The t distribution

I When we replace σ by S, we rely on the following fact:

Proposition 1

For a normal population, the quantity

T =
X − µ
S/
√
n

follows the t distribution with degree of freedom n− 1.

I We know the sampling distribution of T (the population must
be normal). We call it the t distribution.

I The only parameter is the degree of freedom.
I Its pdf is known. Its cdf can be found by tables or software.
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Mean: unknown variance

The t distribution

I The t distribution is defined as follows:

Definition 1

A random variable X follows the t distribution with degree
of freedom n, denoted as X ∼ t(n), if

f(x|n) =
Γ(n+1

2
)

√
nπΓ(n

2
)

(
1 +

x2

n

)−n+1
2

,

for all x ∈ (−∞,∞).

I Γ(x) =

∫ ∞
0

zx−1e−zdz is the gamma function.
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Mean: unknown variance

The z and t distributions

I Let’s compare Z = X−µ
σ/
√
n

and T = X−µ
S/
√
n
.

I Because we do not know σ, we use S to substitute it.
I Z ∼ ND(0, 1) and T ∼ t(n− 1).
I As the t distribution is a substitution of the z distribution, it

is designed to be also centered at 0: E[T ] = E[Z] = 0.
I However, as we add one more random variable into the

formula (σ is a known constant), T will be “more random”
than Z, i.e., Var(T ) > Var(Z).

I Graphically, t curves will be flatter than the z curve.
I Fact: t(n)→ ND(0, 1) as n→∞.
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Mean: unknown variance

The z and t distributions
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Mean: unknown variance

Using the t distribution

I As we know that T = X−µ
S/
√
n
∼ t(n− 1), we may construct the

confidence interval as follows:
I Calculate the sample mean x̄.
I Calculate the multiplier s√

n
.

I Calculate the critical value tα
2
,n−1 based on the t

distribution and the confidence level 1− α:

Pr(T > tα
2
,n−1) =

α

2
.

I The bounds of the interval is

x̄± tα
2
,n−1

s√
n
.
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Mean: unknown variance

Using the t distribution

I In calculate tα
2
,n−1, all we need is a probability table or an

Excel function.

I We do not even need to know the pdf of the t distribution.

I We also do not know:
I Why T follows the t distribution?
I How did statisticians define/design the t distribution?
I The physical meaning of the t distribution.

I Anyway, let’s use it to do some estimations.
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Mean: unknown variance

Example 1

I I did not announce the average score of the midterm.

I You want to estimate the average of the 57 scores with a
1− α = 95% confidence level.

I Your sample is {69, 72, 92, 78, 81, 76, 54, 51, 91}.
I Sample size n = 9.
I Sample mean x̄ = 73.78.
I Sample standard deviation s = 14.32.
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Mean: unknown variance

Example 1

I If you do not have the population standard deviation σ:
I Because the population is normal and the population variance

is unknown, we use the t distribution to construct the interval.
I The sample mean is x̄ = 73.78.
I The multiplier is s√

n
= 4.77.

I The critical value is tα
2
,n−1 = t0.025 = 2.306. Note that the

degree of freedom is n− 1 = 8!
I The interval bounds are 73.78± 2.306× 4.77.
I With a 95% confidence level, the mean of the midterm grades

is within [62.77, 84.78].
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Mean: unknown variance

Example 1

I If we know the population standard deviation is σ = 16.72,
we may use the z distribution and get [62.85, 84.70].

I Comparisons:

Population variance σ2 Unknown Known

Distribution to use t distribution z distribution

Sample mean x̄ 73.78 73.78

Critical value t0.025,8 = 2.306 z0.025 = 1.96

Multiplier s√
n

= 4.77 σ√
n

= 5.57

Confidence interval [62.77, 84.78] [62.85, 84.7]
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Mean: unknown variance

Using the t distribution

I Only when the population is normal, the quantity

T = X−µ
S/
√
n

follows the t distribution.

I If the population is nonnormal, we do not know the
distribution of T.

I Fortunately, if the sample size is large (n ≥ 30):
I We may apply the central limit theorem and conclude that
X ∼ ND(µ, σ√

n
). But how to deal with the unknown σ?

I The sample variance S2 will be close to the population
variance σ2 (i.e., S2 is a consistent estimator of σ2).

I We may use s√
n

as an substitute of σ√
n

.

I We then use the z distribution to construct the interval.
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Mean: unknown variance

Example 2

I A survey is conducted to study the average number of
months a Taiwanese college graduate spends on finding the
first job after graduation.

I 100 persons are randomly selected and the data are recorded:

6 2 2 3 1 0 15 11 · · · 4.

I Construct a confidence interval with a 99% confidence level.



Statistics I – Chapter 8 (Part 2), Fall 2012 20 / 53

Mean: unknown variance

Example 2

I Answer:
I Because the population size is large, we use the z distribution

to construct the interval. Because the population variance σ2

is unknown, we will use the sample variance s2 as a substitute.
I The sample mean is x̄ = 2.55.
I The sample standard deviation is s = 2.09.
I The standard error is (approximately) s√

n
= 0.209.

I The critical value is zα
2

= z0.005 = 2.576.
I The interval bounds are 2.55± 2.576× 0.209.
I With a 99% confidence level, the average months for a

Taiwanese college graduate to find the first job is within
[2.01, 3.09].



Statistics I – Chapter 8 (Part 2), Fall 2012 21 / 53

Mean: unknown variance

Remarks

I We may ignore the finite population issue.
I The existence of a finite population has somewhat affected

the calculation of the sample standard deviation S.

I If the population is normal and the sample size is large, it is
also fine to use the z distribution (with s substituting σ).
I This is also due to the central limit theorem.

I If the population is nonnormal and the sample size is small,
we must relegate to nonparametric methods.
I However, the t distribution for estimating the population

mean is robust to the normal population assumption:
Having nonnormal population does not harm a lot.
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Mean: unknown variance

Summary

I To estimate the population mean µ:

σ2 Sample size
Population distribution

Normal Nonnormal

Known
n ≥ 30 z z
n < 30 z Nonparametric

Unknown
n ≥ 30 t or z z
n < 30 t Nonparametric

I If z distribution, do finite population correction if n > 0.05N .
I If t distribution, no need to do this.
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Population proportion

Road map

I Estimating the population mean.
I When the variance is unknown.

I Estimating population proportion.

I Estimating population variance.
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Population proportion

Estimating population proportion

I For a population {xi}i=1,...,N , we label each entity as 1 or 0.
I 1 for boys, 0 for girls.
I 1 for defects, 0 for good products.
I 1 for having monthly income higher than $30000, 0 or not.

I The population proportion is p = 1
N

∑N
i=1 xi.

I Let X =
∑n

i=1Xi. the sample proportion

p̂ =
X

n

is an unbiased estimator of p (why)?
I It is also consistent and more efficient than most other

unbiased estimators of the population proportion.
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Population proportion

Estimating population proportion

I To conduct interval estimation for the population proportion
p, we will use the sample proportion p̂ as the center of the
interval.

I How to decide the leg length based on the confidence level?

I Suppose the sample size is large (n ≥ 30).
I The central limit theorem implies that the sample

proportion follows the normal distribution.

I The mean is p. The standard error is

√
p(1−p)
n . We have

p̂− p√
p(1− p)/n

∼ ND(0, 1).

I Then we may use the z distribution... May we?
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Population proportion

Estimating population proportion

I The standard error
√

p(1−p)
n

contains p, which is unknown!

I In fact, as the population variance p(1− p) depends on p,
the population variance is unknown.

I So similar to the case of estimating population mean with

unknown population variance, we will use
√

p̂(1−p̂)
n

as an

substitute of
√

p(1−p)
n

.
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Population proportion

Example

I A manufacturer recently got an offer from a downstream
retailer. The retailer asked for 8500 units of a newly
designed product and will pay $900 for it. If the
manufacturer cannot make it, the retailer is also willing to
pay $400 for 4000 units.

I The capacity of the manufacturer is 10000 units. So whether
it can promise the retailer for delivering 9000 units depends
on the yield rate, the proportion of products passing the
quality requirements.

I If its yield rate can reach 85%, it can sign the (8500, $900)
contract. But because the product is new, it does not have
past data for the yield rate.
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Population proportion

Example

I An inspector was assigned the task of estimating the yield
rate. She ran a production run for 100 products and found
that 91 are good.

I The manager will accept the offer only if she is 99% sure
that the yield rate is above 85%. Should she accept it?
I What is the parameter to estimate?
I If we use the sample proportion as the estimator, what is the

point estimate?
I How to construct the confidence interval for different values

of confidence level?
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Population proportion

Example

I The required confidence level is 1− α = 0.99:
I Because the sample size is large, we may use the z

distribution to construct the interval.
I The sample proportion p̂ = 91

100 = 0.91.

I The multiplier is

√
p̂(1−p̂)
n = 0.0286.

I The critical value is z0.005 = 2.576.
I The interval bounds are 0.91± 2.576× 0.0286.
I With a 99% confidence level, the yield rate is between 83.6%

and 98.4%. The manager should not accept the offer.
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Population proportion

Polls for elections

I One main application of estimating the population
proportion is the polls for elections.

I How to read the results of polls?
I Read those p̂s.
I Read the maximum error(s).
I Read the sample size and confidence level.
I Compare those confidence intervals.
I Read the sampling method(s).
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Population proportion

Polls for elections: example 1

I Proportion of voters
supporting candidate
1: p̂1 = 0.5.

I Proportion of voters
supporting candidate
2: p̂2 = 0.28.

I Simple random
sampling.

I Population: All voters
living in Tainan.

I 1− α = 95%.

I Sample size n = 825.

I Max error = 0.034. (http://www.nownews.com/2010/10/15/11490-2655158.htm.)
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Population proportion

Polls for elections: example 1
I The maximum error is

z0.025

√
p̂1(1− p̂1)

n
≈ 1.96

√
(0.5)(0.5)

825
≈ 0.034.

I So for p1 and p2 (the true proportions of voters supporting
candidates 1 and 2):
I p̂1 = 0.5 and p̂2 = 0.28.
I Confidence intervals: [0.466, 0.534] and [0.246, 0.314].

I The difference is (statistically) significant: There is an
enough evidence that, with a 95% confidence level, candidate
1 is in an advantage.
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Population proportion

Polls for elections: example 2

I Proportion of voters
supporting candidate
1: p̂1 = 0.43.

I Proportion of voters
supporting candidate
2: p̂2 = 0.42.

I Simple random
sampling.

I Population: All voters
living in Taipei.

I 1− α = 95%.

I Sample size n = 824.

I Max error = 0.034.

(http://www.nownews.com/2010/10/07/11606-2653111.htm.)
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Population proportion

Polls for elections: example 2

I The maximum error is

z0.025

√
p̂(1− p̂)

n
≈ 1.96

√
(0.43)(0.57)

824
≈ 0.034.

I So for p1 and p2 (the true proportions of voters supporting
candidates 1 and 2):
I p̂1 = 0.43 and p̂2 = 0.42.
I Confidence intervals: [0.396, 0.464] and [0.386, 0.454].

I The difference is (statistically) insignificant: There is no
enough evidence that candidate 1 is in an advantage.
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Population proportion

When the population is finite

I If we adopt sampling without replacement and the
population size is small (n > 0.05N), we need to include the

finite population factor
√

N−n
N−1 in the multiplier:√

p̂(1− p̂)
n

√
N − n
N − 1

.

I Everything then follows.
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Population proportion

When the sample size is small

I If the sample size is small (n < 30), the sample proportion is
no longer normal.

I While we do not know the distribution of the sample
proportion p̂ = X

n
, we know X =

∑n
i=1Xi ∼ Bi(n, p). We

may thus do an interval estimation.

I There are multiple ways of doing the inference:
I Based on binomial distributions.
I Based on F distributions.

I We will skip this topic.
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Population proportion

Remark

I Instead of substituting
√

p(1−p)
n

by
√

p̂(1−p̂)
n

, some people use√
p̂(1−p̂)
n−1 because it is unbiased for

√
p(1−p)
n

.

I Instead of substituting
√

p(1−p)
n

√
N−n
N−1 by

√
p̂(1−p̂)
n

√
N−n
N−1 ,

some people use
√

p̂(1−p̂)
n−1

√
N−n
N

because it is unbiased for√
p(1−p)
n

√
N−n
N−1 .

I Both of the two alternative substitutes improve a little when
n is large.

I We will adopt the näıve way: Just replace p by p̂.
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Population variance

Road map

I Estimating the population mean.
I When the variance is unknown.

I Estimating population proportion.

I Estimating population variance.
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Population variance

Estimating population variance

I Another population parameter that is often of interest is the
population variance σ2.
I Here we go back to discuss a quantitative population rather

than a qualitative one.

I The most common estimator is the sample variance S2.
I The denominator is n− 1!
I As an estimator of σ2, S2 is unbiased and consistent.

I Interestingly, the sample standard deviation S is a biased
estimator of the population standard deviation σ.
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Population variance

Estimating population variance

I To construct the confidence interval for the population
variance, we rely on the quantity

χ2 =
(n− 1)S2

σ2
,

which follows the chi-square distribution with degree of
freedom n− 1 if the population is normal.
I The notation χ2 here is a random variable.
I The estimation is quite sensitive to the normal population

assumption; this method is not robust.
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Population variance

The chi-square distribution

I For a random variable χ2 ∼ Chi(n− 1), how to find two
cutoffs a and b such that Pr(a ≤ χ2 ≤ b) = 1− α?

I There are multiple ways (assuming 1− α = 0.95):

Left tail probability = 0.01
Right tail probability = 0.04

Left tail probability = 0.04
Right tail probability = 0.01
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Population variance

The chi-square distribution

I One particular way is
“half-half”.

I We may choose the
two cutoffs as
χ2
1−α

2 ,n−1 and

χ2
α
2 ,n−1, where

Pr(χ2 > χ2
y,n−1) = y.

for χ2 ∼ Chi(n− 1).

I The notation χy,n−1

is a critical value.
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Population variance

The chi-square distribution

I By using χ2
1−α

2
,n−1 and χ2

α
2
,n−1:

I The interval constructed with them are not the smallest.
I But because it is hard to find the smallest interval, in practice

people use these two cutoffs for convenience.
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Population variance

Estimating population variance
I We then have

1− α = Pr

(
χ2
1−α

2
,n−1 ≤

(n− 1)S2

σ2
≤ χ2

α
2
,n−1

)
= Pr

(
χ2
1−α

2
,n−1σ

2 ≤ (n− 1)S2 ≤ χ2
α
2
,n−1σ

2
)

= Pr

(
(n− 1)S2

χ2
α
2
,n−1

≤ σ2 ≤ (n− 1)S2

χ2
1−α

2
,n−1

)
.

I Given a realized value of sample variance s2, with a 1− α
confidence level, the population variance is between

(n− 1)s2

χ2
α
2
,n−1

and
(n− 1)s2

χ2
1−α

2
,n−1

.
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Population variance

Example

I In a company, the human resource team is estimating how
diverse the workers’ weekly work hours are.
I The population: workers working in the company.
I The parameter: the population variance of all workers’ weekly

work hours.

I It is known that the population is normal.

I The team collect a sample of 20 workers and obtain their
weekly work hour.

I The sample variance s2 = 18.26 square hours.

I Estimate the variance of all workers’ weekly work hours with
a 90% confidence level.
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Population variance

Example

I The required confidence level is 1− α = 0.9:
I Because the population is normal we may use the chi-square

distribution to construct the interval.
I The sample variance s2 = 18.26.
I The degree of freedom is n− 1 = 19.
I The critical values are

χ2
0.95,19 = 10.117 and χ2

0.05,19 = 30.144.

I The bounds are (19)(18.26)
30.144 = 11.51 and (19)(18.26)

10.117 = 34.29.
I With a 90% confidence level, the variance of all workers’

weekly work hour is between 11.51 and 34.29.
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Population variance

Example

I Note that the bounds are (n−1)s2
χ2
α/2,n−1

and (n−1)s2
χ2
1−α/2,n−1

.

I Does that mean a larger sample size results in a larger
confidence interval?

I No! Because the two critical values will also increase when
n increases. This is because the chi-square distribution
becomes flatter when n increases.

I In this example:

n 10 20 50 100 200

Lower bound 9.71 11.51 13.49 14.67 15.6
Upper bound 49.42 34.29 26.37 23.46 21.71

I It can be shown that increasing n reduces the interval length.
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Population variance

The chi-square distribution
I The chi-square curve gets flatter when the degree of freedom

gets larger.
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Population variance

Population standard deviations

I To estimate the population standard deviation σ:
I First estimate the population variance.
I Then take square root for the two bounds.

I E.g., if the 90% confidence interval for σ2 is [11.51, 34.29],
the 90% confidence interval for σ is[√

11.51,
√

34.29
]

= [3.39, 5.86].
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Population variance

Remarks: sampling distributions

I The foundation for estimating the population variance σ2 is

that (n−1)S2

σ2 ∼ Chi(n− 1).
I We spent a lot of time proving this so we know it is true.

I The foundation for estimating the population mean µ when

σ2 is known is that X−µ
σ/
√
n
∼ ND(0, 1) (for finite populations).

I We also know it is true.

I The foundation for estimating the population mean µ when

σ2 is unknown is that X−µ
S/
√
n
∼ t(n− 1).

I We did not prove this. We can only believe that it is true.

I Keep in mind that all these require a normal population.
Otherwise we need the central limit theorem.
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Population variance

Remarks: z, t, χ2, and F distributions

I The z, t, and chi-square distributions are three of the most
important sampling distributions.

I The fourth very important sampling distribution, the F
distribution, will be introduced in the next semester.

I In using them to do statistical inference, all we need is to
find critical values based on the parameters and the
predetermined tail probability.
I Be familiar with probability tables or software.
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Population variance

Remarks: one-sided estimations

I We have introduced two-sided confidence intervals.
I “With a 95% confidence level, µ is within a and b.”

I There are also one-sided confidence intervals:
I “With a 95% confidence level, µ is above c.”

I We omitted one-sided confidence intervals as they are less
frequently used than two-sided ones.

I As the concepts are similar, now you are able to teach
yourself how to do one-sided estimations.
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Population variance

Remarks: sample size

I Increasing sample size reduces interval length.

I Given a predetermined confidence level and an interval
length, it is possible to determine the sample size that can
achieve the interval length.
I For estimating population means and proportions, we may

derive formulas.
I For estimating population variances, we need to do

trial-and-error.
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