Statistics I – Chapter 9 Hypothesis Testing for One Population (Part 1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

December 12, 2012

Introduction

- ▶ How do scientists (physicists, chemists, etc.) do research?
 - Observe phenomena.
 - Make hypotheses.
 - ► Test the hypotheses through experiments (or other methods).
 - ▶ Make conclusions about the hypotheses.
- ▶ In the business world, business researchers do the same thing with **hypothesis testing**.
 - ▶ One of the most important technique of inferential Statistics.
 - ► A technique for (statistically) **proving** things.
 - ► Again relies on sampling distributions.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ▶ The p-value.
- ▶ Type I and Type II errors.

People ask questions

- ▶ In the business (or social science) world, people ask questions:
 - Are order workers more loyal to a company?
 - ▶ Does the newly hired CEO enhance our profitability?
 - ▶ Is one candidate preferred by more than 50% voters?
 - ▶ Do teenagers eat fast food more often than adults?
 - ▶ Is the quality of our products stable enough?
- ▶ How should we answer these questions?
- ► Statisticians suggest:
 - ▶ First make a hypothesis.
 - ► Then **test** it with samples and statistical methods.

Hypotheses

- We make hypotheses also because we want to find explanations for business phenomena.
 - ▶ E.g., suppose we observe one product creates a larger sales volume than another product.
 - We need to know why so that in the future we can make and market popular products.
 - ▶ We first guess based on intuitions: "It is because product 1 is cheaper than product 2." Such a guess is a hypothesis.
 - ▶ Then we put relevant questions in questionnaires, collect data, analyze data, and then decide whether the hypothesis is true.
- ► Guess by observations or intuitions. Test by facts.

Hypotheses

- ▶ According to Merriam Webster's Collegiate Dictionary (tenth edition):
 - A <u>hypothesis</u> is a tentative explanation of a principle operating in nature.
- ▶ So we try to prove hypotheses to find reasons that explain phenomena and enhance decision making.
- ▶ There are three types of hypotheses:
 - ► Research hypotheses.
 - Statistical hypotheses.
 - Substantive hypotheses.

Research hypotheses

- ▶ In a research hypothesis, the researcher predicts the outcome of an experiment of a study.
- ▶ It is presented in words with **no specific format**:
 - ▶ Older workers are more loyal to a company.
 - ► The newly hired CEO is useless.
 - ► This candidate is supported by more than 50% voters.
 - ► Teenagers eat fast food more often than adults.
 - ▶ The quality of our products is not stable.
- ▶ To test research hypotheses, we typically state them into statistical hypotheses.

Statistical hypotheses

- ▶ A statistical hypothesis is a formal way of stating a research hypothesis.
 - ► Typically with parameters and numbers.
- ► It contains two parts:
 - ▶ The <u>null hypothesis</u> (denoted as H_0).
 - ▶ The <u>alternative hypothesis</u> (denoted as H_a or H_1).
- ► The alternative hypothesis is:
 - ► The thing that we want (need) to **prove**.
 - ► The conclusion that can be made only if we have a strong evidence.
- ▶ The null hypothesis corresponds to a **default** position.

- ▶ In our factory, we produce packs of candy whose average weight should be 1 kg.
- ▶ One day, a consumer told us that his pack only weighs 900 g.
- ▶ We need to know whether this is just a rare event or our production system is out of control.
- ▶ If (we believe) the system is out of control, we need to shutdown the machine and spend two days for inspection and maintenance. This will cost us at least \$100,000.
- ▶ So we should not to believe that our system is out of control just because of one complaint. What should we do?

- ► We may state a research hypothesis "Our production system in under control."
- ► Then we ask: Is there a strong enough evidence showing that the hypothesis is **wrong**, i.e., the system is out of control?
 - ▶ Initially, we assume our system is under control.
 - ► Then we do a survey for a "strong enough evidence".
 - ► We should shutdown machines **only if** we prove that the system is out of control.
- ▶ Let μ be the average weight, the **statistical hypothesis** is

$$H_0: \mu = 1$$

 $H_a: \mu \neq 1$.

▶ Why don't we use

$$H_0: \mu \neq 1$$
$$H_a: \mu = 1.$$

as the statistical hypothesis?

- ▶ We need a **default position** before we start a survey. $\mu \neq 1$ cannot be a position: We do not know where to stand on.
- We should shutdown machines only if we have a strong evidence showing that $\mu \neq 1$.
- ▶ The conclusion that requires a strong evidence is put in H_a .
- ▶ We will have more discussions on how to set up a hypothesis.

Statistical hypotheses

- ▶ In the previous example, it does not matter whether the research hypothesis is "our production system in under control" or "our production system in out of control".
- ▶ The statistical hypothesis will be the same. We always start by assuming $\mu = 1$, the null hypothesis.
- ▶ For beginners in Statistics, one of the most confusing thing is to determine the statements of a statistical hypothesis.
- ▶ Let's see some more examples.

- ▶ In our society, we adopt the presumption of innocence.
 - ► One is considered **innocent** until proven **guilty**.
- ▶ So when there is a person who probably stole some money:

 H_0 : The person is innocent H_a : The person is guilty.

- ▶ It is unacceptable that an innocent person is considered guilty.
- ▶ We will say one is guilty only if there is a strong evidence.

- ▶ Consider the research hypothesis "The candidate is preferred by more than 50% voters."
- ▶ As we need a default position and the percentage that we care about is 50%, we will choose our null hypothesis as

$$H_0$$
: $p = 0.5$.

▶ How about the alternative hypothesis? Should it be

$$H_a: p > 0.5$$
 or $H_a: p < 0.5$?

- ► The choice of the alternative hypothesis depends on the related decisions or actions to make.
- ▶ Suppose one will go for the election only if she thinks she will win (i.e., p > 0.5), the alternative hypothesis will be

$$H_a: p > 0.5.$$

▶ Suppose one tends to participate in the election and will give up only if the chance is slim, the alternative hypothesis will be

$$H_a$$
: $p < 0.5$.

Remarks

- ▶ For setting up a statistical hypothesis:
 - ▶ Our default position will be put in the null hypothesis.
 - ▶ The thing we want to prove (i.e., the thing that needs a strong evidence) will be put in the alternative hypothesis.
- ▶ For writing the mathematical statement:
 - ► The equal sign (=) will always be put in the null hypothesis.
 - ► The alternative hypothesis contains an **unequal sign** or **strict inequality**: \neq , >, or <.
- ▶ The statement of the alternative hypothesis depends on the business context.
- ▶ Some studies have $H_0, H_1, H_2, ...$

One-tailed tests and two-tailed tests

- ▶ If the alternative hypothesis contains an unequal sign (\neq) , the test is a **two-tailed** test.
- ► If it contains a strict inequality (> or <), the test is a **one-tailed** test.
- ► Suppose we want to test the value of the population mean.
 - ▶ In a two-tailed test, we test whether the population mean significantly deviates from a value. We do not care whether it is larger than or smaller than.
 - ▶ In a one-tailed test, we test whether the population mean significantly deviates from a value in a specific direction.

Substantive hypotheses

- ▶ Once we establish a statistical hypothesis, we will do survey and analysis to get conclusions.
- ► If a strong evidence is found to support the alternative hypothesis, we say the result is (**statistically**) **significant**.
- ▶ The concluding statements may be:
 - ▶ Old workers are significantly more loyal than young workers.
 - ▶ The proportion of voters supporting the candidate is not significantly higher than 50%.
 - ► Teenagers significantly eat fast food more often than adults.

Substantive hypotheses

- ▶ But that one result is statistically significant does not imply it is also **substantively significant**.
 - ▶ Suppose the candidate did a survey and get a sample proportion $\hat{p} = 0.505$.
 - ▶ If the sample size is large enough, it is possible to conclude that "the proportion of voters supporting him is (statistically) significantly higher than 0.5."
 - ▶ But for him, probably 0.505 is still not **high enough**. The statistically significant result is not substantively significant.
- ▶ A result is substantive only if it will really affect a decision maker's decision.

Summary

- ▶ A research hypothesis states a claim in words.
- ► A statistical hypothesis states a claim formally.
 - ▶ The null hypothesis is our default position.
 - ▶ The alternative hypothesis is the thing we want to prove.
- ▶ A statistically significant result is substantive only if the decision maker will take actions based on it.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ▶ The p-value.
- ▶ Type I and Type II errors.

The first example

- ▶ Now we will demonstrate the process of hypothesis testing.
- ▶ Suppose we test the average weight (in g) of our products.

$$H_0$$
: $\mu = 1000$
 H_a : $\mu \neq 1000$.

- ▶ Once we have a strong evidence supporting H_a , we will claim that $\mu \neq 1000$.
- Suppose we know the variance of the weights of the products produced: $\sigma^2 = 40000 \text{ g}^2$.

Controlling the error probability

- ► Certainly the evidence comes from a **random** sample.
- ▶ It is natural that we may be **wrong** when we claim $\mu \neq 1$.
 - ▶ E.g., it is possible that $\mu = 1000$ but we unluckily get a sample mean $\bar{x} = 912$.
- ► We want to **control the error probability**.
 - Let α be the maximum probability for us to make this error.
 - $ightharpoonup \alpha$ is called the **significance interval**.
 - So when $\mu = 1$, we will claim that $\mu \neq 1$ for at most probability α .
 - ▶ Recall confidence intervals!

Rejection rule

- Now let's test with the significance level $\alpha = 0.05$.
- ▶ Intuitively, if \overline{X} deviates from 1000 a lot, we should reject the null hypothesis and believe that $\mu \neq 1000$.
 - If $\mu = 1000$, it is so unlikely to observe such a large deviation.
 - ► So such a large deviation provides a **strong evidence**.
- ► So we start by sampling and calculating the **sample mean**.
 - Suppose the sample size n = 100.
 - ▶ Suppose the sample mean $\bar{x} = 963$.
- ▶ We want to construct a **rejection rule**: If $|\overline{X} 1000| > d$, we reject H_0 . We need to calculate d.

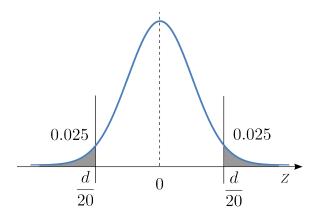
Rejection rule

- ▶ We want a distance d such that
 if H₀ is true, the probability of rejecting H₀ is 5%.
 - ▶ If H_0 is true, $\mu = 1000$. We reject H_0 if $|\overline{X} 1000| > d$.
- ▶ Therefore, we need

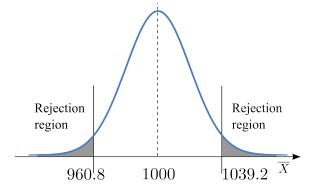
$$\Pr\left(|\overline{X} - 1000| > d \middle| \mu = 1000\right) = 0.05.$$

- ▶ People typically hide the condition $\mu = 1000$.
- ▶ The statistic sample mean \overline{X} has its sampling distribution.
 - ▶ Due to the central limit theorem, $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim \text{ND}(0, 1)$. The standard error is $200/\sqrt{100} = 20$.

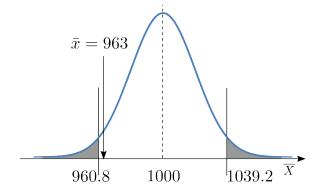
▶ $0.95 = \Pr(|\overline{X} - 1000| < d) = \Pr(1000 - d < \overline{X} < 1000 + d),$ which is $\Pr(-\frac{d}{20} < Z < \frac{d}{20}).$



- As $z_{0.025} = 1.96 = \frac{d}{20}$, we have d = 39.2.
- ▶ The rejection region is $R = (-\infty, 960.8) \cup (1039.2, \infty)$.
- ▶ If \overline{X} falls in the rejection region, we reject H_0 .



- we cannot reject H_0 because $\bar{x} = 963 \notin R$.
 - ▶ The deviation from 1000 is not large enough.
 - ▶ The evidence is not strong enough.



- ▶ In this example, the two values 960.8 and 1039.2 are the critical values for rejection.
 - ▶ If the sample mean is more extreme than one of the critical values, we reject H_0 .
 - ▶ Otherwise, we do not reject H_0 .
- $\bar{x} = 963$ is not strong enough to support H_a : $\mu \neq 1000$.
- ► Concluding statement:
 - ▶ Because the sample mean does not lie in the rejection region, we cannot reject H_0 . With a 5% significance level, there is no strong evidence showing that the average weight is not 1000 g. Based on this result, we should not shutdown machines and do an inspection.

Summary

- We want to know whether H_0 is false, i.e., $\mu \neq 1000$.
- ▶ We control the probability of making a wrong conclusion.
 - ▶ If the machine is actually good, we do not want to reach a conclusion that requires an inspection and maintenance.
 - ▶ If H_0 ($\mu = 1000$) is true, we do not want to reject H_0 .
 - We limit the probability at the significance level $\alpha = 5\%$.
- We conclude that H_0 is false because the sample mean falls in the rejection region.
 - ► The calculation of the rejection region (i.e., the critical values) is based on the *z* distribution.
 - We conducted a z test.

Not rejecting vs. accepting

- ▶ We should be careful in writing our conclusions:
 - ▶ Right: Because the sample mean does not lie in the rejection region, we cannot reject H_0 . With a 5% significance level, there is no strong evidence showing that the average weight is not 1000 g.
 - ▶ Wrong: Because the sample mean does not lie in the rejection region, we accept H_0 . With a 5% significance level, there is a strong evidence showing that the average weight is 1000 g.
 - ▶ Unable to prove one thing is false does not mean it is true!

- ▶ What we have controlled is:
 - ▶ If the null hypothesis is true, the probability of rejecting it is no greater than the significance level (α) .
- ▶ We did not ensure that:
 - If we reject the null hypothesis, the probability that the null hypothesis is true is no greater than the significance level (α) .
- ► The key is:
 - ▶ Only if we know (actually, assume) the null hypothesis is true, we may calculate the probability of rejecting it.
 - ▶ The probability cannot be controlled in the opposite way.

What probability are we controlling?

- ▶ The significance level α is a **conditional probability**:
 - Pr(rejecting $H_0|H_0$ is true) = α .
- ▶ $Pr(H_0 \text{ is true}|rejecting } H_0)$ cannot be calculated.
- ▶ Is the following a correct joint probability table?

	H_0 is true	H_0 is false	Total
Do not reject H_0			
Rejecting H_0	$ \alpha $		
Total			1

The first example (part 2)

▶ Suppose we modify the hypothesis into a directional one:

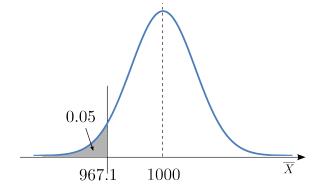
$$H_0$$
: $\mu = 1000$.
 H_a : $\mu < 1000$.

$$\sigma^2 = 40000, n = 100, \alpha = 0.05.$$

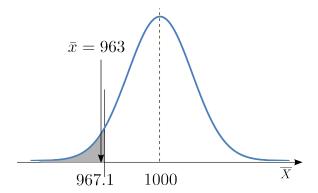
- ► This is a one-tailed test.
- Once we have a strong evidence supporting H_a , we will claim that $\mu < 1000$.
- \blacktriangleright We need to find a distance d such that

$$\Pr\left(1000 - \overline{X} > d \middle| \mu = 1000\right) = 0.05.$$

- We have $0.05 = \Pr(1000 \overline{X} > d) = \Pr(Z < -\frac{d}{20}).$
 - ► The critical value $z_{0.05} = 1.645$. $d = 1.645 \times 20 = 32.9$.
 - ▶ The rejection region is $(-\infty, 967.1)$.



- ▶ Because the observed sample mean $\bar{x} = 963 \in (-\infty, 967.1)$, we **reject** H_0 .
 - ▶ The deviation from 1000 is large enough.
 - ► The evidence is strong enough.



- ▶ In this example, 967.1 is the critical values for rejection.
 - ▶ If the sample mean is more extreme than (in this case, below) the critical value, we reject H_0 .
 - ▶ Otherwise, we do not reject H_0 .
- ▶ There is a strong evidence supporting H_a : $\mu < 1000$.
- ► Concluding statement:
 - ▶ Because the sample mean lies in the rejection region, we reject H_0 . With a 5% significance level, there is a strong evidence showing that the average weight is less than 1000 g.

The other form of the null hypothesis

▶ Some statisticians write the one-tailed hypothesis as

$$H_0: \mu \ge 1000$$

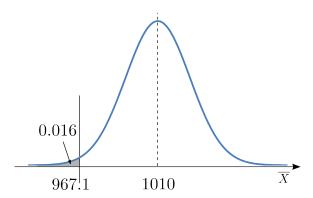
 $H_a: \mu < 1000.$

- When H_0 is true, μ is not fixed to a single value.
- ▶ With the rejection region $(-\infty, 967.1)$, what is the error probability Pr(rejecting $H_0|H_0$ is true)?
 - If $\mu = 1000$, Pr(rejecting $H_0|H_0$ is true) = 0.05.
 - If $\mu > 1000$,

Pr(rejecting
$$H_0|H_0$$
 is true)
= Pr($\overline{X} < 967.1|H_0$ is true) < 0.05 .

The other form of the null hypothesis

• E.g., suppose $\mu = 1010$.



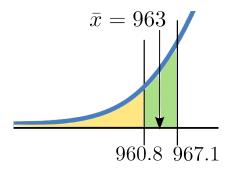
▶ In general, we control the probability of rejecting H_0 when it is true to be at most α .

One-tailed tests vs. two-tailed tests

- ▶ When should we use a two-tailed test?
 - ▶ We should use a two-tailed test to be **conservative**.
 - ► E.g., we suspect that the parameter **has changed**, but we are **unsure** whether it becomes larger or smaller.
- ► If we know or believe that the change is possible only in one direction, we may use a one-tailed test.
- ▶ If we do not know it, using one-tailed test is dangerous.
 - ▶ In the previous example with $H_a: \mu < 1000$.
 - ▶ If $\bar{x} = 2000$, all we can say is "there is no strong evidence that $\mu < 1000$."
 - We are unable to conclude that $\mu \neq 1000$.

One-tailed tests vs. two-tailed tests

- ▶ Having more information (i.e., knowing the direction of change) makes rejection "easier".
- ► Easier to find a strong enough evidence.



Summary

- ▶ Distinguish the following pairs:
 - ▶ One- and two-tailed tests.
 - ▶ No evidence showing H_0 is false and having evidence showing H_0 is true.
 - Not rejecting H_0 and accepting H_0 .
 - ▶ Using = and using \geq or \leq in the null hypothesis.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ▶ The p-value.
- ▶ Type I and Type II errors.

The *p*-value

► The <u>p-value</u> is an important, meaningful, and widely-adopted tool for hypothesis testing.

Definition 1

In a hypothesis testing, for an observed value of the statistic, the p-value is the probability of observing a value that is at least as extreme as the observed value under the assumption the null hypothesis is true.

- ▶ Based on an **observed** value of the statistic.
- ▶ Is the **tail probability** of the observed value.
- ► Assuming that the null hypothesis is true.

The *p*-value

- ▶ Mathematically:
 - ▶ Suppose we test a population mean μ with a one-tailed test

$$H_0$$
: $\mu = 1000$

$$H_a$$
: $\mu < 1000$.

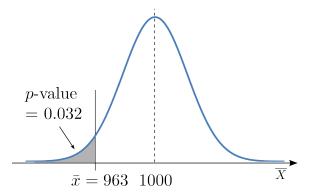
• Given an observed \bar{x} , the *p*-value is defined as

$$\Pr(\overline{X} < \bar{x}).$$

- ▶ In the previous example:
 - $\sigma^2 = 40000, n = 100, \alpha = 0.05, \bar{x} = 963.$
 - ▶ How to calculate the *p*-value of \bar{x} ?

The p-value

- ▶ If H_0 is true, i.e., $\mu = 1000$, we have:
 - ▶ $\Pr(\overline{X} \le 963) = \Pr(Z \le -1.85) = 0.032.$



What factors affect the *p*-value?

▶ Which of the following factors affect the *p*-value

$$\Pr(\overline{X} < \bar{x})$$
?

- ▶ The observed value of the statistic.
- ▶ The population mean assumed in the null hypothesis.
- ▶ The population variance.
- ► The sample size.
- The significance level α .
- ▶ Whether the test is one-tailed or two-tailed.

How to use the *p*-value?

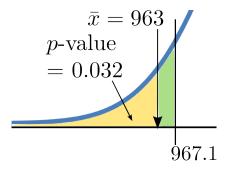
- \triangleright The p-value can be used for constructing a **rejection rule**.
- ► For a one-tailed test:
 - ▶ If the *p*-value is **smaller** than α , we **reject** H_0 .
 - ▶ If the *p*-value is greater than α , we do not reject H_0 .
- ► Consider the one-tailed test

$$H_0$$
: $\mu = 1000$
 H_a : $\mu < 1000$.

- Suppose we still adopt $\alpha = 0.05$.
- ▶ Because the *p*-value 0.032 < 0.05, we reject H_0 .

p-values vs. critical values

- ▶ Using the *p*-value is **equivalent** to using the critical values.
 - ▶ The rejection-or-not decision we make will be the same based on the two methods.



The benefit of using the p-value

- ▶ In calculating the *p*-value, we do not need α .
- After the p-value is calculated, we compare it with α .
- ▶ The *p*-value, which needs to be calculated **only once**, allows us to know whether the evidence is strong enough under various significance levels.

α	0.1	0.05	0.01
Rejecting H_0 ?	Yes $(0.032 < 0.1)$	Yes $(0.032 < 0.05)$	No $(0.032 > 0.01)$

▶ If we use the critical-value method, we need to calculate the critical value for three times, one for each value of α .

The benefit of using the p-value

- ▶ In many studies, the researchers do not determine the significance level α before a test is conducted.
- ► They calculate the *p*-value and then mark **how significant** the result is with **stars**.

p-value	< 0.01	< 0.05	< 0.1	> 0.1
Significant?	Highly significant	Moderately significant	Slightly significant	Insignificant
Mark	***	**	*	(Empty)

The benefit of using the p-value

- ▶ As an example, suppose one is testing whether people sleep at least eight hours per day in average.
 - ▶ Age groups: [10, 15), [15, 20), [20, 35), etc.
 - ▶ For group i, a one-tailed test is conducted. $H_a: \mu_i > 8$.
 - ▶ The result may be presented in a table:

Group	Age group	p-value
1	[10,15)	0.002***
2	[15,20)	0.2
3	[20,25)	0.06*
4	[25,30)	0.04**
5	[30,35)	0.03**

Interpreting the *p*-value

- ► A smaller *p*-value does NOT mean a larger deviation!
 - We cannot conclude that $\mu_5 > \mu_4$, $\mu_1 > \mu_3$, etc.
- ▶ A smaller *p*-value means **a higher probability** to reject the null hypothesis.
 - If $\alpha = 0.01$, we will conclude that only μ_1 is statistically significantly larger than 8.
 - We do not believe that μ_1 is larger than 8 by a huge amount!
 - ▶ It is **more probable** (i.e., with a larger range of α) for us to conclude that μ_1 "significantly" deviate from 8.

The p-value for two-tailed tests

- ▶ How to construct the rejection rule for a **two-tailed** test?
 - ▶ If the *p*-value is **smaller** than $\frac{\alpha}{2}$, we **reject** H_0 .
 - ▶ If the *p*-value is greater than $\frac{\alpha}{2}$, we do not reject H_0 .
- ▶ Consider the two-tailed test

$$H_0$$
: $\mu = 1000$.

$$H_a: \mu \neq 1000.$$

- Suppose we still adopt $\alpha = 0.05$.
- ▶ Because the *p*-value $0.032 > \frac{\alpha}{2} = 0.025$, we do not reject H_0 .

The p-value for two-tailed tests

- ▶ In most commercial statistical software, there are functions that help one calculate *p*-values.
- ▶ Some functions return the *p*-value for a one-tailed test but **twice of the** *p*-value for a two-tailed test.
 - ► E.g., the function TTEST() in MS Excel.
- With these functions, we will always compare the returned value with α directly.
- ▶ Read the instructions before using those functions!

Summary

- ▶ The *p*-value is the tail probability of the realization of a statistics assuming the null hypothesis is true.
- ▶ The *p*-value method is an alternative way of making the rejection decision.
 - ▶ It is equivalent to the critical-value method.
- ▶ The *p*-value measure how probable to reject H_0 .
- ▶ It does not measure how larger the deviation is.

Road map

- ▶ Basic ideas of hypothesis testing.
- ► The first example.
- ▶ The p-value.
- ► Type I and Type II errors.

Type I error

- ▶ We discussed a lot in controlling a probability:
 - ▶ If the null hypothesis is true, we want to avoid rejecting it.
 - ▶ Typically we set $Pr(rejecting H_0|H_0 \text{ is true}) = \alpha$.
 - ▶ In general, it is $Pr(rejecting H_0|H_0 \text{ is true}) \leq \alpha$.
 - ▶ What we have controlled is not $Pr(H_0 \text{ is true}|\text{rejecting } H_0)$.
- ▶ If we reject a true null hypothesis, we make a **Type I error**.
- ▶ What if the null hypothesis is false?

Type II error

- ▶ What if the null hypothesis is false? How to avoid not rejecting a false null hypothesis?
- ▶ Not rejecting a false null hypothesis is a <u>Type II error</u>.
- ▶ The probability of making a type II error is denoted as β :

Pr(rejecting $H_0|H_0$ is true) = α . Pr(not rejecting $H_0|H_0$ is false) = β .

- We controlled the probability of making a Type I error. We know it is at most α .
- ▶ Do we know the probability of making a Type II error?

Type II error

▶ Recall our one-tailed test with $\alpha = 0.05$ again:

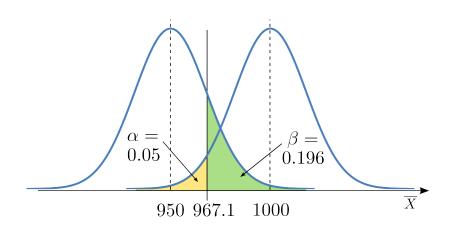
$$H_0: \mu = 1000.$$

$$H_a: \mu < 1000.$$

- ▶ If H_0 is false and μ is actually 950, we know how to calculate β :
 - ▶ The rejection rule (which is constructed by assuming H_0 is true) will be the same: Reject H_0 if $\overline{X} < 967.1$.
 - ▶ The probability of **not rejecting** H_0 is

$$\Pr(\overline{X} > 967.1) = \Pr(Z > 0.855) = 0.196 = \beta.$$

α and β



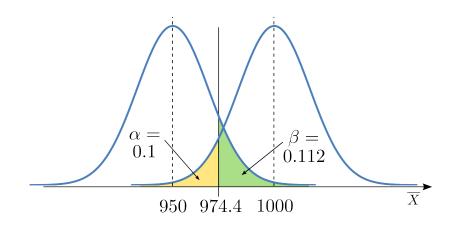
Type II error

▶ For every different value of μ , we have a different β :

μ	u 950	960	970	980	990
β	3 - 0.196	0.361	0.558	0.74	0.874

- ▶ As the true value of μ is never known, we **never** know β .
- ▶ To lower β , one way is to increase α .

Increasing α to decrease β



Type I errors vs. Type II errors

- If we control α , we cannot control β .
- As α is controlled, β (as a function of the parameter) determines **how good a test is**.
 - ▶ 1β is called the <u>power</u> of a test. Smaller β means a better test.
- ► Summary:

Action	State on nature		
Action	H_0 is true	H_0 is false	
Do not reject H_0	Correct decision $(1-\alpha)$	Type II error (β)	
Reject H_0	Type I error (significance level: α)	Correct decision (power: $1 - \beta$)	

Why controlling α only?

- We cannot control α and β at the same time.
- Why do we control α only?
- ▶ Recall what we did in setting up a hypothesis:
 - We put the claim that requires a strong evidence in H_a .
 - We will conclude that H_a is true only with a strong evidence.
- ▶ We did so because it is more important to:
 - Avoid rejecting H_0 when it is true.
 - Avoid a type I error.
- ► That is, a type I error is **more costly** than a type II error.
 - ▶ This is why controlling α is our first priority.

Setting up a hypothesis

- ► As a judge, which one will you choose?
 - ▶ H_0 : Innocent. H_a : Guilty.
 - ▶ H_0 : Guilty. H_a : Innocent.
- ▶ As a manufacturer, which one will you choose?
 - \triangleright μ is the weight of a bag of candy. Ideally it should be 1000.
 - H_0 : $\mu = 1000$. H_a : $\mu < 1000$.
 - H_0 : $\mu = 1000$. H_a : $\mu > 1000$.
- ▶ What if we conduct a two-tailed test?
 - H_0 : $\mu = 1000$. H_a : $\mu \neq 1000$.
 - H_0 : $\mu \neq 1000$. H_a : $\mu = 1000$. (Can we?)
 - But we may adjust α .

Summary

- ► Type I errors and Type II errors.
 - ▶ Type I: Rejecting a true H_0 .
 - ▶ Type II: Not rejecting a false H_0 .
- We control α , the probability of making a Type I error.
- We do not (cannot) control β directly.
- ▶ To reduce both α and β , increase the sample size.