Statistics I – Chapter 9 Hypothesis Testing for One Population (Part 2)

Ling-Chieh Kung

Department of Information Management National Taiwan University

December 19, 2012

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟_{Mean: variance known}

Road map

- ► Testing the population mean with known population variance.
- ▶ Four methods of hypothesis testing.
- Testing the population mean with unknown population variance.

Testing the population mean

- ▶ There are many situations to test the **population mean**.
 - ► Is the average monthly salary of fresh college graduates above \$22,000 (22K)?
 - ▶ Is the average thickness of a plastic bottle 2.4 mm?
 - ▶ Is the average age of consumers of a restaurant below 40?
 - ► Is the average amount of time spent on information system projects above six months?
- ▶ We will use hypothesis testing to test hypotheses about the population mean.
- ► In this section, we assume that the **population variance** is **known** or given.

Parts for hypothesis testing

- ▶ In conducting a test, write the following three parts:
 - **Hypothesis**: H_0 and H_a .
 - ► **Test and calculation**: The test to apply and relevant arithmetic and calculations.
 - **Decision and implication**: Reject or do not reject H_0 ? What does that mean?
- ▶ This is the HTAB procedure introduced by the textbook.
- ▶ While the test and calculation part requires arithmetic or software, it is the easiest and least important part.
 - Writing the correct hypothesis is the most important.
 - Writing a good concluding statement is also critical.

Testing the population mean

- When the population variance σ² is know, what test should be used to test the population mean?
- If the population is **normal** or if the sample size is **large** $(n \ge 30)$, we have

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim \text{ND}(0, 1).$$

The test based on this sampling distribution, the z distribution, is called <u>the z test</u>.

Example 1

- ▶ A retail chain has been operated for many years.
- ▶ The average amount of money spent by a consumer is \$60.
- A new marketing policy has been proposed: Once a consumer spends \$70, she/he can get one credit. With ten credits, she/he can get one toy for free.
- After the new policy has been adopted for several months, the manager asks: Has the average amount of money spent by a consumer increased? Let $\alpha = 0.01$.
 - Let μ be the average expenditure (in \$) per consumer after the policy is adopted. Is $\mu > 60$?
 - ▶ The population standard deviation is \$16.

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟_{Mean: variance known}

Example 1: hypothesis

▶ The hypothesis is

 $H_0: \mu = 60$ $H_a: \mu > 60.$

- $\mu = 60$ is our **default position**.
- We want to know whether the population mean has increased.
- ▶ Or it is equivalent to write

 $H_0: \mu \le 60$ $H_a: \mu > 60.$

Example 1: test and calculations

- ▶ The manager collects a sample with 100 purchasing records of consumers. The sample mean is $\bar{x} = 65$.
- Because the population variance is known and the sample size is large, we may use the z test.
- For the rejection region, we calculate the critical value x^* :

$$0.01 = \Pr(\overline{X} \ge x^*) = \Pr\left(Z \ge \frac{x^* - 60}{16/\sqrt{100}}\right)$$

Then

$$z_{0.01} = 2.326 \quad \Rightarrow \quad \frac{x^* - 60}{1.6} = 2.326 \quad \Rightarrow \quad x^* = 63.722.$$

• The rejection region is $(63.722, \infty)$.

Example 1: decision and implications

▶ Because $\bar{x} = 65$ falls in the rejection region $(63.722, \infty)$, we reject the null hypothesis.

Example 1: decision and implications

- ▶ The concluding statement:
 - Because the sample mean lies in the rejection region, we reject H_0 .
 - ▶ With a 1% significance level, there is a strong evidence showing that the average expenditure per consumer is larger than \$60.
 - ▶ The new marketing policy (\$70 for one credit and ten credits for one toy) is successful: Each consumer is willing to pay more (in expectation) under the new policy.

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟Four methods

Road map

- Testing the population mean with known population variance.
- ► Four methods of hypothesis testing.
- Testing the population mean with unknown population variance.

Statistics I – Chapter 9 (Part 2), Fall 2012 – Four methods

Four methods for calculations

▶ For the test and calculation step, there are four methods:

- ▶ The classical method.
- ▶ The critical-value method.
- ▶ The *p*-value method.
- ▶ The confidence interval method.
- ► All these four methods are **equivalent**.

The classical method

- ► For a statistic (e.g., the sample mean), compute its z-score, which is called the "observed z value".
- ► If the observed z value is more extreme than the critical z value, reject H₀.
- ▶ In the previous example:
 - The observed z value is $\frac{65-60}{1.6} = 3.125$.
 - The critical z value is $z_{0.01} = 2.326$.
 - As 3.125 > 2.326, we reject H_0 .

Statistics I – Chapter 9 (Part 2), Fall 2012 ∟Four methods

The classical method

The critical-value method

- ▶ Ignore the statistic for a moment.
- ► Based on the critical z value, calculate the corresponding critical value(s) in the original scale.
- ► If the observed statistic is more extreme than the critical value, reject H₀.
- In the previous example:
 - The observed statistic is $\bar{x} = 65$.
 - The critical value is $x^* = 60 + 1.6z_{0.01} = 63.722$.
 - As 65 > 63.722, we reject H_0 .

Statistics I – Chapter 9 (Part 2), Fall 2012 L Four methods

The critical-value method

The *p*-value method

- ▶ Based on the observed statistic, calculate the *p*-value.
 - The probability to observe a value that is more extreme than the observed value.
- ► If the *p*-value is smaller than the significance level α , reject H_0 .
- ▶ In the previous example:
 - The *p*-value is $Pr(\overline{X} > 65) = Pr(Z > 3.125) = 0.0009$.
 - The significance level $\alpha = 0.01$.
 - As 0.0009 < 0.01, we reject H_0 .

Statistics I – Chapter 9 (Part 2), Fall 2012 ∟Four methods

The *p*-value method

The confidence interval method

- ► Based on the observed statistic, calculate the confidence interval for estimating the parameter with 1α as the confidence level.
- If the (probably one-tailed) confidence interval does not cover the hypothesized parameter, we reject H₀.
- ▶ In the previous example:
 - ▶ The one-tailed confidence interval $[65 d, \infty)$ satisfies

$$0.99 = \Pr(65 - d < \overline{X}) \Rightarrow d = 3.722.$$

- The confidence interval is $[61.278, \infty)$.
- As $60 \notin [61.278, \infty)$, we reject H_0 .

Statistics I – Chapter 9 (Part 2), Fall 2012 └─Four methods

The confidence interval method

Four methods for calculations

- ► The four methods are **equivalent**:
 - ▶ If one says rejection, all the other three say rejection.
 - ▶ If one says no rejection, all the other three say no rejection.
- ▶ Which one to use?
 - ► Mostly we use the critical-value method and the *p*-value method.
 - ▶ When we want a rejection criterion in the original scale, use the critical-value method.
 - ▶ When we want to avoid specifying the significance level at the beginning, use the *p*-value method.
 - ▶ The classical method is seldom used.
 - The confidence interval method is not recommended.

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟_{Mean: variance unknown}

Road map

- Testing the population mean with known population variance.
- ▶ Four methods of hypothesis testing.
- ► Testing the population mean with unknown population variance.

When the variance is unknown

- When the population variance σ^2 is **unknown**, the quantity $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ is unknown.
- ▶ When we use the sample variance S^2 as a substitute, we have

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1),$$

which means the quantity $\frac{\overline{X}-\mu}{S/\sqrt{n}}$ follows the *t* distribution with degree of freedom n-1.

- ► We will use the t test to test the population mean if the population is normal.
- If the sample size is large, we may still use the z distribution with s substituting σ.

Example 2

- ▶ We are interested in whether the students in NTU prefer the restaurants in NTU.
- One benchmark is NTUST. In a census conducted in NTUST, students are asked to rate their restaurants in a five-point scale.
- ▶ The average score is 4.6.
- ▶ We asked 60 NTU students to rate the restaurants in NTU. The average score is 4.27 and the standard deviation is 1.22.
- Do NTU students rate their restaurants differently from NTUST students?
- ▶ Suppose the scores of all NTU students are normal.

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟_{Mean: variance unknown}

Example 2: hypothesis

▶ The hypothesis is

$$H_0: \mu = 4.6$$
$$H_a: \mu \neq 4.6.$$

- ▶ µ is the average score (out of a five-point scale) of NTU restaurants rated by all NTU students.
- ▶ Why a two-tailed test?

Example 2: test and calculations

- Because the population variance is unknown and the population is normal, we may use the t test.
- Let $T_n \sim t(n)$, we calculate the *p*-value:

$$\Pr(\overline{X} < 4.27)$$

$$= \Pr\left(T_{59} < \frac{4.27 - 4.6}{1.22/\sqrt{60}}\right)$$

$$= \Pr(T_{59} < -2.095)$$

$$= 0.0202.$$

Example 2: test and calculations

• The rejection decision for various α is:

α	0.01	0.05	0.1
Comparison	0.0202 > 0.005	0.0202 < 0.025	0.0202 < 0.05
Decision	Do not reject	Reject	Reject

• Why $\frac{\alpha}{2}$?

Example 2: decision and implications

- Suppose the significance level is $\alpha = 0.01$.
- ▶ The concluding statement:
 - ► For this two-tailed test, as the *p*-value is larger than $\frac{\alpha}{2}$, we do not reject H_0 .
 - ▶ With a 1% significance level, there is no strong evidence showing that NTU students rate their restaurants differently from NTUST students.
 - ▶ NTU do not need to change their restaurants.
- The choice of α affects the decision and implications!

Example 2 with the z test

We may also use the z test because the sample size is large.
The p-value in the z test is

$$\Pr(\overline{X} < 4.27) = \Pr\left(Z < \frac{4.27 - 4.6}{1.22/\sqrt{60}}\right)$$
$$= \Pr(Z < -2.095) = 0.01808$$

- The *p*-value becomes smaller in the z test than in the t test.
- It is easier to reject H_0 by using the z test.
 - It is assumed that S is **close enough** to σ when n is large.
 - ▶ If one wants to be conservative, the *z* test should be adopted only if *n* is **much larger** than 30.

Example 3

- Suppose an MBA program seldom admits applicants without a work experience longer than two years.
- ▶ To test whether this is true, twenty admitted applicants are randomly selected. Prior to entering the program, they have an average work experience of 2.5 years.
- ▶ The sample standard deviation is 1.1 years.
- The population is believed to be normal.
- ▶ With a 5% significance level, is the average work experience higher than two?

Example 3: hypothesis

- Suppose the one asking the question is a potential applicant with one year of work experience. He is **pessimistic** and will apply for the program **only if** the average work experience is proven to be **less** than two years.
- ► The hypothesis is

$$H_0: \mu = 2$$
$$H_a: \mu < 2.$$

- μ is the average work experience (in years) of all admitted applicants prior to entering the program.
- ► To **encourage** him, we need to give him a strong evidence showing that the chance is high.

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟_{Mean: variance unknown}

Example 3: hypothesis

- Suppose he is optimistic and will not apply for the program only if the average work experience is proven to be greater than two.
- ▶ The hypothesis becomes

 $H_0: \mu = 2$ $H_a: \mu > 2.$

- ► To **discourage** him, we need to give him a strong evidence showing that the chance is slim.
- For the remaining part, let's assume that he is optimistic and H_a is $\mu > 2$.

Example 3: test and calculations

- Because the population variance is unknown and the population is normal, we may use the t test.
- Let $T_n \sim t(n)$, we calculate the *p*-value:

$$\Pr(\overline{X} > 2.5) = \Pr\left(T_{15} > \frac{2.5 - 2}{1.1/\sqrt{16}}\right)$$
$$= \Pr(T_{15} > 1.818) = 0.0445.$$

• Though the significance level α is specified, we may still use the *p*-value method.

Example 3: test and calculations

- ► Conclusions:
 - ► For this one-tailed test, as the *p*-value 0.0445 is smaller than $\alpha = 0.05$, we reject H_0 .
 - ▶ With a 5% significance level, there is a strong evidence showing that the average work experience is longer than two years.
 - ► The result is strong enough to discourage the potential applicant, who has only one year of work experience.
 - The potential applicant **should not** apply.

Example 3: a pessimistic applicant

▶ Suppose the applicant is pessimistic and the hypothesis is

 $H_0: \mu = 2$ $H_a: \mu < 2.$

▶ The *p*-value is

$$\Pr(\overline{X} < 2.5) = \Pr\left(T_{15} < \frac{2.5 - 2}{1.1/\sqrt{16}}\right)$$
$$= \Pr(T_{15} < 1.818) = 0.9555.$$

- We do not reject H_0 and cannot conclude that $\mu < 2$.
- ► He **should not** apply. The choice of hypotheses does not matter.
- ▶ Is it possible that the choice of hypotheses **matters**? When?

Example 3: a pessimistic applicant

• If we do not reject H_0 when H_a is $\mu > 2$, different hypotheses result in different conclusions.

<i>p</i>	value	$H_a: \mu > 2$	$H_a: \mu < 2$
$\alpha = 0.05$	Reject H_0 ? Apply?	Reject H_0 Do not apply	Do not reject H_0 Do not apply
$\alpha = 0.01$	Reject H_0 ? Apply?	$\begin{array}{c} \textbf{Do no reject } H_0 \\ \textbf{Apply} \end{array}$	Do not reject H_0 Do not apply

▶ Be careful in setting up the hypothesis!

Remark: finite population correction

- When we use the z test, if the population is finite (n > 0.05N):
 - If the population variance σ^2 is known, the standard error is

$$\frac{\sigma}{\sqrt{n}}\sqrt{\frac{N-n}{N-1}}.$$

• If the population variance σ^2 is unknown and substituted by the sample variance s^2 , the standard error is $\frac{s}{\sqrt{n}}\sqrt{\frac{N-n}{N-1}}$.

•
$$\sqrt{\frac{N-n}{N-1}}$$
 is the finite population corrector.

▶ All other steps remain the same.

Statistics I − Chapter 9 (Part 2), Fall 2012 ∟Mean: variance unknown

Summary

▶ The selection of tests:

σ^2	Sample size	Population distribution	
		Normal	Nonnormal
Known	$\begin{array}{l} n \geq 30 \\ n < 30 \end{array}$	$egin{array}{c} z \ z \end{array}$	zNonparametric
Unknown	$n \ge 30$ $n < 30$	t or z t	z Nonparametric

- If z test, do the finite population correction if n > 0.05N.
- ▶ If t test, there is no need of doing this.