Introduction 0000000	First best 0000	Revelation principle	Second best 00000000000	Appendix 000

Information Economics The Two-type Screening Model

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction	First best	Revelation principle	Second best	Appendix
0000000	0000	000000	00000000000	000

Road map

▶ Introduction to screening.

- ▶ First best with complete information.
- ▶ Incentives and the revelation principle.
- ▶ Finding the second best.
- ▶ Appendix: Proof of the revelation principle.

			t Appendix
0000000 0000	000000	00000000	000 000

Monopoly pricing

- Let's start with a **monopoly pricing** problem.
- ▶ Imagine that you produce and sell one product.
- ▶ You are the only one who are able to produce and sell this product.
- ▶ How would you price your product to maximize your profit?

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000	000000	00000000000	000

Monopoly pricing

- ► Suppose that consumers' valuation θ (willingness-to-pay) lie uniformly within [0, 1].
- ► A consumer's utility is θp , where θ is his valuation and p is the price.
- ► Given a price p, those with $\theta \in [p, 1]$ will buy the product. The demand function is q(p) = 1 p. The seller will solve

$$\pi^* = \max (1-p)p \quad \Rightarrow \quad p^* = \frac{1}{2} \quad \Rightarrow \quad \pi^* = \frac{1}{4}.$$

- Let's calculate consumer surplus:
 - A consumer whose $\theta > p$ will earn θp as the surplus.
 - ▶ The total surplus earned by all consumers is

$$\int_{p}^{1} (\theta - p) d\theta = \frac{1}{2} (1 - p)^{2}.$$

• As $p^* = \frac{1}{2}$, the consumer surplus is $\frac{1}{8}$.

Introduction 00000000	First best 0000	Revelation principle	Second best 000000000000	Appendix 000

Monopoly pricing

- ▶ Here comes a critic:
 - Some people are willing to pay more, but your price is too low!"
 - Some potential sales are lost because your price is too high!"
- ▶ His (useless) suggestion is:
 - "Who told you that you may set only one price?"
 - "Ask them how they like the product and charge differently!"
- ▶ Does that work?
- ▶ **Price discrimination** is impossible if consumers' valuations are completely hidden to you.
- ► If you can see the valuation, you will charge each consumer his valuation. This is **perfect price discrimination**.

IntroductionFirst bestRevelation princ000000000000000000	iple Second best Appendix 00000000000 000	

Information asymmetry and inefficiency

- Let's calculate the monopolist's profit and consumer surplus under perfect price discrimination.
 - Monopolist's profit: $\int_0^1 \theta d\theta = \frac{1}{2}$.
 - Consumer surplus: 0.
 - Social welfare: $\frac{1}{2} + 0 = \frac{1}{2}$.
- ► Information asymmetry causes inefficiency.
 - ▶ Social welfare decreases under information asymmetry.
 - ▶ However, it **protects** the agent.
- ▶ Note that decentralization does not necessarily cause inefficiency. Here information asymmetry is the reason!

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000	000000	00000000000	000

Adverse selection: screening

- Consider the following buyer-seller relationship:
 - ▶ A manufacturer decides to buy a critical component of its product.
 - ▶ She finds a supplier that supplies this part.
 - ► Two kinds of technology can produce this component with different unit costs.
 - ▶ When a manufacturer faces the supplier, she **does not know** which kind of technology is owned by the supplier.
 - ▶ How much should the manufacturer pay for the part?
- ▶ The difficulty is:
 - ▶ If I know the supplier's cost is low, I will be able to ask for a low price.
 - ▶ However, if I ask him, he will **always** claim that his cost is high!
- ▶ The manufacturer wants to find a way to screen the supplier's type.

Introduction	First best	Revelation principle	Second best	Appendix
0000000	0000	000000	00000000000	000

Adverse selection: screening

- ► An agent always want to hide his type to get bargaining power!
 - ▶ The "type" of an agent is a part of his **utility function** that is **private**.
- ▶ In the previous example:
 - ▶ The manufacturer is the principal.
 - The supplier is the agent.
 - ▶ The unit production cost is the agent's type.
- ► More examples:
 - A retailer does not know how to charge an incoming consumer because the consumer's willingness-to-pay is hidden.
 - An adviser does not know how to assign reading assignments to her graduate students because the students' reading ability is hidden.

Introduction	First best	Revelation principle	Second best	Appendix
0000000	0000	000000	00000000000	000

Mechanism design

- One way to deal with agents' private information is to become more knowledgeable.
- ▶ When such an information-based approach is not possible, one way to screen a type is through **mechanism design**.
 - Or in the business world, **contract design**.
 - ▶ The principal will design a mechanism/contract that can "find" the agent's type.
- ▶ We will start from the easiest case: The agent's type has only two possible values. In this case, there are **two types** of agents.

Introduction	First best	Revelation principle	Second best	Appendix
00000000	•000	000000	000000000000	000

Road map

- ▶ Introduction to screening.
- ► First best with complete information.
- ▶ Incentives and the revelation principle.
- ▶ Finding the second best.
- ▶ Appendix: Proof of the revelation principle.

Introduction 00000000	First best	Revelation principle 000000	Second best 00000000000	Appendix 000

The two-type model

- ▶ In general, no consumer would be willing to tell you his preference.
- ► Consider the easiest case with valuation heterogeneity: There are **two** kinds of consumers.
- When obtaining q units by paying T, a **type-** θ consumer's utility is

$$u(q, T, \theta) = \theta v(q) - T.$$

- $\theta \in \{\theta_{\rm L}, \theta_{\rm H}\}$ where $\theta_{\rm L} < \theta_{\rm H}$. θ is the consumer's **private** information.
- v(q) is strictly increasing and strictly concave. v(0) = 0.
- A high-type (type-H) consumer's θ is $\theta_{\rm H}$.
- A low-type (type-L) consumer's θ is $\theta_{\rm L}$.
- The seller believes that $Pr(\theta = \theta_L) = \beta = 1 Pr(\theta = \theta_H)$.
- The unit production cost of the seller is $c. c < \theta_{\rm L}$.
- ▶ By selling q units and receiving T, the seller earns T cq.
- ▶ How would you price your product to maximize your expected profit?

Introduction First best Revelation principle 00000000 0000 000000	Second best 00000000000	Appendix 000

The two-type model with complete information

- ▶ Under complete information, the seller sees the consumer's type.
- ▶ Facing a type-H consumer, the seller solves

$$\max_{\substack{q_{\rm H} \ge 0, T_{\rm H} \text{ urs.}}} T_{\rm H} - cq_{\rm H}$$

s.t. $\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge 0.$

- ► To solve this problem, note that the constraint must be **binding** (i.e., being an equality) at any optimal solution.
 - Otherwise we will increase $T_{\rm H}$.
 - Any optimal solution satisfies $\theta_{\rm H} v(q_{\rm H}) T_{\rm H} = 0$.
 - ▶ The problem is equivalent to

$$\max_{q_{\rm H}\geq 0} \ \theta_{\rm H} v(q_{\rm H}) - c q_{\rm H}.$$

- ► The FOC characterize the optimal quantity $\tilde{q}_{\rm H}$: $\theta_{\rm H} v'(\tilde{q}_{\rm H}) = c$.
- The optimal transfer is $\tilde{T}_{\rm H} = \theta_{\rm H} v(\tilde{q}_{\rm H}).$

duction 0000	First best	Second best 00000000000	Appendix 000

The two-type model with complete information

▶ For the type-*i* consumer, the **first-best** solution $(\tilde{q}_i, \tilde{T}_i)$ satisfies

$$\theta_i v'(\tilde{q}_i) = c \quad \text{and} \quad \tilde{T}_i = \theta_i v(\tilde{q}_i) \quad \forall i \in \{L, H\}$$

- The **rent** of the consumer is his surplus of trading.
- ► For either type, the consumer receives **no rent**!
- ▶ The seller extracts all the rents from the consumer.
- ▶ Next we will introduce the optimal pricing plan under information asymmetry and, of course, deliver some insights to you.

The Two-type Screening Model

Introduction	First best	Revelation principle \bullet 00000	Second best	Appendix
00000000	0000		000000000000	000

Road map

- ▶ Introduction to screening.
- ▶ First best with complete information.
- ▶ Incentives and the revelation principle.
- ▶ Finding the second best.
- ▶ Appendix: Proof of the revelation principle.

Introduction 00000000	First best 0000	Revelation principle $0 \bullet 0000$	Second best 000000000000	Appendix 000

Pricing under information asymmetry

- ▶ When the valuation is hidden, the first-best plan does not work.
 - You cannot make an offer (a pair of q and T) according to his type.
- ► How about offering a **menu** of two contracts, $\{(\tilde{q}_{\rm L}, \tilde{T}_{\rm L}), (\tilde{q}_{\rm H}, \tilde{T}_{\rm H})\}$, for the consumer to select?
- ▶ You cannot expect the type-*i* consumer to select $(\tilde{q}_i, \tilde{T}_i), i \in \{L, H\}!$
 - Both types will select $(\tilde{q}_{\rm L}, \tilde{T}_{\rm L})$.
 - ▶ In particular, the type-H consumer will earn a **positive rent**:

$$\begin{split} u(\tilde{q}_{\mathrm{L}}, \tilde{T}_{\mathrm{L}}, \theta_{\mathrm{H}}) &= \theta_{\mathrm{H}} v(\tilde{q}_{\mathrm{L}}) - \tilde{T}_{\mathrm{L}} \\ &= \theta_{\mathrm{H}} v(\tilde{q}_{\mathrm{L}}) - \theta_{\mathrm{L}} v(\tilde{q}_{\mathrm{L}}) \\ &= (\theta_{\mathrm{H}} - \theta_{\mathrm{L}}) v(\tilde{q}_{\mathrm{L}}) > 0 \end{split}$$

▶ It turns out that the first-best solution is not optimal under information asymmetry.

Introduction	First best	Revelation principle 00000	Second best	Appendix
00000000	0000		00000000000	000

Incentive compatibility

- ► The first-best menu {(*q̃*_L, *T̃*_L), (*q̃*_H, *T̃*_H)} is said to be incentive-incompatible:
 - The type-H consumer has an incentive to hide his type and pretend to be a type-L one.
 - ▶ This fits our common intuition!
- ► A menu is **incentive-compatible** if different types of consumers will select different contracts.
 - ► An incentive-compatible contract induces **truth-telling**.
 - According to his selection, we can identify his type!
- ▶ How to make a menu incentive-compatible?

Introduction	First best	Revelation principle $000 \bullet 00$	Second best	Appendix
00000000	0000		000000000000	000

Incentive-compatible menu

▶ Suppose a menu $\{(q_L, T_L), (q_H, T_H)\}$ is incentive-compatible.

• The type-H consumer will select $(q_{\rm H}, T_{\rm H})$, i.e.,

$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}.$$

• The type-L consumer will select (q_L, T_L) , i.e.,

$$\theta_{\mathrm{L}}v(q_{\mathrm{L}}) - T_{\mathrm{L}} \ge \theta_{\mathrm{L}}v(q_{\mathrm{H}}) - T_{\mathrm{H}}.$$

- ► The above two constraints are called the **incentive-compatibility constraints** (IC constraints) or **truth-telling** constraints.
- ► If the seller wants to do business with both types, she also needs the individual-rationality constraints (IR constraints) or participation constraints:

$$\theta_i v(q_i) - T_i \ge 0 \quad \forall i \in \{L, H\}.$$

▶ The seller may offer an incentive-compatible menu. But is it optimal?

Introduction	First best	Revelation principle 000000	Second best	Appendix
00000000	0000		00000000000	000

Inducing truth-telling is optimal

- ▶ Among all possible pricing schemes (or mechanisms, in general), some are incentive compatible while some are not.
 - ▶ The first-best menu is not; an incentive compatible menu is.
 - ▶ Should we induce truth-telling?

revelation principle: Yes!

- Contributors of the revelation principle include three Nobel Laureates: James Mirrlees (1996), Eric Maskin (2007), and Roger Myerson (2007).
- ▶ There are other contributors.
- Related works were published in 1970s.
- ▶ The revelation principle tells us "At least one incentive-compatible mechanism is optimal."¹
 - ▶ We may restrict our attentions to incentive-compatible menus!
 - ▶ The problem then becomes tractable.

¹A nonrigorous proof is provided in the appendix.

Introduction 00000000	First best 0000	Revelation principle $00000 \bullet$	Second best 00000000000	Appendix 000

Reducing the search space

▶ We only need to search among menus that can induce truth-telling.

- ▶ Different types of consumers should select different contracts.
- ▶ As we have only two consumers, two contracts are sufficient.
- One is not enough and three is too many!

f

▶ The problem to solve is

$$\max_{q_{\rm H}, T_{\rm H}, q_{\rm L}, T_{\rm L}} \beta \Big[T_{\rm L} - cq_{\rm L} \Big] + (1 - \beta) \Big[T_{\rm H} - cq_{\rm H} \Big]$$
(OBJ)

s.t.
$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$
 (IC-H)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge \theta_{\rm L} v(q_{\rm H}) - T_{\rm H}$$
(IC-L)

$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge 0$$
 (IR-H)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge 0.$$
(IR-L)

▶ IC constraints ensure truth-telling. IR constraints ensure participation.

Introduction	First best	Revelation principle 000000	Second best	Appendix
00000000	0000		•00000000000	000

Road map

- ▶ Introduction to screening.
- ▶ First best with complete information.
- ▶ Incentives and the revelation principle.
- ► Finding the second best.
- ▶ Appendix: Proof of the revelation principle.

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000		00000000000	000

Solving the two-type problem

▶ Below we will introduce the standard way of solving the standard two-type problem²

$$\max_{q_{\rm H}, T_{\rm H}, q_{\rm L}, T_{\rm L}} \quad \beta \Big[T_{\rm L} - cq_{\rm L} \Big] + (1 - \beta) \Big[T_{\rm H} - cq_{\rm H} \Big] \tag{OBJ}$$

s.t.
$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$
 (IC-H)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge \theta_{\rm L} v(q_{\rm H}) - T_{\rm H}$$
(IC-L)

$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge 0 \tag{IR-H}$$

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge 0.$$
 (IR-L)

▶ The key is that we want to **analytically** solve the problem.

▶ With the analytical solution, we may generate some insights.

The Two-type Screening Model

²Technically, we should also have nonnegativity constraints $q_{\rm H} \ge 0$ and $q_{\rm L} \ge 0$. To make the presentation concise, I will hide them.

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000	000000	00000000000	000

Step 1: Monotonicity

▶ By adding the two IC constraints

$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$

and

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge \theta_{\rm L} v(q_{\rm H}) - T_{\rm H},$$

we obtain

$$\begin{split} \theta_{\mathrm{H}} v(q_{\mathrm{H}}) &+ \theta_{\mathrm{L}} v(q_{\mathrm{L}}) \geq \theta_{\mathrm{H}} v(q_{\mathrm{L}}) + \theta_{\mathrm{L}} v(q_{\mathrm{H}}) \\ \Rightarrow & (\theta_{\mathrm{H}} - \theta_{\mathrm{L}}) v(q_{\mathrm{H}}) \geq (\theta_{\mathrm{H}} - \theta_{\mathrm{L}}) v(q_{\mathrm{L}}) \\ \Rightarrow & v(q_{\mathrm{H}}) \geq v(q_{\mathrm{L}}) \\ \Rightarrow & q_{\mathrm{H}} \geq q_{\mathrm{L}}. \end{split}$$

- ▶ This is the **monotonicity** condition: In an incentive-compatible menu, the high-type consumer consume more.
 - ▶ Intuition: The high-type consumer prefers a high consumption.

Introduction 00000000	First best 0000	Revelation principle	Second best 00000000000	Appendix 000

Step 2: (IR-H) is redundant

▶ (IC-H) and (IR-L) imply that (IR-H) is redundant:

$$\begin{aligned} \theta_{\rm H} v(q_{\rm H}) - T_{\rm H} &\geq \theta_{\rm H} v(q_{\rm L}) - T_{\rm L} \quad (\text{IC-H}) \\ &> \theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \quad (\theta_{\rm H} > \theta_{\rm L}) \\ &\geq 0. \qquad (\text{IR-L}) \end{aligned}$$

► The high-type consumer earns a **positive rent**. Full surplus extraction is impossible under information asymmetry.

1

▶ The problem reduces to

$$\max_{q_{\rm H}, T_{\rm H}, q_{\rm L}, T_{\rm L}} \quad \beta \Big[T_{\rm L} - cq_{\rm L} \Big] + (1 - \beta) \Big[T_{\rm H} - cq_{\rm H} \Big] \tag{OBJ}$$

s.t.
$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$
 (IC-H)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge \theta_{\rm L} v(q_{\rm H}) - T_{\rm H}$$
(IC-L)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge 0.$$
 (IR-L)

Introduction 00000000	First best 0000	Revelation principle 000000	Second best 00000000000	Appendix 000

Step 3: Ignore (IC-L)

▶ Let's "guess" that (IC-L) will be redundant and ignore it for a while.

- ▶ Intuition: The low-type consumer has no incentive to pretend that he really likes the product.
- We will verify that the optimal solution of the relaxed program indeed satisfies (IC-L).
- ► The problem reduces to

$$\max_{q_{\rm H}, T_{\rm H}, q_{\rm L}, T_{\rm L}} \quad \beta \Big[T_{\rm L} - cq_{\rm L} \Big] + (1 - \beta) \Big[T_{\rm H} - cq_{\rm H} \Big]$$
(OBJ)
s.t.
$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$
(IC-H)
$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge 0.$$
(IR-L)

Introduction	First best	Revelation principle 000000	Second best	Appendix
00000000	0000		000000000000	000

Step 4: Remaining constraints bind at optimality

$$\max_{q_{\rm H}, T_{\rm H}, q_{\rm L}, T_{\rm L}} \quad \beta \Big[T_{\rm L} - cq_{\rm L} \Big] + (1 - \beta) \Big[T_{\rm H} - cq_{\rm H} \Big] \tag{OBJ}$$

s.t.
$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} \ge \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$
 (IC-H)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge 0.$$
 (IR-L)

- ▶ (IC-H) must be **binding** at any optimal solution:
 - The seller wants to increase $T_{\rm H}$ as much as possible.
- ▶ (IR-L) must also be **binding** at any optimal solution:
 - The seller wants to increase $T_{\rm L}$ as much as possible.
 - ▶ Note that increasing $T_{\rm L}$ makes (IC-H) more relaxed rather than tighter.
- ▶ Note that if we did not ignore (IC-L), i.e.,

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge \theta_{\rm L} v(q_{\rm H}) - T_{\rm H},$$

we cannot claim that (IR-L) is binding!

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000		000000000000	000

Step 5: Removing the transfers

▶ The problem reduces to

$$\max_{q_{\rm H}, T_{\rm H}, q_{\rm L}, T_{\rm L}} \quad \beta \Big[T_{\rm L} - cq_{\rm L} \Big] + (1 - \beta) \Big[T_{\rm H} - cq_{\rm H} \Big]$$
(OBJ)
s.t.
$$\theta_{\rm H} v(q_{\rm H}) - T_{\rm H} = \theta_{\rm H} v(q_{\rm L}) - T_{\rm L}$$
(IC-H)
$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} = 0.$$
(IR-L)

- ► Therefore, we may remove the two constraints and replace $T_{\rm L}$ and $T_{\rm H}$ in (OBJ) by $\theta_{\rm L} v(q_{\rm L})$ and $\theta_{\rm H} v(q_{\rm H}) \theta_{\rm H} v(q_{\rm L}) + \theta_{\rm L} v(q_{\rm L})$, respectively.
- ▶ The problem reduces to an **unconstrained** problem

$$\max_{q_{\rm H},q_{\rm L}} \beta \Big[\theta_{\rm L} v(q_{\rm L}) - cq_{\rm L} \Big] \\ + (1 - \beta) \Big[\theta_{\rm H} v(q_{\rm H}) - \theta_{\rm H} v(q_{\rm L}) + \theta_{\rm L} v(q_{\rm L}) - cq_{\rm H} \Big].$$

Introduction	First best	Revelation principle 000000	Second best	Appendix
00000000	0000		000000000000	000

Step 6: Solving the unconstrained problem

▶ To solve

$$\max_{q_{\rm H},q_{\rm L}} \beta \Big[\theta_{\rm L} v(q_{\rm L}) - cq_{\rm L} \Big] + (1 - \beta) \Big[\theta_{\rm H} v(q_{\rm H}) - cq_{\rm H} - (\theta_{\rm H} - \theta_{\rm L}) v(q_{\rm L}) \Big],$$

note that because $v(\cdot)$ is strictly concave, the reduced objective function is strictly concave in $q_{\rm H}$ and $q_{\rm L}$.

► If $\frac{\theta_{\rm H} - \theta_{\rm L}}{\theta_{\rm H}} < \beta$, the **second-best** solution $\{(q_L^*, T_L^*), (q_H^*, T_H^*)\}$ satisfies the FOC:³

$$\theta_{\mathrm{H}} v'(q_{H}^{*}) = c \quad \text{and} \quad \theta_{\mathrm{L}} v'(q_{L}^{*}) = c \left[\frac{1}{1 - \left(\frac{1-\beta}{\beta} \frac{\theta_{\mathrm{H}} - \theta_{\mathrm{L}}}{\theta_{\mathrm{L}}}\right)} \right].$$

 ${}^3\mathrm{If}\; \tfrac{\theta_\mathrm{H}-\theta_\mathrm{L}}{\theta_\mathrm{H}} \geq \beta, \, q_L^* = 0 \text{ and } q_H^* \text{ still satisfies } \theta_\mathrm{H} v'(q_H^*) = c.$

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000	000000	0000000000000	000

Step 7: Verifying that (IC-L) is satisfied

▶ To verify that (IC-L) is satisfied, we apply

$$T_{\rm L} = \theta_{\rm L} v(q_{\rm L})$$
 and $T_{\rm H} = \theta_{\rm H} v(q_{\rm H}) - (\theta_{\rm H} - \theta_{\rm L}) v(q_{\rm L}).$

▶ With this, (IC-L)

$$\theta_{\rm L} v(q_{\rm L}) - T_{\rm L} \ge \theta_{\rm L} v(q_{\rm H}) - T_{\rm H}$$

is equivalent to

$$0 \ge -(\theta_{\rm H} - \theta_{\rm L}) \Big[v(q_{\rm H}) - v(q_{\rm L}) \Big].$$

With the monotonicity condition, (IC-L) is satisfied.

Introduction 00000000	First best 0000	Revelation principle 000000	Second best 00000000000000	Appendix 000

Inefficient consumption levels

▶ Recall that the first-best consumption levels $\tilde{q}_{\rm L}$ and $\tilde{q}_{\rm H}$ satisfy

$$\theta_{\rm H} v'(\tilde{q}_{\rm H}) = c \text{ and } \theta_{\rm L} v'(\tilde{q}_{\rm L}) = c.$$

Moreover, the second-best consumption levels satisfy

$$\theta_{\mathrm{H}} v'(q_{H}^{*}) = c \quad \text{and} \quad \theta_{\mathrm{L}} v'(q_{L}^{*}) = c \left[\frac{1}{1 - \left(\frac{1-\beta}{\beta} \frac{\theta_{\mathrm{H}} - \theta_{\mathrm{L}}}{\theta_{\mathrm{L}}} \right)} \right] > c.$$

- ► The high-type consumer consumes the **first-best** amount.
- ► For the low-type consumer, $v'(\tilde{q}_{\rm L}) = \frac{c}{\theta_{\rm L}} < v'(q_L^*)$. As $v(\cdot)$ is strictly concave (so $v'(\cdot)$ is decreasing), $q_L^* < \tilde{q}_{\rm L}$.
- ▶ The low-type consumer consumes **less** than the first-best amount.
 - ▶ Information asymmetry causes inefficiency.
 - ▶ The consumption will only decrease. It will not become larger. Why?

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000	000000	000000000000	000

Cost of inducing truth-telling

- We have $q_L^* < \tilde{q}_L$. Why do we decrease q_L ?
 - ▶ Recall that under the first-best menu, the high-type consumer pretends to have a low valuation and earns $(\theta_{\rm H} \theta_{\rm L})v(\tilde{q}_{\rm L}) > 0$.
 - ► Because he prefers a high consumption level, we must cut down q_L to make him unwilling to lie.
 - Cutting down q_L^* is to cut down his information rent!
- Regarding the consumer surplus:
 - In equilibrium, the low-type consumer earns $\theta_L v(q_L^*) T_L^* = 0$.
 - ▶ However, the high-type consumer earns

$$\theta_{\mathrm{H}}v(q_{H}^{*}) - T_{H}^{*} = (\theta_{\mathrm{H}} - \theta_{\mathrm{L}})v(q_{L}^{*}) > 0.$$

- ▶ The high-type consumer earns a positive **information rent**.
- The agent earns a positive rent in expectation.
- ▶ Note that the high-type consumer's rent depends on q_L^* .

Introduction	First best	Revelation principle 000000	Second best	Appendix
00000000	0000		0000000000●	000

Summary

- ▶ We discussed a two-type monopoly pricing problem.
- ▶ We found the first-best and second-best mechanisms.
 - ▶ First-best: with complete information.
 - ▶ Second-best: under information asymmetry.
 - ▶ Thanks to the revelation principle!
- ▶ For the second-best solution:
 - ▶ Monotonicity: The high-type consumption level is higher.
 - Efficiency at top: The high-type consumption level is efficient.
 - ▶ No rent at bottom: The low-type consumer earns no rent.
- ▶ Information asymmetry **protects the agent**.
 - But it hurts the principal and social welfare.

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000		000000000000	•00

Road map

- ▶ Introduction to screening.
- ▶ First best with complete information.
- ▶ Incentives and the revelation principle.
- ▶ Finding the second best.
- ► Appendix: Proof of the revelation principle.

Introduction 00000000	First best 0000	Revelation principle 000000	Second best 00000000000	Appendix 0●0

The idea of the revelation principle

- ▶ In general, the principal designs a mechanism for the agent(s).
 - ▶ The mechanism specifies a game rule. Agents act according to the rules.
- ▶ When agents have private types, there are two kinds of mechanisms.

• Under an **indirect mechanism**:

- ▶ The principal specifies a function mapping agents' actions to payoffs.
- Each agent, based on his type and his belief on other agents' types, acts to maximize his expected utilities.

• Under a **direct mechanism**:

- ▶ The principal specifies a function mapping agents' **reported types** to actions and payoffs.
- ► Each agent, based on his type and his belief on other agents' types, **reports a type** to maximize his expected utilities.
- ► If a direct mechanism can reveal agents' types (i.e., making all agents report truthfully), it is a **direct revelation mechanism**.

Introduction	First best	Revelation principle	Second best	Appendix
00000000	0000		00000000000	00●

The idea of the revelation principle

Proposition 1 (Revelation principle)

Given any equilibrium of any given indirect mechanism, there is a direct revelation mechanism under which the equilibrium is equivalent to the given one: In the two equilibria, agents do the same actions.

- ▶ The idea is to "imitate" the given equilibrium.
- ▶ The given equilibrium specifies each agent's (1) strategy to map his type to an action and (2) his expected payoff.
- ▶ We may "construct" a direct mechanism as follows:
 - Given any type report (some types may be false), find the corresponding actions and payoffs in the given equilibrium as if the agents' types are really as reported.
 - ► Then assign exactly those actions and payoffs to agents.
- ▶ If the agents all report truthfully under the direct mechanism, they are receiving exactly what they receive in the given equilibrium. Therefore, under this direct mechanism no one deviates.