Information Economics, Fall 2014 Suggested Solution for Homework 1

Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

1. (a) $\nabla f(x)=\left[\begin{array}{c}16 x_{1}^{3}+2 x_{2}^{2} \\ 4 x_{1} x_{2}-2 x_{2}\end{array}\right], \quad \nabla^{2} f(x)=\left[\begin{array}{cc}48 x_{1}^{4} & 4 x_{2} \\ 4 x_{2} & 4 x_{1}-2\end{array}\right]$.
(b) $\frac{d}{d x} f(x)=\frac{2 x}{x^{2}+2} \cdot e^{2 x}+\ln \left(x^{2}+2\right) \cdot 2 e^{2 x}$.
(c) $\int f(x) d x_{1}=\frac{1}{2} x_{1}^{2} x_{2}^{2}+\frac{1}{2} e^{2 x_{1}}$.
(d) $\frac{d}{d x} \int_{0}^{x}\left(t^{3}+3 t-2\right) d t=x^{3}+3 x-2$.
(e) $\mathbb{E}[X]=3.8$, and $\mathbb{V}[X]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}=2.16$.
(f) Since $\int_{0}^{2} f(x) d x=\frac{8}{3} k=1, k=\frac{3}{8}$. And $\mathbb{E}[X]=\int_{0}^{2} x f(x) d x=\frac{3}{2}$.
(g) Since $\frac{d^{2}}{d x^{2}} f(x)=6 x+4$ is greater than 0 over $[0, \infty)$, it is convex over the region.
(h) Since $\frac{d^{2}}{d x^{2}} g(x)=6 x-4 \geq 0$ occurs if and only if it is over the region $\left[\frac{2}{3}, \infty\right)$, it is convex over $\left[\frac{2}{3}, \infty\right)$.
2. (a) As shown in Figure 1, the area in gray is the feasible region. Obviously, it is not a convex set since there exists some points between point a and b that do not belong to the feasible region.

Figure 1: Graphical solution
(b) The point a $(\sqrt{3},-1)$ is an optimal solution.
(c) The point b is not a global maximum but an local one since there does not exist any point nearby that is greater than it.
(d) Since $\nabla f(x)=\left[\begin{array}{c}1 \\ -1\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0\end{array}\right]$, there does not exist any point that satisfies the unconstrained FONC.
3. Let $z=\lambda x_{1}+(1-\lambda) x_{2}$ for some $x_{1}, x_{2} \in F, \lambda \in[0,1]$. Since

$$
f(z) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right) \leq \lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)
$$

and

$$
g(z) \leq \lambda g\left(x_{1}\right)+(1-\lambda) g\left(x_{2}\right) \leq \lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)
$$

are true (by definition), we have

$$
h\left(\lambda x_{1}+(1-\lambda) x_{2}\right)=h(z)=\max \{f(z), g(z)\} \leq \lambda h\left(x_{1}\right)+(1-\lambda) h\left(x_{2}\right)
$$

is obtained (which is exactly the definition of convex function). Therefore, $h(x)$ is convex over F.
4. (a) Let $f(x)=x^{4}+2 x^{3}+1, x \in[-2,-1]$. Since $f(x)$ is convex over $[-2,1]$ (due to $f^{\prime \prime}(x) \leq 0$), and the FOC point occurs at $x=-\frac{3}{2} \in[-2,-1]$ due to $f^{\prime}\left(-\frac{3}{2}\right)=0$, we have

$$
\underset{x \in[-2,-1]}{\operatorname{argmin}}\{f(x)\}=\left\{-\frac{3}{2}\right\} .
$$

(b) Let $f(x)=x^{4}+2 x^{3}+1$. Since $f(x)$ is convex over $[-2,-1]$ and strictly increasing over $[-1,0]$, the maximum point must occur at the border of the region. And because of $f(0)=f(-2)=1$, we have

$$
\underset{x \in[-2,0]}{\operatorname{argmax}}\{f(x)\}=\{0,-2\} .
$$

(c) Let $f(x)=x^{4}+2 x^{3}+1, x \in[-2,1]$. Compare the points satisfying the FONC $\left(x=-\frac{3}{2}\right.$ or 0$)$ and the boundary points ($x=-2$ or 1). Since $f\left(-\frac{3}{2}\right)$ is the smallest, we have

$$
\underset{x \in[-2,1]}{\operatorname{argmin}}\{f(x)\}=\left\{-\frac{3}{2}\right\} .
$$

5. (a) The problem can be formulated as

$$
\begin{aligned}
\max & f(q)=(a-b q-c) q \\
\text { s.t. } & a-b q \geq 0 \\
& q \geq 0 .
\end{aligned}
$$

(b) Since $f^{\prime \prime}(q)=-2 b<0$ and $q \in\left[0, \frac{a}{b}\right]$, the problem is concave function with convex set. Therefore, it is a convex program.
(c) Since $f^{\prime}\left(q^{*}\right)=a-2 b q-c=0$ occurs at $q^{*}=\frac{a-c}{2 b}$, and q^{*} satisfies the two constraints, the optimal production quantity is $q^{*}=\frac{a-c}{2 b}$.
(d) q^{*} increases in a and decreases in b and c. When the base of the market is bigger (either out of increased a or decreased b), it will be easier for the seller to produce a larger quantity. Moreover, it is obvious that a larger production cost leads to a larger price.

