Information Economics, Fall 2014 Suggested Solution for Homework 4

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. Let $p=\operatorname{Pr}\left(t_{1} \mid \mathrm{L}\right)$ and $q=\operatorname{Pr}\left(t_{1} \mid \mathrm{R}\right)$.
(a) The dashed lines state that player F's type is a hidden information, which cannot be seen by player C.
(b) If player F plays (L, L), we have $p=\frac{1}{2}$ and $q \in[0,1]$. For $p=\frac{1}{2}$, player C will play B when L is observed. When player C observes R , one the other hand, he will play B if $q \geq \frac{2}{3}$ or play N if $q \leq \frac{2}{3}$. However, if player C plays B in the right side, type- 1 player F will deviate to play R. Thus, a pooling equilibrium $\left((\mathrm{L}, \mathrm{L}),(\mathrm{B}, \mathrm{N}),\left(p=\frac{1}{2}, q \in\left[0, \frac{2}{3}\right]\right)\right)$ is possible.
(c) If player F plays (R, R), we have $p \in[0,1]$ and $q=\frac{1}{2}$. For $q=\frac{1}{2}$, player C will play N when R is observed. When player C observes L , on the other hand, he will play B for any $p \in[0,1]$. However, this will make both types of player F deviate to play L. Therefore, it is impossible for player F to play (R, R) in the equilibrium.
(d) If player F plays (L, R), we have $p=1$ and $q=0$, and player C will play (B, N). However, type-2 player F will deviate to play L , which makes the separating equilibrium impossible.
(e) If player F plays (R, L), we have $p=0$ and $q=1$, and player C will play (B, B). In this case both types of player F does not have an incentive to deviate, and thereby $((\mathrm{R}, \mathrm{L}),(\mathrm{B}, \mathrm{B}),(0$, $1)$) is a separating equilibrium.
$(f)\left((L, L),(B, N),\left(\frac{1}{2},\left[0, \frac{2}{3}\right]\right)\right)$ and $((R, L),(B, B),(0,1))$.
2. (a) If the firm plays $(1,0)$, the posterior belief will be $(p=1, q=0)$. Upon observing 0 , the consumer will play N ; upon observing 1 , the consumer will play B if and only if

$$
20 r_{H}+5\left(1-r_{H}\right)-11=15 r_{H}-6 \geq 0,
$$

i.e., $r_{H} \geq 0.4$ (from slide 16-18). No matter the consumer buys or not, the reliable firm has no incentive to deviate, so $((1,0)$, $(\mathrm{B}, \mathrm{N}),(1,0))$ is an equilibrium if $r_{H} \geq 0.4$ and $((1,0)$, $(\mathrm{N}, \mathrm{N}),(1,0))$ is an equilibrium if $r_{H} \in[0.2,0.4]$.
(b) If the firm plays $(0,1)$, the posterior belief will be $(p=0, q=1)$. Upon observing 1 , the consumer will not buy; upon observing 0 , the consumer will buy if and only if

$$
20 r_{H}-11 \geq 0
$$

i.e., $r_{H} \geq 0.55$. If the consumer buys, the unreliable firm will deviate to offer no warranty, so the $(0,1)$ strategy is not part of an equilibrium. If the consumer does not buy, no firm has an incentive to deviate. Therefore, $((0,1),(\mathrm{N}, \mathrm{N}),(0,1))$ is an equilibrium for $r_{H} \in[0.2,055]$.

