Syllabus 0000000000000	Quiz O	Convexity 00000000	Optimization problems 000000	Optimality conditions 00000000000

IM 7011: Information Economics (Fall 2014)

Introduction and Review of Optimization

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 15, 2014

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
•00000000000	O	00000000	000000	000000000000

Road map

- ► Syllabus.
- ► Quiz.

- ► Convexity.
- ▶ Optimization problems.
- ▶ Optimality conditions.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
0●00000000000	O	00000000	000000	00000000000

Welcome!

- ► This is Information Economics, NOT Information Economy.
 - ▶ We talk about IT, IS, information goods, etc.
 - We talk about **information**.
- We focus on the **economics of information**.
 - ▶ How people behave with different information?
 - What is the value of information?
 - ▶ What information to acquire? How?
 - What are the implications on the information economy?
- ▶ In this course, we focus on **information asymmetry**.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
00000000000	O	00000000	000000	000000000000

Information asymmetry

▶ The world is full of asymmetric information:

- ▶ A consumer does not know a retailer's procurement cost.
- A consumer does not know a product's quality.
- ▶ A retailer does not know a consumer's valuation.
- An instructor does not know how hard a student works.
- ▶ As information asymmetry results in inefficiency, we want to:
 - Analyze its impact. If possible, quantify it.
 - ▶ Decide whether it introduces driving forces for some phenomena.
 - ▶ Find a way to deal with it if it cannot be eliminated.
- ▶ This field is definitely fascinating. However:
 - ▶ We need to have some "**weapons**" to explore the world!

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Before you enroll...

- ▶ Prerequisites:
 - Calculus.
 - Convex optimization.
 - Probability.
 - ▶ Game theory.
- ► Language: "All" English.
 - ▶ All materials (including course videos) are in English.
 - ▶ Students are encouraged (but not required) to speak English in class.
 - ▶ The instructor speak Chinese or English in office hour.
 - ▶ The instructor will speak Chinese in lectures when it helps.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

The instructing team

- ► Instructor:
 - Ling-Chieh Kung.
 - ▶ Third-year assistant professor.
 - ▶ Office: Room 413, Management Building II.
 - ▶ Office hour: 10:30am-noon, Thursday or by appointment.
 - ▶ E-mail: lckung@ntu.edu.tw.
- ▶ Teaching assistant:
 - ▶ Chia-Hao (Jack) Chen.
 - Second-year master student.
 - ▶ Office: Room 320C, Management Teaching and Research Building.
 - ▶ E-mail: r02725018@ntu.edu.tw.

Syllabus 00000●0000000	Quiz O	Convexity 00000000	Optimization problems 000000	Optimality conditions 000000000000

Related information

- ▶ Classroom: Room 204, Management Building II.
- ▶ Lecture time: 9:10am-12:10pm, Monday.
- References:
 - ▶ Information Rules by C. Shapiro and H. Varian.
 - ▶ *Freakonomics* by S. Levitt and S. Dubner.
 - Contract Theory by P. Bolton and M. Dewatripont.
 - ▶ Game Theory for Applied Economists by R. Gibbons.
- ► Reading list:
 - Around four academic papers.
 - Around four cases.

Syllabus 000000●000000	Quiz O	Convexity 00000000	Optimization problems 000000	Optimality conditions 000000000000

"Flipped classroom"

- ▶ Lectures in **videos**, then discussions in classes.
- ▶ Before each Monday, the instructor uploads a video of lectures.
 - ▶ Ideally, the video will be no longer than one and a half hour.
 - Students must watch the video by themselves before that Monday.
- ▶ During the lecture, we do three things:
 - Discussing the lecture materials (0.5 to 1 hour).
 - ► Solving **class problems** (1 to 2 hours).
 - Further discussions (0.5 to 1 hour).
- ▶ Teams:
 - Students form teams to work on class problems and case studies.
 - Each team should have three students.
 - ▶ If it really helps, teams may be **reformed** by the instructor after the midterm exam.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
0000000000000	O	00000000	000000	00000000000

Homework, participation, and office hour

- ► No homework!
 - Except Homework 1.
 - ▶ Problem sets and solutions will be posted for students to do practices.

Class participation:

- Just say something!
- ▶ Use whatever way to impress the instructor.
- ▶ Office hour:
 - ▶ 10:30am-noon, Thursday.
 - ▶ Come to discuss any question (or just chat) with me!
 - ▶ If the regular time does not work for you, just send me an e-mail.
 - ▶ My "open-door" policy.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
00000000●0000	O	00000000	000000	00000000000

Projects and exams

- ▶ Project:
 - Please form a new team of at most n students, where the value of n will be determined according to the class size.
 - Each team will write a research proposal for a self-selected topic, make a 30-minute presentation, and submit a report.
 - ▶ All team members must be in class for the team to present.
- ► Two exams:
 - ▶ In-class and open whatever you have (including all electronic devices).
 - ▶ No information is allowed to be transferred among students.
 - ▶ The final exam covers only materials taught after the midterm exam.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
00000000●000	O	00000000	000000	00000000000

Grading

- ▶ Homework 1: 5%.
- ▶ Class participation: 10%.
- ▶ Class problems: 20%.
- ▶ Case reports: 20%.
- ▶ Two Exams: 20% (10% each).
- ▶ Project: 25%.
- ▶ The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
A+ A A-	$\begin{array}{c} [90, 100] \\ [85, 90) \\ [80, 85) \end{array}$	B+ B B-	$[77, 80) \\ [73, 77) \\ [70, 73)$	C+ C C-	[67, 70) [63, 67) [60, 63)

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000●00	O	00000000	000000	000000000000

Important dates and tentative plan

- ▶ Important dates:
 - Week 4 (2014/10/6): No class because the instructor is in the military.
 - ▶ Week 9 (2014/11/10): Midterm exam.
 - ▶ Week 16 (2014/12/29): Final exam.
 - Weeks 17 and 18 (2015/1/5 and 2015/1/12): Project presentations.
- ▶ Tentative plan:
 - ▶ Decentralization and inefficiency.
 - ▶ The screening theory.
 - Pricing and versioning information goods.
 - ▶ The signaling theory
 - Recognizing and managing lock-in.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
0000000000€0	O	00000000	000000	00000000000

Related courses that are not that math-intensive

- ▶ "Electronic Commerce" by professor Ming-Hui Huang.
 - Wednesday afternoon.
 - ▶ In English.
 - ▶ No math, no paper, full of cases.
- ▶ "Revenue Management and Pricing" by professor Chia-Wei Kuo.
 - Thursday morning.
 - In Chinese.
 - Some math, no paper, full of cases.
- ▶ Also "Strategic Management," "Industrial Economics," etc.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
00000000000●	O	00000000	000000	00000000000

Online resources

► CEIBA.

- Viewing your grades.
- ▶ Receiving announcements.
- http://www.ntu.edu.tw/~lckung/courses/IE-Fa14/.
 - Downloading course materials.
- ▶ The bulletin board "NTUIM-lckung" on PTT.
 - Discussions.
- ► YouTube:
 - Watching lecture videos.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	●	00000000	000000	00000000000

Road map

- ► Syllabus.
- ► Quiz.
- ► Convexity.
- ▶ Optimization problems.
- ▶ Optimality conditions.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	•0000000	000000	00000000000

Road map

- ► Syllabus.
- ► Quiz.

- ► Convexity.
- ▶ Optimization problems.
- ▶ Optimality conditions.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	0000000	000000	00000000000

Convex sets

Definition 1 (Convex sets)

A set F is **convex** if

$$\lambda x_1 + (1 - \lambda) x_2 \in F$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	0000000	000000	00000000000

Convex functions

Definition 2 (Convex functions)

For a convex domain F, a function $f(\cdot)$ is convex over F if

$$f\left(\lambda x_1 + (1-\lambda)x_2\right) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

\sim	
()	verview
~~	

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Convex functions

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Some examples

- Convex sets?
 - $X_1 = [10, 20].$
 - $X_2 = (10, 20).$
 - $\blacktriangleright X_3 = \mathbb{N}.$
 - $\blacktriangleright X_4 = \mathbb{R}.$
 - $X_5 = \{(x, y) | x^2 + y^2 \le 4\}.$
 - $X_6 = \{(x, y) | x^2 + y^2 \ge 4\}.$

- Convex functions?
 - $f_1(x) = x + 2, x \in \mathbb{R}$.
 - $f_2(x) = x^2 + 2, x \in \mathbb{R}.$
 - $f_3(x) = \sin(x), x \in [0, 2\pi].$
 - $f_4(x) = \sin(x), x \in [\pi, 2\pi].$
 - $f_5(x) = \log(x), x \in (0, \infty).$
 - $f_6(x,y) = x^2 + y^2, (x,y) \in \mathbb{R}^2.$

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F, a function $f(\cdot)$ is strictly convex over F if

$$f\left(\lambda x_1 + (1-\lambda)x_2\right) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all $\lambda \in (0,1)$ and $x_1, x_2 \in F$ such that $x_1 \neq x_2$.

Definition 4 ((Strictly) concave functions)

For a convex domain F, a function $f(\cdot)$ is (strictly) concave over F if $-f(\cdot)$ is (strictly) convex.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Derivatives of convex functions

▶ When a function is twice-differentiable, testing its convexity is simple:

Proposition 1

Consider a single-variate twice-differentiable function $f(\cdot)$ over an interval F = [a, b]:

- $f(\cdot)$ is convex over F if and only if $f''(x) \ge 0$ for all $x \in F$.
- $f(\cdot)$ is strictly convex over F if and only if f''(x) > 0 for all $x \in F$.

Proposition 2

Consider a single-variate twice-differentiable function $f(\cdot)$ over an interval F = [a, b]:

- $f(\cdot)$ is concave over F if and only if $f''(x) \leq 0$ for all $x \in F$.
- $f(\cdot)$ is strictly concave over F if and only if f''(x) < 0 for all $x \in F$.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	0000000	000000	00000000000

Some examples revisited

- Convex functions?
 - $f_1(x) = x + 2, x \in \mathbb{R}$.
 - $f_2(x) = x^2 + 2, x \in \mathbb{R}.$
 - $f_3(x) = \sin(x), x \in [0, 2\pi].$
 - $f_4(x) = \sin(x), x \in [\pi, 2\pi].$
 - $f_5(x) = \log(x), x \in (0, \infty).$
 - $f_6(x,y) = x^2 + y^2, (x,y) \in \mathbb{R}^2.$

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	•00000	00000000000

Road map

- ► Syllabus.
- ► Quiz.

- ► Convexity.
- ▶ Optimization problems.
- ▶ Optimality conditions.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Optimization problems

▶ In an optimization problem, there are:

- ▶ Decision variables.
- ► The objective function.
- ► Constraints.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	00000	000000000000

Linear programming

▶ Consider the problem

$$z^* = \max \quad x_1 + x_2$$

s.t.
$$x_1 + 2x_2 \le 6$$

$$2x_1 + x_2 \le 6$$

$$x_i \ge 0 \quad \forall i = 1, 2.$$

- ▶ The feasible region is the shaded area.
- ► An optimal solution is (x^{*}₁, x^{*}₂) = (2, 2). Is it unique?
- The corresponding objective value $z^* = 6$.
- ► An optimization problem is a **linear program** (LP) if the objective function and constraints are all linear.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Nonlinear programming

- ► A problem is a **nonlinear program** (NLP) if it is not a linear program.
- Consider the problem

$$z^* = \max \quad x_1 + x_2$$

s.t. $x_1^2 + x_2^2 \le 16$
 $x_1 + x_2 \ge 1.$

- ▶ What is the feasible region?
- ▶ What is an optimal solution? Is it unique?
- What is the value of z^* ?
- ► An optimization problem is a **convex program** if in it we maximize a concave function over a convex feasible region.
- ▶ All convex programs can be solved efficiently.
- ▶ It may not be possible to solve a nonconvex program efficiently.

Infeasible and unbounded problems

- ▶ Not all problems have an optimal solution.
- A problem is **infeasible** if there is no feasible solution.
 - E.g., $\max\{x^2 | x \le 2, x \ge 3\}.$
- ► A problem is **unbounded** if given any feasible solution, there is another feasible solution that is better.
 - E.g., $\max\{e^x | x \ge 3\}.$
 - How about $\min\{\sin x | x \ge 0\}$?
- ▶ A problem may be infeasible, unbounded, or finitely optimal (i.e., having at least one optimal solution).

Set of optimal solutions

▶ The set of optimal solutions of a problem $\max\{f(x)|x \in X\}$ is $\operatorname{argmax}\{f(x)|x \in X\}.$

For
$$f(x) = \cos x$$
 and $X = [0, 2\pi]$, we have

$$\operatorname{argmax} \left\{ \cos x \, \middle| \, x \in [0, 2\pi] \right\} = \{0, 2\pi\}.$$

• If x^* is an optimal solution of $\max\{f(x)|x \in X\}$, we should write $x^* \in \operatorname{argmax}\{f(x)|x \in X\}$,

NOT $x^* = \operatorname{argmax} \{ f(x) | x \in X \}!$

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	•00000000000

Road map

- ► Syllabus.
- ► Quiz.
- ► Convexity.
- ▶ Optimization problems.
- ► Optimality conditions.

Syllabus 000000000000	Quiz O	Convexity 00000000	Optimization problems 000000	Optimality conditions 00000000000

Global optima

- For a function f(x) over a feasible region F:
 - ▶ A point x^* is a global minimum if $f(x^*) \leq f(x)$ for all $x \in F$.
 - A point x' is a **local minimum** if for some $\epsilon > 0$ we have

 $f(x') \le f(x) \quad \forall x \in B(x', \epsilon) \cap F,$

where $B(x^0, \epsilon) \equiv \{x | d(x, x^0) \le \epsilon\}$ and $d(x, y) \equiv \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$.

▶ Global maxima and local maxima are defined accordingly.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

First-order necessary condition

• Consider an **unconstrained** problem

 $\max_{x \in \mathbb{R}^n} f(x).$

Proposition 3 (Unconstrained FONC)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. For a point x^* to be a local maximum of f, we need:

•
$$f'(x^*) = 0$$
 if $n = 1$.

$$\blacktriangleright \ \nabla f(x^*) = 0 \ if \ n \ge 2.$$

• For an *n*-dimensional differentiable function f, its **gradient** is

$$\nabla f \equiv \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

000000000000000000000000000000000000000	00 0 0000000	00000000000

Examples

Consider the problem

$$\max_{x \in \mathbb{R}} x^3 - \frac{9}{2}x^2 + 6x + 2$$

The FONC yields

$$3(x^2 - 3x + 2) = 0.$$

Solving the equation gives us 1 and 2 as two candidates of local maxima.

► It is easy to see that x^{*} = 1 is a local maxima but x̃ = 2 is NOT.

▶ Consider the problem

$$\max_{x \in \mathbb{R}^2} f(x) = x_1^2 - x_1 x_2 + x_2^2 - 6x_2.$$

The FONC yields

$$\nabla f(x) = \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving the linear system gives us (2,4) as the only candidate of local maxima.

Note that it is NOT necessarily a local maximum!

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Second-order necessary condition

▶ Let's proceed further.

Proposition 4 (Unconstrained SONC)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice-differentiable. For a point x^* to be a local maximum of f, we need:

• $f''(x^*) \le 0$ if n = 1.

•
$$y^T \nabla^2 f(x^*) y \leq 0$$
 for all $y \in \mathbb{R}^n$ if $n \geq 2$.

▶ For an *n*-dimensional function $f(x_1, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$ that is twice-differentiable, its **Hessian** is the $n \times n$ matrix

$$\nabla^2 f \equiv \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	00000000000

Second-order necessary condition

- ▶ Regarding the Hessian:
 - ▶ (Calculus) If the second-order derivatives are all continuous (which will be true for almost all functions we will see in this course), the Hessian is symmetric.
 - ► (Linear Algebra) A symmetric matrix A is called **negative** semidefinite if $y^T A y \leq 0$ for all $y \in \mathbb{R}^n$.
 - ▶ Therefore, if the second-order derivatives of *f* all exists and are continuous, the unconstrained SONC is simply requesting the Hessian to be negative semidefinite.
- ▶ In this course, we will not apply the SONC a lot.
- ▶ Here our point is that a local maximum requires NOT just

$$\frac{\partial^2 f}{\partial x_i^2} \leq 0 \quad \forall i=1,...,n.$$

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
000000000000	O	00000000	000000	000000000000

We want more than candidates!

- ▶ The FONC and SONC produce candidates of local maxima/minima.
- ► What's next?
 - ▶ We need some ways to **ensure** local optimality.
 - We need to find a **global** optimal solution.
- ▶ If the function is convex or concave, things are much easier:
 - ► Because for a differentiable concave/convex function, the FONC is necessary AND sufficient (thus called FOC in this case).

- ▶ Now points satisfying the FONC are locally optimal.
- ▶ We may prove that they are also **globally** optimal.

Syllabus 000000000000	Quiz O	Convexity 00000000	Optimization problems 000000	Optimality conditions 0000000000000

Remarks

- ▶ When you are asked to solve a problem:
 - ► First check whether the objective function is convex/concave. If so the problem typically becomes much easier.
- ► All the conditions for unconstrained problems apply to **interior** points of a feasible region.
- One common strategy for solving constrained problems proceeds in the following steps:
 - **Ignore** all the constraints.
 - ▶ Solve the unconstrained problem.
 - ▶ Verify that the unconstrained optimal solution satisfies all constraints.
- ▶ If the strategy fails, we seek for other ways.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
0000000000000	O	00000000	000000	0000000000000

Application: Monopoly pricing

- ▶ Suppose a monopolist sells a single product to consumers.
- Consumers are heterogeneous in their willingness-to-pay, or valuation, of this product.
- ▶ One's valuation, θ , lies on the interval [0, b] uniformly.
 - ▶ He buys the product if and only if his valuation is above the price.
 - The total number of consumers is *a*.
 - ▶ Given a price *p*, in expectation how many consumers buy?

- The unit production cost is c.
- The seller chooses a unit price p to maximize her total expected profit.

Overview

Syllabus 0000000000000	Quiz O	Convexity 00000000	Optimization problems 000000	Optimality conditions 0000000000000

Formulation

- ▶ The **endogenous** decision variable is *p*.
- The **exogenous** parameters are a, b, and c.
- The only constraint is $p \ge 0$.
- Let $\pi(p)$ be the profit under price p. What is $\pi(p)$?

▶ What is the complete problem formulation?

▶ It is without loss of generality to **normalize** the population size *a* to 1.

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions $000000000000000000000000000000000000$
0000000000000	O	00000000	000000	

Solving the problem

- Given that $\pi(p) = \frac{a}{b}(p-c)(b-p)$, let's show it is strictly concave:
 - $\blacktriangleright \ \pi'(p) =$
 - $\pi''(p) =$
- Great! Now let's ignore the constraint $p \ge 0$.
- ▶ Applying the FOC, what is the unconstrained optimal solution?

▶ Does p^* satisfy the ignored constraint? Is it globally optimal?

Overview

Syllabus	Quiz	Convexity	Optimization problems	Optimality conditions
0000000000000	O	00000000	000000	00000000000

Managerial/economic implications

- The optimal price $p^* = \frac{b+c}{2}$ tells us something:
 - ▶ p^* is increasing in the highest possible valuation b. Why?
 - p^* is increasing in the unit cost c. Why?
 - p^* has nothing to do with the total number of consumer a. Why?

• The optimal profit $\pi^* \equiv \pi(p^*) = \frac{a(b-c)^2}{4b}$.

- π^* is decreasing in c. Why?
- π^* is increasing in *a*. Why?
- How is π^* affected by b? Guess!
- ▶ Let's answer it:

▶ It is these **qualitative** managerial/economic implications that matters.

▶ Never forget to verify your solutions with your **intuitions**.