IM 7011: Information Economics (Fall 2014)

Channel Selection under Competition

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 29, 2014

Road map

Introduction

•00000

- ▶ Introduction.
- Model.
- ► Analysis: pricing.
- Analysis: channel selection.
- Intuitions and implications.

Introduction

- ▶ In this lecture, we will see how game-theoretic modeling may be applied to a marketing problem.
 - ► This is a **channel selection** problem: How to reach your consumers?
 - ▶ McGuire and Staelin (1983).¹
- ▶ As always, we focus on **incentive** and **efficiency** issues in decentralized systems.
- We want to demonstrate that economic modeling may deliver nontrivial insights.

¹McGuire, T. W., R. Staelin. 1983. An industry equilibrium analysis of downstream vertical integration. *Marketing Science* **2**(1) 115–130.

Channel structure

- ► The selection of a **distribution channel** is one of the most fundamental marketing problems.
 - ► A brand owner (e.g., manufacturer) decides how to deliver products to end consumers.
- ▶ What are the options for a manufacturer to reach end consumers?
 - ▶ It may sell through independent retailers.
 - It may sell through franchises.
 - ▶ It may operate its own retail store.
 - ► It may operate its own outlet.
 - ▶ It may operate a online store.
- ▶ In general, a channel is either **direct** or **indirect**.
 - ▶ For the above five channels, which are direct and which are indirect?
 - ▶ A direct channel is **integrated**; an indirect channel is **decentralized**.
- ▶ One may even **mix** different distribution channels.

Direct and indirect channels

- ▶ What are the benefits of adopting a direct channel?
 - To understand end consumers.
 - ▶ In principle, controlling everything (complete **integration**) is optimal.
- ▶ Why indirect channels are so common?
- Sometimes you have no choice...
- ▶ Let the **professionals** do it!
 - ▶ A retailer may have a better reputation.
 - ▶ A retailer may do better marketing.
 - ▶ A retailer may attract more consumers by offering more choices.
 - ▶ A retailer may better forecast demands.
 - ▶ A retailer may provide better services.
- ▶ There must be some trade-offs between direct and indirect channels.

Interesting channel structure problems

- ▶ Suppose I write a paper to consider a very complicated channel and eventually show that a direct channel is better than an indirect one.
 - ▶ Is it interesting?

Introduction

000000

- ▶ It is **trivial**: Complete integration is optimal.
- ▶ What if I show that a franchise store (i.e., an indirect channel) outperforms a self-owned store (i.e., a direct channel)?
 - ▶ Whether your result is interesting depends on the underlying reason.
 - ▶ If it is because the franchise store is capable to do be better selling business, it is again trivial.
 - Integrating a weak person may be worse than working with a strong one.
- ▶ What is interesting?
- ▶ If (1) the manufacturer is as strong as the retailer and (2) integration is not optimal, the result is interesting (or at least nontrivial).

Introduction 00000

Analysis: channel selection

When is vertical integration suboptimal?

- ▶ McGuire and Staelin (1983) show that it is possible!
- ▶ They study the key question in distribution channel selection: The number of levels of **intermediary** to distribute products.
 - ► Selling through a **company store**: zero level; integration.
 - ▶ Selling through a **franchise store**: one level; decentralization.
- ► The intermediary is assumed to be **equally good** as the manufacturer in the sales business.
- ▶ Then a reason for inserting one level of intermediary is provided.

Road map

- ▶ Introduction.
- ► Model.
- ▶ Analysis: pricing.
- ► Analysis: channel selection.
- ▶ Intuitions and implications.

Research scope

- ▶ The environment studied is one with exclusive retail stores.
 - ▶ A retail store sells products only from **one** manufacturer.
 - ▶ We are comparing **company stores** and **franchise stores**.
- ▶ When do we see this?
 - Gasoline.
 - New automobiles.
 - Fast food restaurants.
 - And more.
- ► The paper searches for conditions under which the **industry equilibrium** has zero level of intermediary.
 - ▶ The level of intermediary is **not fixed**; it is chosen by firms (in a decentralized manner) to maximize their profits.

Industry structure

- ▶ There are two manufacturers in the industry.
- ► They sell different but **substitutable** products.
 - ▶ It is assumed that they are price setters and the demand of each product depends on both prices.
 - ▶ If both of them choose no intermediary, they play the **Bertrand game**.
- Each of them may independently decides whether to delegate to a **retailer** (insert one level of intermediary).
 - ▶ In this case, the manufacturer sets a wholesale price and the retailer sets a retail price.
 - ► The two players in the channel play the **channel pricing** game.²
- ► Each of them decides whether to downwards vertically integrate.

²In previous lectures, we call this the supply chain pricing game.

Industry structure

- ▶ There are three possible industry structures:
 - ▶ Pure integration (II: Integration—Integration).
 - ▶ Pure decentralization (DD: Decentralization—Decentralization).
 - Mixture (ID: Integration—Decentralization or DI).

▶ This is a dynamic game with embedded static games!

Model

- ► Two manufacturers.
- ► Each manufacturer has a downstream retail store (retailer).
- ▶ The retail store is either a company store (under integration) or a franchise store (under decentralization).
- ▶ The demands facing retail stores 1 and 2, respectively, are³

$$q_1 = 1 - p_1 + \theta p_2$$
 and $q_2 = 1 - p_2 + \theta p_1$.

- ▶ The industry demand is normalized to 2 when both prices are zero.
- ▶ $\theta \in [0,1)$ measures the **substitutability** between the two products.⁴

³The paper shows how a more general model reduces to this simple form.

⁴The general formulation disallow θ to be 1. You will see that allowing or disallowing $\theta = 1$ does not affect our results.

Model

Under II, manufacturer i sets retail price p_i to solve

$$\pi_i^{\mathrm{I}} \equiv \max_{p_i} \ p_i q_i, \quad i = 1, 2,$$

where $\pi_i^{\rm I}$ is the profit of channel i under II.

- ▶ Under DD:
 - First manufacturer i sets wholesale price w_i to solve

$$\pi_i^{\mathrm{M}} \equiv \max_{w_i} \ w_i q_i, \quad i = 1, 2.$$

▶ Then retailer i sets retail price p_i to solve

$$\pi_i^{\mathrm{R}} \equiv \max_{p_i} (p_i - w_i)q_i, \quad i = 1, 2.$$

• π_i^{M} and π_i^{R} are the profits of the manufacturer and retailer under DD.

Analysis: channel selection

Model

- ▶ Under ID:
 - First manufacturer 2 sets wholesale price w_2 to solve

$$\hat{\pi}_2^{\mathrm{M}} \equiv \max_{w_2} \ w_2 q_2.$$

Then manufacturer 1 and retailer 2 set retail prices p_1 and p_2 to solve

$$\hat{\pi}_1^{\mathrm{I}} \equiv \max_{p_1} \ p_1 q_1 \text{ and}$$

$$\hat{\pi}_2^{\mathrm{R}} \equiv \max_{p_2} \ (p_2 - w_2) q_2.$$

- DI is the opposite of ID.
- ► To complete our analysis, we apply **backward induction**:
 - Given any industry structure, find the equilibrium prices and profits.
 - ▶ Find the equilibrium industry structures.

Road map

- Introduction.
- Model.
- ► Analysis: pricing.
- Analysis: channel selection.
- Intuitions and implications.

Analysis: channel selection

Illustrative analysis: the DD structure

- ▶ Suppose the two manufacturers have chosen to have franchise stores.
- ▶ This is the DD structure.
- ► Let $\pi_i^{R}(p_i) = (p_i w_i)q_i = (p_i w_i)(1 p_i + \theta p_{3-i})$, where w_i s are announced by the manufacturers.
- ► The two retailers solve

$$\pi_i^{\mathrm{R}} \equiv \max_{p_i} \ \pi_i^{\mathrm{R}}(p_i), \quad i = 1, 2.$$

▶ If (p_1^*, p_2^*) is a Nash equilibrium, retailer i's price p_i^* satisfies

$$\left. \frac{\partial}{\partial p_i} \pi_i^{\mathrm{R}}(p_i) \right|_{p_i = p_i^*} = 1 - 2p_i^* + \theta p_{3-i}^* + w_i = 0, \quad i = 1, 2.$$

A unique Nash equilibrium is

$$p_i^* = \frac{1}{2-\theta} + \frac{2w_i + \theta w_{3-i}}{(2+\theta)(2-\theta)}, \quad i = 1, 2.$$

Analysis: channel selection

► Consider the equilibrium retail prices

$$p_i^* = \frac{1}{2-\theta} + \frac{2w_i + \theta w_{3-i}}{(2+\theta)(2-\theta)}, \quad i = 1, 2.$$

- ▶ Do they make sense?
 - $\triangleright p_i^*$ goes up when w_i goes up.
 - p_i^* goes up when w_{3-i} goes up.
 - w_i has a larger effect on p_i^* than w_{3-i} does.
 - ▶ When $\theta = 0$, does p_i^* degenerate to that in the channel pricing game?
- Given these prices, the equilibrium demands are

$$q_i^* = 1 - p_i^* + \theta p_{3-i}^* = \frac{1}{2-\theta} - \frac{(2-\theta^2)w_i - \theta w_{3-i}}{(2+\theta)(2-\theta)}, \quad i = 1, 2.$$

Do they make sense?

▶ Let's continue to the manufacturers' problems.

Let $\pi_i^{\mathcal{M}}(w_i) = w_i q_i^* = w_i \left[\frac{1}{2-\theta} - \frac{(2-\theta^2)w_i - \theta w_{3-i}}{(2+\theta)(2-\theta)} \right]$, the manufacturers solve

$$\pi_i^{\mathrm{M}} \equiv \max_{w_i} \ \pi_i^{\mathrm{M}}(w_i), \quad i = 1, 2.$$

▶ If (w_1^*, w_2^*) is a Nash equilibrium, manufacturer *i*'s price w_i^* satisfies

$$\left. \frac{\partial}{\partial w_i} \pi_i^M(w_i) \right|_{w_i = w_i^*} = \frac{1}{2 - \theta} - \frac{2(2 - \theta^2)w_i^* - \theta w_{3-i}^*}{(2 + \theta)(2 - \theta)} = 0, \quad i = 1, 2.$$

▶ The equilibrium wholesale prices are

$$w_1^* = w_2^* = \frac{2+\theta}{4-\theta-2\theta^2}.$$

The complete equilibrium

- ▶ The equilibrium wholesale prices are $w_1^* = w_2^* = \frac{2+\theta}{4-\theta-2\theta^2}$.
- ► The equilibrium retail prices are

$$p_1^* = p_2^* = \frac{2(3-\theta^2)}{(2-\theta)(4-\theta-2\theta^2)}.$$

► The equilibrium demands are

$$q_1^* = q_2^* = \frac{2 - \theta^2}{(2 - \theta)(4 - \theta - 2\theta^2)}.$$

▶ The manufacturers' equilibrium profits are

$$\pi_1^{\mathrm{M}} = \pi_2^{\mathrm{M}} = \frac{(2+\theta)(2-\theta^2)}{(2-\theta)(4-\theta-2\theta^2)^2}.$$

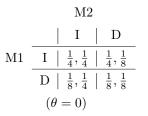
▶ The retailers' equilibrium profits and the equilibrium channel profits can also be found.

Other industry structures

- ▶ For other industry structures, i.e., ID, DI, and II, we may find all the equilibrium outcomes.
- ▶ In particular, the manufacturers' equilibrium profits (the channel profit under integration) can be found.
- ► The four pairs of the manufacturers' equilibrium profits will be the basis for solving the stage-1 **channel structure game**.

- Introduction.
- Model.
- ► Analysis: pricing.
- Analysis: channel selection.
- Intuitions and implications.

The channel structure game

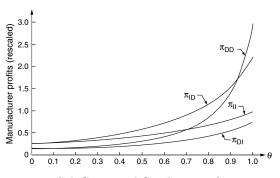

- ▶ The "real" problems of the two manufacturers are the selection of channel structures.
- ▶ In the channel structure game:
 - ► There are two players.
 - They make decisions simultaneously.
 - Each of them has two options: integration of decentralization.
 - The payoff matrix can be constructed by solving the four pricing games.

► The payoff matrix:

- ▶ Is there any pure-strategy Nash equilibrium?
 - ▶ Why not mixed-strategy Nash equilibria?

Equilibrium channel structures: polar cases

▶ Find all the pure-strategy Nash equilibria for the two polar cases:


	M2		
		I	D
M1	I	1, 1	$\frac{9}{4}, \frac{3}{4}$
	$D \mid$	$\frac{3}{4}, \frac{9}{4}$	3,3
$(\theta = 1)$			

- ▶ DD is an **equilibrium** when $\theta = 1!$
- ▶ As all functions are continuous in $\theta \in [0, 1]$, DD must be an equilibrium for large enough θ .
- ▶ Let's do the complete analysis.

Equilibrium channel structures: general cases

Figure 2 Manufacturer's Profits as a Function of θ for Pure and Mixed

Distribution Systems When Franchises Are Given Away

(McGuire and Staelin, 1983)

- $\rightarrow \pi_{\text{II}} > \pi_{\text{DI}}$: Mixture is never an equilibrium. II is always an equilibrium.
- ▶ If $\theta < 0.931$, $\pi_{ID} > \pi_{DD}$: DD is not an equilibrium. II is the only equilibrium.
- ▶ If $\theta > 0.931$, $\pi_{DD} > \pi_{ID}$: II is still an equilibrium. DD is another equilibrium.
 - $\pi_{\rm DD} > \pi_{\rm H} \text{ if } \theta > 0.708$: prisoners' dilemma for $\theta \in (0.708, 0.931).$

- Introduction.
- Model.
- ► Analysis: pricing.
- Analysis: channel selection.
- Intuitions and implications.

Incentives for decentralization

- ► Even though the retailer is not stronger than the manufacturer, a manufacturer may want do decentralization.
 - ▶ Note that the retailer extracts some profits!
 - ▶ What is the incentive for the manufacturer to do so?
- ▶ This happens when θ is high, i.e., the products are quite similar or the competition is quite intense.
- ▶ According to the paper:

Manufacturers in a duopoly are better off if they can shield themselves from this environment by inserting privately-owned profit maximizers between themselves and the ultimate retail market.

- ► "The competition is so intense that I'd better find someone to **fight for me**. I'd better not to compete head-to-head directly."
- ▶ Is there an explanation from the perspective of efficiency?

Decentralization can be more efficient

- ▶ If the manufacturers are better off by doing pure decentralization, pure decentralization must generating a higher system profit.
- ▶ Why does DD outperform II?
- Suppose currently it is II.
 - ► The two manufacturers play the Bertrand game and consequently the equilibrium **prices are too low**.
- ▶ If they change to DD, each channel now has one additional layer of intermediary and the **price goes up**.
- ▶ Decentralization makes the prices closer to the efficient level.
- ▶ The pie becomes larger!

Decentralization provides credibility

- ▶ Under pure integration, the prices are too low and the two manufacturers are trapped in a prisoners' dilemma.
 - ▶ They know this. They know that together raising prices is win-win.
 - However, the promise to raise a price is **non-credible**.
 - ▶ They must somehow show that "I am (we are) forced to raise the price."
 - ▶ Having one additional layer provides **credibility**.
- ▶ Doing decentralization provides **incentives** for the competitor to raise its price (because it knows that I will raise my price).

Integration vs. decentralization

- ▶ Why integration fails? You told me integration is always optimal!
- ▶ The fact is **complete integration** is always optimal.
 - ▶ If the four firms are all integrated, the system is efficient.
 - ▶ But when complete integration is impossible (because no manufacturer can integrate the other), partial integration may be worse than no integration (i.e., decentralization).
- ▶ This is the so-called "Principle of the second best".
 - ▶ When you can control everything, do it.
 - ▶ When you cannot control everything, it may be better to control nothing.

- ▶ When the manufacturers act to maximize channel profits, DD is an equilibrium if $\theta > 0.771$.
 - ► A manufacturer may do so because it can extract all the channel profit through some coordinating contracts.
 - ▶ The region for DD to be an equilibrium is enlarged. Why?
- ▶ When the two manufacturers collude, they will downwards integrate.
- ▶ The qualitative result remains valid under other game structures.

Analysis: channel selection

Conclusions

- ▶ A scenario for a manufacturer to delegate to a retailer is provided.
 - ▶ A manufacturer may do so when the competition is intense.
 - ▶ Vertical integration may be suboptimal under horizontal competition.
 - The model is simple: It is a combination of price competition (Bertrand game) and pricing in a supply chain (Stackelberg game).
 - ▶ While in either game integration makes the firms better, mixing the two games generates new insights.
- ▶ The mathematical results generates managerial implications:
 - ▶ To hide from intense competition.
 - ► To drives the originally too-low prices up.
 - ▶ To incentivize the competitor to increase its price.
- ▶ The principal of the second best.