IM 7011: Information Economics (Fall 2014)

Channel Coordination with Returns

Ling-Chieh Kung

Department of Information Management National Taiwan University

October 13, 2014

Road map

- ► Introduction.
- Return contracts.
- ▶ Model and analysis.
- ▶ Insights and conclusions.

When centralization is impossible

- We hope people all cooperate to maximize social welfare and then fairly allocate payoffs.
- ▶ Complete **centralization**, or **integration**, is the best.
- ▶ However, it may be impossible.
 - ► Each person has her/his self interest.
- ► Facing a **decentralized** system, we will not try to integrate it.
 - ▶ We will not assume (or try to make) that people act for the society.
 - ▶ We will assume that people are all **selfish**.
 - ▶ We seek for **mechanisms** to improve the efficiency.
 - ► This is mechanism design.

Issues under decentralization

- ▶ What issues arise in a decentralized system?
- ► The **incentive** issue:
 - Workers need incentives to work hard.
 - ▶ Students need incentives to keep labs clean.
 - ▶ Manufacturers need incentives to improve product quality.
 - Consumers need incentives to pay for a product.
- ► The **information** issue:
 - Efforts of workers and students are hidden.
 - ▶ Product quality and willingness-to-use are hidden.
- ▶ Information issues **amplify** or even **create** incentive issues.

Incentive alignment

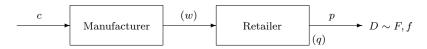
- ▶ One typical goal is to **align** the incentives of different players.
- As an example, an employer wants her workers to work as hard as possible, but a worker always prefers vacations to works.
 - ▶ There is **incentive misalignment** between the employer and employee.
 - ► To better align their incentives, the employer may put what the employee cares into the employee's utility function.
 - ► This is why we see sales bonuses and commissions!

Double marginalization

- ► In a supply chain or distribution channel, incentive misalignment may cause double marginalization.
- ▶ Consider the pricing in a supply chain problem:
 - ightharpoonup The unit cost is c.
 - ▶ The manufacturer charges $w^* > c$ with one layer of "marginalization".
 - ▶ The retailer charges $r^* > w^*$ with another layer of marginalization.
 - ▶ The equilibrium retail price r^* is **too high**. Both firms are hurt.
- ▶ The system is **inefficient** because the equilibrium decisions (retail price) is **system-suboptimal** (in this case, too high).

Inventory and newsvendor

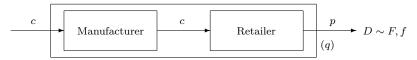
- ▶ Consumer demands are not always certain.
- ▶ Let's assume that the retailer is a price taker and makes **inventory** decisions for **perishable** products.



- ▶ Decisions:
 - ightharpoonup The manufacturer chooses the wholesale price w.
 - ▶ The retailer, facing uncertain demand $D \sim F$, f and fixed retail price p, chooses the **order quantity** (inventory level) q.
 - Assumption: $D \ge 0$ and is continuous: F' = f.
- ► They try to maximize:
 - ▶ The retailer: $\pi_{\mathbf{R}}(q) = p\mathbb{E}[\min\{D, q\}] wq$.
 - The manufacturer: $\pi_{\mathrm{M}}(w) = (w c)q^*$, where $q^* \in \operatorname{argmax}_q\{\pi_{\mathrm{R}}(q)\}$.

Efficient inventory level

▶ Suppose the two firms integrate:



▶ They choose q to maximize $\pi_{\mathbf{C}}(q) = p\mathbb{E}[\min\{D, q\}] - cq$.

Proposition 1

The efficient inventory level q^{FB} satisfies $F(q^{FB}) = 1 - \frac{c}{p}$.

Proof. Because $\pi_{\mathbf{C}}(q) = r\{\int_0^q x f(x) dx + \int_q^\infty q f(x) dx\} - cq$, we have $\pi'_{\mathbf{C}}(q) = r[1 - F(q)] - c$ and $\pi''_{\mathbf{C}}(q) = -rf(q) \leq 0$. Therefore, $\pi_{\mathbf{C}}(q)$ is concave and $\pi'_{\mathbf{C}}(q^{\mathrm{FB}}) = 0$ is the given condition.

Retailer-optimal inventory level

- ▶ The retailer maximizes $\pi_{\mathbf{R}}(q) = p\mathbb{E}[\min\{D, q\}] wq$.
- ▶ Let $q^* \in \operatorname{argmax}_{q>0} \pi_{\mathbf{R}}(q)$ be the retailer-optimal inventory level.

Proposition 2

We have $q^* < q^{FB}$ if F is strictly increasing.

Proof. Similar to the derivation for q^{FB} , we have $F(q^*) = 1 - \frac{w}{p}$ given any wholesale price w. Note that $F(q^*) = 1 - \frac{w}{p} < 1 - \frac{c}{p} = F(q^{\text{FB}})$ if w > c, which is true in any equilibrium. Therefore, once F is strictly increasing, we have $q^* < q^{\text{FB}}$.

- ▶ Decentralization again introduces inefficiency.
 - ► Similar to double marginalization.

What should we do?

- ▶ How to reduce inefficiency?
- ▶ Complete integration is the best but impractical.
- ▶ We may make these player **interacts** in a **different** way.
 - ▶ We may change the "game rules".
 - ▶ We may design different mechanisms.
 - ▶ We want to induce satisfactory behaviors.
- In this lecture, we will introduce a seminal example of redesigning a mechanism to enhance efficiency.
 - ▶ We change the **contract format** between two supply chain members.
 - This belongs to the fields of supply chain coordination or supply chain contracting.

Road map

- ▶ Introduction.
- ► Return contracts.
- ► Model and analysis.
- ▶ Insights and conclusions.

How to help the indirect newsvendor?

- ▶ What happened in the indirect newsvendor problem?
 - ► The inventory level (order/production/supply quantity) is **too low**.
 - ▶ The inventory level is optimal for the retailer but too low for the system.
- ▶ Why the retailer orders an inefficiently low quantity?
- ▶ Demand is uncertain:
 - ▶ The retailer takes all the **risks** while the manufacturer is **risk-free**.
 - ▶ When the unit cost increases (from c to w), overstocking becomes more harmful. The retailer thus lower the inventory level.
- ▶ How to induce the retailer to order more?
 - ▶ Reducing the wholesale price? No way!
 - ► A practical way is for the manufacturer to **share the risk**.
 - ▶ Pasternack (1985) studies **return** (buy-back) contracts.¹

¹Pasternack, B. 1985. Optimal pricing and return policies for perishable commodities. *Marketing Science* 4(2) 166–176.

Why return contracts?

- ▶ A **return** (buy-back) contract is a **risk-sharing** mechanism.
- ▶ When the products are not all sold, the retailer is allowed to return (all or some) unsold products to get credits.
- ► Contractual terms:
 - \triangleright w is the wholesale price.
 - ightharpoonup r is the buy-back price (return credit).
 - \triangleright R is the percentage of products that can be returned.
- Several alternatives:
 - Full return with full credit: R = 1 and r = w.
 - Full return with partial credit: R = 1 and r < w.
 - ▶ Partial return with full credit: R < 1 and r = w.
 - ▶ Partial return with partial credit: R < 1 and r < w.
- ▶ Before we jump into the analytical model, let's get the idea with a numerical example.

A numerical example

- ► Consider a distribution channel in which a manufacturer (she) sells a product to a retailer (he), who then sells to end consumers.
- ► Suppose that:
 - ► The unit production cost is \$10.
 - ▶ The unit retail price is \$50.
 - ▶ The random demand follows a uniform distribution between 0 and 100.

Benchmark: integration

- ▶ As a benchmark, let's first find the **efficient inventory level**, which will be implemented when the two firms are integrated.
- ▶ Let Q_{T}^* be the efficient inventory level that maximizes the expected system profit, we have

$$\frac{Q_{\rm T}^*}{100} = 1 - \frac{10}{50} \quad \Rightarrow \quad Q_{\rm T}^* = 80.$$

ightharpoonup The expected system profit, as a function of Q, is

$$\pi_{\rm T}(Q) = 50 \left\{ \int_0^Q x \left(\frac{1}{100} \right) dx + \int_Q^{100} Q \left(\frac{1}{100} \right) dx \right\} - 10Q$$
$$= -\frac{1}{4}Q^2 + 40Q.$$

▶ The optimal system profit is $\pi_{\mathrm{T}}^* = \pi_{\mathrm{T}}(Q_{\mathrm{T}}^*) = \1600 .

Wholesale contract

- ▶ Under the wholesale contract, we have the indirect newsvendor problem.
- ▶ We know that in equilibrium, the manufacturer sets the wholesale price $w^* = \frac{50+10}{2} = 30$ and the retailers orders $Q_{\rm R}^* = 40$.
- \triangleright The retailer's expected profit, as a function of Q, is

$$\pi_{R}(Q) = 50 \left\{ \int_{0}^{Q} x \left(\frac{1}{100} \right) dx + \int_{Q}^{100} Q \left(\frac{1}{100} \right) dx \right\} - 30Q$$
$$= -\frac{1}{4} Q^{2} + 20Q.$$

- ▶ The retailer's expected profit is $\pi_R^* = \pi_R(Q_R^*) = 400 .
- ▶ The manufacturer's expected profit is $\pi_{\rm M}^* = 40 \times (30 10) = \800 .
- ► The expected system profit is $\pi_{\rm R}^* + \pi_{\rm M}^* = \$1200 < \pi_{\rm T}^* = \$1600$.

Return contract 1

- ▶ Consider the following return contract:
 - ▶ The wholesale price w = 30.
 - ▶ The return credit r = 5.
 - ▶ The percentage of allowed return R = 1.
- \triangleright The retailer's expected profit, as a function of Q, is

$$\pi_{\mathbf{R}}^{(1)}(Q) = 50 \left\{ \int_0^Q \frac{x}{100} dx + \int_Q^{100} \frac{Q}{100} dx \right\} + 5 \int_0^Q \frac{Q - x}{100} dx - 30Q$$
$$= -\frac{1}{4} Q^2 + \frac{1}{40} Q^2 + 20Q \quad \Rightarrow \quad Q_{\mathbf{R}}^{(1)} = \frac{400}{9} \approx 44.44.$$

- ▶ The retailer's expected profit is $\pi_{\rm R}^{(1)} = \pi_{\rm R}(Q_{\rm R}^{(1)}) \approx $444.44 > \pi_{R}^{*}$.
- The manufacturer's expected profit is $\pi_{\rm M}^{(1)} = (\frac{400}{9})(30-10) \frac{4000}{81} \approx 888.89 49.38 = \$839.51 > \pi_{\rm M}^*.$
- ► The expected system profit is $\pi_{\rm R}^{(1)} + \pi_{\rm M}^{(1)} = \$1283.95 < \pi_{\rm T}^* = \1600 .

Return contract 2

- ▶ Consider a more generous return contract:
 - ▶ The wholesale price w = 30.
 - ▶ The return credit r = 10.
 - ▶ The percentage of allowed return R = 1.
- \blacktriangleright The retailer's expected profit, as a function of Q, is

$$\pi_{\mathbf{R}}^{(2)}(Q) = 50 \left\{ \int_0^Q \frac{x}{100} dx + \int_Q^{100} \frac{Q}{100} dx \right\} + 10 \int_0^Q \frac{Q - x}{100} dx - 30Q$$
$$= -\frac{1}{4} Q^2 + \frac{1}{20} Q^2 + 20Q \quad \Rightarrow \quad Q_{\mathbf{R}}^{(2)} = 50.$$

- ▶ The retailer's expected profit is $\pi_{\rm R}^{(2)} = \pi_{\rm R}(Q_{\rm R}^{(2)}) = $500 > \pi_R^{(1)}$.
- ► The manufacturer's expected profit is $\pi_{\rm M}^{(2)} = 50 \times (30 10) 125 \approx 1000 125 = \$875 > \pi_{\rm M}^{(1)}$.
- ► The expected system profit is $\pi_{\rm R}^{(2)} + \pi_{\rm M}^{(2)} = \$1375 < \pi_{\rm T}^* = \$1600$.

Comparison

► The **performance** of these contracts:

(w, r, R)	Q	$\pi_{ m R}$	$\pi_{ m M}$	$\pi_{\mathrm{R}} + \pi_{\mathrm{M}}$
(30, 0, 1)	40	400	800	1200
(30, 5, 1)	44.44	444.44	839.51	1283.95
(30, 10, 1)	50	500	875	1375
Efficient	80	-	_	1600

- ightharpoonup Will Q keep increasing when r increases?
- ▶ Will $\pi_{\rm R}$ and $\pi_{\rm M}$ keep increasing when r increases?
- ▶ Will $Q = Q_T^* = 80$ for some r? Will $\pi_R + \pi_M = \pi_T^* = 1600$ for some r?
- ► There are so many questions!
 - ▶ What if $w \neq 30$? What if R < 1?
 - What if the demand is not uniform?
- ▶ When may we achieve **channel coordination**, i.e., $Q = Q_T^* = 80$?
- ▶ We need a general analytical model to really deliver insights.

Road map

- ▶ Introduction.
- Return contracts.
- ► Model and analysis.
- Insights and conclusions.

Model

- ▶ We consider a manufacturer-retailer relationship in an indirect channel.
- ▶ The product is perishable and the single-period demand is random.
- ▶ Production is under MTO and the retailer is a newsvendor.
- ▶ We use the following notations:

Symbol	Meaning
\overline{c}	Unit production cost
w	Unit wholesale price
r	Unit return credit
R	Percentage of allowed return
Q	Order quantity
F	Distribution function of demand
f	Density function of demand

- ► Assumptions:
 - $c < w < p; r \le w; f$ is continuous; f(x) = 0 for all x < 0.

Utility functions

▶ Under the return contract (w, r, R), the retailer's expected profit is

$$\pi_{R}(Q) = -Qw + \int_{0}^{(1-R)Q} (xp + RQr)f(x)dx + \int_{(1-R)Q}^{Q} \left[xp + (Q-x)r \right] f(x)dx + \int_{Q}^{\infty} Qpf(x)dx.$$

▶ The manufacturer's expected profit is

$$\pi_{\mathcal{M}}(Q) = Q(w - c) - \int_{0}^{(1-R)Q} RQrf(x)dx - \int_{(1-R)Q}^{Q} (Q - x)rf(x)dx.$$

▶ The expected system profit is

$$\pi_{\mathrm{T}}(Q) = -cQ + \int_{0}^{Q} xpf(x)dx + \int_{Q}^{\infty} Qpf(x)dx.$$

Timing

- ▶ First a return contract is signed by the manufacturer and retailer.
- ▶ Then the retailer places an order.
- ▶ The manufacturer produces and ships products to the retailer.
- ▶ The sales season starts, the demand is realized, and the allowed unsold products (if any) are returned to the manufacturer.

System-optimal (efficient) inventory level

▶ The expected system profit is

$$\pi_{\mathrm{T}}(Q) = -cQ + \int_{0}^{Q} xpf(x)dx + \int_{Q}^{\infty} Qpf(x)dx.$$

▶ The system optimal inventory level Q_T^* satisfies the equation

$$F(Q_{\mathrm{T}}^*) = 1 - \frac{c}{p}.$$

▶ We hope that there is a return contract (w, r, R) that makes the retailer order Q_T^* .

Retailer's ordering strategy

▶ Under the return contract, the retailer's expected profit is

$$\pi_{R}(Q) = -Qw + \int_{0}^{(1-R)Q} (xp + RQr)f(x)dx + \int_{(1-R)Q}^{Q} \left[xp + (Q-x)r \right] f(x)dx + \int_{Q}^{\infty} Qpf(x)dx.$$

- ▶ Let's differentiate it... How?!?!?!
- ▶ We need the Leibniz integral rule: Suppose f(x, y) is a function such that $\frac{\partial}{\partial y} f(x, y)$ exists and is continuous, then we have

$$\frac{d}{dy} \int_{a(y)}^{b(y)} f(x,y)dx$$

$$= f(b(y), y)b'(y) - f(a(y), y)a'(y) + \int_{a(y)}^{b(y)} \frac{\partial}{\partial y} f(x, y)dx$$

Retailer's ordering strategy

▶ Let's apply the Leibniz integral rule

$$\frac{d}{dy} \int_{a(y)}^{b(y)} f(x,y) dx = f(b(y),y)b'(y) - f(a(y),y)a'(y) + \int_{a(y)}^{b(y)} \frac{\partial}{\partial y} f(x,y) dx$$

to the retailer's expected profit function $\pi_{\mathbf{R}}(Q)$:

Inside $\pi_{\mathbf{R}}(Q)$	Inside $\pi'_{\mathcal{R}}(Q)$
-Qw	-w
$\int_0^{(1-R)Q} (xp + RQr)f(x)dx$	$(1-R)\left[(1-R)Qp + RQr\right]f\left((1-R)Q\right) + \int_0^{(1-R)Q} Rrf(x)dx$
$\int_{(1-R)Q}^{Q} \left[xp + (Q-x)r \right] f(x) dx$	$Qpf(Q)$ $-(1-R)\Big[(1-R)Qp - RQr\Big]f\Big((1-R)Q\Big)$ $+\int_{(1-R)Q}^{Q} rf(x)dx$
$\int_{Q}^{\infty} Qpf(x)dx$	$-Qpf(Q) + \int_{Q}^{\infty} pf(x)dx$

Retailer's ordering strategy

▶ We then have

$$\pi'_{R}(Q) = -w + \int_{0}^{(1-R)Q} Rrf(x)dx + \int_{(1-R)Q}^{Q} rf(x)dx + \int_{Q}^{\infty} pf(x)dx$$

$$= w + RrF((1-R)Q) + r[F(Q) - F((1-R)Q)] + p[1 - F(Q)]$$

$$= -w + p - (p - r)F(Q) - (1 - R)rF((1-R)Q).$$

- ▶ Given (w, r, R), the retailer may numerically search for Q_R^* that satisfies $\pi'_R(Q_R^*) = 0$. This is the retailer's ordering strategy.
 - Why $\pi'_{R}(Q) = 0$ always has a unique root?

Inducing the system-optimal inventory level

▶ The system-optimal inventory level Q_T^* satisfies

$$F(Q_{\rm T}^*) = 1 - \frac{c}{p} = \frac{p-c}{p}.$$

▶ To induce the retailer to order Q_{T}^* , we must make Q_{T}^* optimal for the retailer. Therefore, we need $\pi_{\mathrm{R}}'(Q_{\mathrm{T}}^*) = 0$, i.e.,

$$\begin{split} \pi_{\mathrm{R}}'(Q_{\mathrm{T}}^*) &= -w + p - (p-r)F(Q_{\mathrm{T}}^*) - (1-R)rF\Big((1-R)Q_{\mathrm{T}}^*\Big) \\ &= -w + p - \frac{(p-c)(p-r)}{p} - (1-R)rF\Big((1-R)Q_{\mathrm{T}}^*\Big) = 0. \end{split}$$

- ▶ To achieve coordination, we need to choose (w, r, R) to make the above equation hold, where Q_T^* is uniquely determined by $F(Q_T^*) = \frac{p-c}{r}$.
- ▶ Is it possible?

Road map

- ▶ Introduction.
- Return contracts.
- ▶ Model and analysis.
- ► Insights and conclusions.

Extreme case 1: full return with full credit

$$\pi_{\rm R}'(Q_{\rm T}^*) = w - p + \frac{(p-c)(p-r)}{p} + (1-R)rF\Big((1-R)Q_{\rm T}^*\Big).$$

▶ Let's consider the most generous return contract.

Proposition 3

If
$$r = w$$
 and $R = 1$, $\pi'_{R}(Q_{T}^{*}) = 0$ if and only if $c = 0$.

Proof. If r=w and $R=1,\,\pi'_{\mathrm{T}}(Q_{\mathrm{T}}^*)=0$ becomes

$$w - p + \frac{(p-c)(p-w)}{p} = (p-w)\left(\frac{p-c}{p} - 1\right) = 0.$$

As p > w, we need $\frac{p-c}{p} = 1$, i.e., c = 0.

▶ Allowing full returns with full credits is generally system suboptimal.

Extreme case 2: no return

$$\pi'_{R}(Q_{T}^{*}) = w - p + \frac{(p-c)(p-r)}{p} + (1-R)rF((1-R)Q_{T}^{*}).$$

▶ Let's consider the least generous return contract.

Proposition 4

If
$$r=0$$
 or $R=0$, $\pi'_{\mathrm{R}}(Q^*_{\mathrm{T}})=0$ is impossible.

Proof. If r=0, $\pi'_{\rm R}(Q^*_{\rm T})=0$ becomes w-c=0, which cannot be true. If R=0, it becomes

$$w - p + \frac{(p-c)(p-r)}{p} + rF(Q_{\mathrm{T}}^*) = w - c = 0,$$

which is also impossible.

▶ Allowing no return is system suboptimal.

Full returns with partial credits

$$\pi_{\rm R}'(Q_{\rm T}^*) = w - p + \frac{(p-c)(p-r)}{p} + (1-R)rF\Big((1-R)Q_{\rm T}^*\Big).$$

▶ Let's consider full returns with partial credits.

Proposition 5

- If R = 1, $\pi'_{R}(Q_{T}^{*}) = 0$ if and only if $w = p \frac{(p-c)(p-r)}{p}$.
- For any p and c, a pair of r and w such that 0 < r < w can always be found to satisfy the above equation.

Proof. When R = 1, the first part is immediate. According to the equation, we need $r = \frac{p(w-c)}{p-c}$. Then w < p implies $\frac{p(w-c)}{p-c} < w$ and c < w implies $\frac{p(w-c)}{p-c} > 0$.

- ▶ Allowing full returns with partial credits can be system optimal!
- ▶ In this case, we say the return contract **coordinates** the system.

Profit splitting

▶ Under a full return contract, channel coordination requires

$$w = p - \frac{(p-c)(p-r)}{p} = c + \left(\frac{p-c}{p}\right)r.$$

- ▶ The expected system profit is maximized. The "pie" is maximized.
- ▶ Do both players benefit from the enlarged pie?
- ► To ensure win-win, we hope the pie can be split **arbitrarily**.
- ▶ In one limiting case (though not possible), when w = c, we need r = 0. In this case, $\pi_{\rm M}^* = 0$ and $\pi_{\rm R}^* = \pi_{\rm T}^*$.
- ▶ In another limiting case, when w = p, we need r = p. In this case, $\pi_{\mathrm{M}}^* = \pi_{\mathrm{T}}^*$ and $\pi_{\mathrm{R}}^* = 0$.
- ▶ How about the intermediate cases?

Profit splitting

▶ Let's visualize the set of coordinating full return contracts:

- As $\pi_{\mathbf{T}}(\cdot)$ is continuous in w and r, $\pi_{\mathbf{M}}^*$ must **gradually** go up from 0 to $\pi_{\mathbf{T}}^*$ as w goes from c to p.
 - \bullet π_R^* must gradually do down as w goes from p to c.
 - ► Arbitrary profit splitting can be done!

Coordination and win-win

- ▶ We know that return contracts can be **coordinating**.
 - ▶ We can make the inventory level efficient.
 - ▶ We can make the channel efficient.
- ▶ Now we know they can also be win-win.
 - We can split the pie in any way we want.
 - We can always make both players happy.
- ► The two players will **agree** to adopt a coordinating return contract.
- ▶ Consumers also benefit from channel coordination. Why?
- ► Some remarks:
 - ▶ Not all coordinating contracts are win-win.
 - ► In practice, the manufacturer may pay the retailer without asking for the physical goods. Why?

More in the paper

- ▶ We only introduced the main idea of the paper.
- ▶ There are still a lot untouched:
 - Salvage values and shortage costs.
 - ▶ Monotonicity of the manufacturer's and retailer's expected profit.
 - ▶ Environments with multiple retailers.
- ▶ Read the paper by yourselves.
- ► Studying contracts that coordinate a supply chain or distribution channel is the theme of the subject supply chain coordination.
 - ▶ It was a hot topic in 1980's and 1990's.
 - Not so hot now.
- ▶ Other contracts to coordinate a channel or a supply chains:
 - ► Two-part tariffs.
 - Quantity flexible contracts.
 - Revenue-sharing contracts.
 - ► Sales rebate contracts.