Incentives for Retailer Forecasting

Ling-Chieh Kung

Department of Information Management National Taiwan University

October 27, 2014

Road map

- ▶ Introduction.
- ► Model.
- ▶ Rebates contracts.
- ▶ Returns contracts.

Demand forecasting

- ▶ Supply-demand mismatch is costly.
- ▶ Firms try to do **forecasting** to obtain demand knowledge.
- ▶ In a supply chain, typically the retailer does forecasting.
 - ▶ The manufacturer may only **induce** the retailer to forecast.
 - ▶ It is also the retailer that incurs the forecasting cost.
 - ▶ We shall study how the **forecasting cost** affects the supply chain.
- ▶ Is it always beneficial to induce forecasting?
 - ▶ Forecasting allows the supply chain to reduce supply-demand mismatch.
 - ► It also places the manufacturer at an **informational disadvantage!**
- ▶ If inducing forecasting is beneficial, when? How?

Contract formats

- Whether inducing/encouraging forecasting is beneficial depends on how the system profit is split.
 - ▶ The **contract format** between the manufacturer and retailer matters.
- ▶ Two kinds of contracts alters the retailer's decision of forecasting.
- ▶ Under a **rebates** contract, the manufacturer pays a bonus to the retailer for each sold unit.
 - ▶ A rebates contract provides a **lottery** to the retailer.
 - ▶ It **encourages** the retailer to forecast.
- ▶ Under a **returns** contract, the manufacturer buys back unsold units.
 - ▶ A returns contract provides an **insurance** to the retailer.
 - ► It discourages the retailer to forecast.
- ▶ Which contract format is more beneficial for the manufacturer?
- ► Taylor and Xiao (2009) study this problem.¹

¹Taylor, T., W. Xiao. 2009. Incentives for Retailer Forecasting: Rebates vs. Returns. *Management Science* **55**(10) 1654–1669.

Demand forecasting

- ▶ A manufacturer (he) sells to a retailer (she), who faces uncertain consumer demands.
- \triangleright The unit production cost is c and unit retail price is p.
- Without forecasting, firms believe that the random demand $D_N \sim F_N$.

Rebates contracts

- \blacktriangleright The retailer may **forecast** with a forecasting cost k.
- ▶ If she forecasts, she obtains a **private** demand **signal** $S \in \{H, L\}$.
- \triangleright With probability λ , she observes a favorable signal:
 - ightharpoonup S = H makes the retailer **optimistic**.
 - ▶ She believes that the market is good and the updated demand $D_H \sim F_H$.
- ▶ With probability 1λ , she observes an unfavorable signal:
 - ightharpoonup S = L makes the retailer **pessimistic**.
 - ▶ She believes that the market is bad and the updated demand $D_L \sim F_L$.
- We assume that $F_H(x) \leq F_L(x)$ and $F_N(x) = \lambda F_H(x) + (1 \lambda)F_L(x)$ for all $x \geq 0$. We also assume that $F_S(\cdot)$ is strictly increasing.
- ▶ Let $\bar{F}_S(x) := 1 F_S(x), S \in \{H, L, N\}.$

An example for demand forecasting

As an example, suppose that $D_L \sim \text{Uni}(0,1)$ and $D_H \sim \text{Uni}(0,2)$, i.e.,

$$F_L(x) = \begin{cases} x & \forall x \in [0, 1] \\ 1 & \forall x \in (1, 2] \end{cases} \quad \text{and} \quad F_H(x) = \frac{x}{2} \quad \forall x \in [0, 2].$$

Rebates contracts

- ▶ The market is either good or bad. If it is good, the demand is D_H . Otherwise, it is D_L .
- We may say that the demand $D(\theta) \sim \text{Uni}(0,\theta)$, where $\theta \in \{1,2\}$.
- ▶ The firms both believe that $Pr(\theta = 2) = \lambda = 1 Pr(\theta = 1)$.
- \triangleright Without knowing θ , a firm can only believe that the demand is $D_N \sim F_N = \lambda F_H + (1 - \lambda) F_L$

• If the retailer forecasts, she knows θ and thus whether it is D_H or D_L .

Research questions revisited

- ▶ Should the manufacturer induce the retailer to forecast?
- ▶ If so, how should the manufacturer design the offer?
- ▶ Which type of contracts, rebates or returns, is more beneficial?
- ▶ Efficiency? Inefficiency? Incentives? Information?

- ▶ Introduction.
- ► Model.
- ▶ Rebates contracts.
- ▶ Returns contracts.

Contractual terms: rebates contracts

▶ By offering a rebates contract, the manufacturer specifies a three-tuple

$$(q, r, t)$$
.

- \triangleright q is the order quantity.
- ightharpoonup r is the sales bonus per unit sales.
- \triangleright t is the **transfer** payment.
- ▶ If the retailer accepts the contract, she pays t to purchase q units and the rebate r.
- Note that the manufacturer is not restricted to sell the products at a wholesale price.
 - ▶ If this is the case, he will specify (q, r, w) where t = wq.
 - ▶ To find the optimal rebates contract, such a restriction should not exist.
 - \blacktriangleright t may depend on q and r in any format.

Contractual terms: returns contracts

▶ By offering a rebates contract, the manufacturer specifies a three-tuple

$$(q, b, t)$$
.

- ightharpoonup q is the order quantity.
- ▶ b is the **buy-back price** per unit of unsold products.²
- \blacktriangleright t is the **transfer** payment.
- ▶ If the retailer accepts the contract, she pays t to purchase q units and the buy-back price b.
- ▶ The manufacturer is still not restricted to sell the products at a wholesale price.
 - ightharpoonup t may depend on q and b in any format.

²Note that all unsold products can be returned. *Partial returns* are not discussed in this paper.

The manufacturer's contract design problem

- ▶ Note that we assume that the manufacturer can offer a take-it-or-leave-it contract.
 - ▶ The retailer cannot choose quantities at her disposal.
 - ► She can only **accept of reject** the contract.
 - ▶ Her information makes her accept-or-reject decision more accurate.
- ▶ If the retailer does not forecast, a single contract is enough.
 - ▶ There is no information asymmetry.
 - \triangleright Enough flexibility is ensured by the flexibility on t.
- ▶ If the retailer has private information (signal S), a menu of contracts should be offered to induce truth-telling.
 - ightharpoonup As S is binary, a menu of two contracts is optimal.
- ▶ We assume that the manufacturer **cannot mix** rebates and returns.
 - ▶ We will see that mixing does not make the manufacturer better off.
- ► The retailer determines whether to obtain private information. This is a problem with **endogenous adverse selection**!

Timing

- ▶ The sequence of events is as follows:
 - 1. The manufacturer offers a (menu of) rebates or returns contract(s).
 - 2. The retailer decides whether to forecast. If so, she privately observes the demand signal.
 - 3. The retailer chooses a contract or reject the offer based on her signal.
 - 4. Demand is realized and payments are made.
- ▶ The manufacturer **can induce** the retailer to or not to forecast.
 - ▶ Whether the retailer forecasts is also private. However, the manufacturer can anticipate this.
- ▶ Alternative timing (not discussed in this paper):
 - ▶ The retailer forecasts after choosing a contract $(1 \rightarrow 3 \rightarrow 2 \rightarrow 4)$.
 - ▶ The retailer forecasts before getting the offer $(2 \rightarrow 1 \rightarrow 3 \rightarrow 4)$.

Integrated system without forecasting

- ▶ As a benchmark, let's first analyze the first-best situation: integration.
 - ▶ The decisions: (1) forecasting or not and (2) production quantity.
 - ► These decisions will be compared to determine efficiency.
- ▶ Suppose the system chooses not to forecast, it solves

$$\Pi_N(q_N) := p\mathbb{E}\min(q_N, D_N) - cq_N.$$

The optimal quantity is $q_N^I = \bar{F}_N^{-1}(\frac{c}{p})$.

▶ The optimized expected system profit is $\Pi_N(q_N^I)$.

Integrated system with forecasting

▶ Suppose the system chooses to forecast, it solves

$$\Pi_F(q_H, q_L) := \lambda \left[p \mathbb{E} \min(q_H, D_H) - c q_H \right]$$

$$+ (1 - \lambda) \left[p \mathbb{E} \min(q_L, D_L) - c q_L \right].$$

The optimal quantities are $q_S^I = \bar{F}_S^{-1}(\frac{c}{n}), S \in \{H, L\}.$

- ▶ By observing different signals, the quantity can be **adjusted** accordingly.
- ▶ If no adjustment, i.e., $q_H = q_L = q$, then forecasting brings no benefit:

$$\Pi_F(q,q) = \Pi_N(q) \quad \forall q \ge 0.$$

▶ The optimized expected system profit is $\Pi_F(q_H^I, q_L^I)$.

Integrated system: forecasting or not?

▶ If forecasting is free, the system should always forecast:

$$\Pi_F(q_H^I,q_L^I) \geq \Pi_F(q_N^I,q_N^I) = \Pi_N(q_N^I).$$

- \blacktriangleright However, forecasting requires a cost k.
 - \triangleright Whether the system should forecast depends on the value of k.
- ▶ The **performance gap** $k^I := \Pi_F(q_H^I, q_L^I) \Pi_N(q_N^I)$ is the threshold.

Proposition 1

If $k < k^I$, the system should forecast and produce q_H^I (q_L^I) upon observing signal H (L). Otherwise, the system should not forecast and should produce q_N^I .

- ▶ Introduction.
- ► Model.
- ▶ Rebates contracts.
- ▶ Returns contracts.

Rebates contracts

- ▶ Here we study the manufacturer's optimal strategy for offering rebates contracts.
- ▶ He has two options:
 - Inducing the retailer to forecast.
 - ▶ Inducing the retailer not to forecast.
- ▶ We will first find the optimal contracts in either case. Then we make comparisons to obtain the manufacturer's optimal strategy.
- ▶ In all equilibria, the retailer will accept a contract. Let

$$R^{r}(S,C) := (p + r_C)\mathbb{E}\min(q_C, D_S) - t_C,$$

Rebates contracts

be the retailer's expected profit when:

- \triangleright she observes signal $S \in \{N, H, L\}$ (N for no forecasting) and
- ▶ she chooses **contract** $(q_C, r_C, t_C), C \in \{N, H, L\}.$

No forecasting

▶ Suppose the manufacturer wants to drive the retailer not to forecast.

Rebates contracts

- He will offer a single contract (q_N, r_N, t_N) .
- ▶ Among rebates contracts that induce no forecasting, which is optimal?
- \triangleright By accepting (q_N, r_N, t_N) with no forecasting, the retailer earns

$$R^{r}(N,N) := (p+r_N)\mathbb{E}\min(q_N,D_N) - t_N.$$

▶ However, she may choose to forecast and then accept or reject the offer based on her signal. If she forecasts, the retailer earns

$$\lambda \max\{R^r(H, N), 0\} + (1 - \lambda) \max\{R^r(L, N), 0\} - k.$$

- With probability λ she will observe S = H. She then determine whether to accept (and earn $R^r(H, N)$) or reject (and earn 0).
- With probability 1λ she will observe S = L.
- \triangleright In both cases, she pays k for forecasting.

No forecasting: formulation

▶ To optimally induce no forecasting, the manufacturer solves

$$\max_{q_N, r_N, t_N} t_N - cq_N - r_N E \min\{q_N, D_N\}$$
s.t. $R^r(N, N) \ge \lambda \max\{R^r(H, N), 0\}$

$$+ (1 - \lambda) \max\{R^r(L, N), 0\} - k$$

$$R^r(N, N) \ge 0.$$

- ▶ The first constraint ensures that the retailer prefers no forecasting.
- ▶ The second constraint ensures that the retailer will participate.
- ▶ **Incentives** are provided through contracts.
- ► Technical assumptions:
 - Naturally, $q_N \geq 0$ and $r_N \geq 0$ though not explicitly specified.
 - ▶ It is assumed that $t_N \in \mathbb{R}$. Money may transfer in either direction!

No forecasting: solution

Proposition 2

The optimal rebates contract inducing no forecasting is

k	q_N^*	r_N^*	t_N^*
$k \leq \Gamma(q_L^I)$	q_L^I	0	$pE\min(q_L^I, D_N) - rac{\Gamma(q_L^I) - k}{1 - \lambda}$
$k \in (\Gamma(q_L^I), \Gamma(q_N^I))$	$\Gamma^{-1}(k)$	0	$pE\min(\Gamma^{-1}(k), D_N)$
$k \geq \Gamma(q_N^I)$	q_N^I	0	$pE\min(q_N^I,D_N)$

where
$$\Gamma(q) := (1 - \lambda) p \int_0^q \left[\bar{F}_N(x) - \bar{F}_L(x) \right] dx$$
 is strictly increasing in $q \in (q_L^I, q_N^I)$ and thus $\Gamma^{-1}(\cdot)$ is well-defined over $[\Gamma(q_L^I), \Gamma(q_N^I)]$.

- \blacktriangleright The optimal contract depends on k.
- ▶ It is ugly, but it can be found.

No forecasting: intuitions

k	q_N^*	r_N^*	t_N^*
$k \leq \Gamma(q_L^I)$	q_L^I	0	$pE\min(q_L^I, D_N) - \frac{\Gamma(q_L^I) - k}{1 - \lambda}$
$k \in (\Gamma(q_L^I), \Gamma(q_N^I))$	$\Gamma^{-1}(k)$	0	$pE\min(\Gamma^{-1}(k), D_N)$
$k \geq \Gamma(q_N^I)$	q_N^I	0	$pE\min(q_N^I,D_N)$

Rebates contracts

- ▶ A rebate encourages forecasting so **no rebate** should be offered.
- \triangleright A large quantity encourages forecasting so q increases in k.
 - \blacktriangleright When k is large, it is easy to induce no forecasting.
 - ▶ The manufacturer can implement the efficient quantity (q_N^I) and capture all the surplus by the transfer.
 - \triangleright When k is moderate, it is not too hard to induce no forecasting.
 - ▶ The manufacturer captures all the surplus with a **reduced quantity**.
 - \blacktriangleright When k is small, it is hard to induce no forecasting.
 - \triangleright The manufacturer must leave some rents to the retailer by reducing t.

No forecasting: intuitions

- \triangleright The retailer is "advantageous" when k is small. Does that make sense?
- ▶ The retailer gets rents though she does not have private information.
 - ► The threat of obtaining private information can generate rents!
- \triangleright The power of threat depends on k:
 - \blacktriangleright When k is large, the threat is **weak** (noncredible). The manufacturer can be mean to the retailer (and use the transfer to extract everything).
 - \triangleright When k is small, the threat is **strong** (credible). The manufacturer must be generous to the retailer.
- \triangleright We may verify that the manufacturer's expected profit increases in k.
 - ► This is true if, and only if, he is required to induce no forecasting.

Forecasting

- ▶ Suppose the manufacturer wants to induce forecasting.
 - ▶ The retailer will have the private demand signal.
 - ▶ A menu of two contracts $\{(q_H, r_H, t_H), (q_L, r_L, t_L)\}$ will be offered.
- ▶ Now the manufacturer must ensures four things:
 - ▶ Once the retailer forecasts, she will select the intended contract.
 - ▶ Selecting the intended contract leaves the retailer a nonnegative profit.
 - ▶ The retailer must prefer forecasting to no forecasting.
 - ▶ Forecasting leaves the retailer a nonnegative profit.

Forecasting: formulation

▶ To optimally induce forecasting, the manufacturer solves

$$\max_{\substack{(q_H, r_H, t_H) \\ (q_L, r_L, t_L)}} \lambda \Big[t_H - cq_H - r_H E \min\{q_H, D_H\} \Big] \\ + (1 - \lambda) \Big[t_L - cq_L - r_L E \min\{q_L, D_L\} \Big]$$
s.t.
$$R^r(H, H) \ge R^r(H, L), \quad R^r(L, L) \ge R^r(L, H)$$

$$R^r(H, H) \ge 0, \quad R^r(L, L) \ge 0$$

$$\lambda R^r(H, H) + (1 - \lambda) R^r(L, L) - k \ge R^r(N, H)$$

$$\lambda R^r(H, H) + (1 - \lambda) R^r(L, L) - k \ge R^r(N, L)$$

$$\lambda R^r(H, H) + (1 - \lambda) R^r(L, L) - k \ge 0$$

- ► The first two IC constraints ensure truth-telling after forecasting.
- ► The next two IR constraints ensure participation after forecasting.
- ► The last three IC and IR constraints ensure forecasting.

Forecasting: solution

Proposition 3

The optimal rebates contract inducing forecasting is

$$q_L^* = \underset{q \ge 0}{\operatorname{argmax}} \left\{ p \int_0^q [\bar{F}_L(x) - \lambda \bar{F}_H(x)] dx - (1 - \lambda) cq \right\}$$

$$r_L^* = 0$$

$$t_L^* = pE \min(q_L^*, D_L)$$

$$q_H^* = q_H^I$$

$$r_H^* = \frac{k}{\lambda (1 - \lambda) \Delta(q_H^I)}$$

$$t_H^* = (p + r_H^*) E \min(q_H^*, D_H) - p\Delta(q_L^*) - \frac{k}{\lambda}$$

$$where \Delta(q) := \mathbb{E} \left[\min(q, D_H) - \min(q, D_L) \right].$$

Rebates contracts

- ▶ Whenever we want to differentiate agents through contract design, we need to provide incentives for them to tell the truth.
- ▶ Who has the incentive to lie?
 - A retailer always tends to claim that the market is bad to get generous contracts.
 - ► The high-type retailer wants to pretend to be the low-type one.
- ▶ That is why we have $r_H^* > r_L^* = 0$ and $q_H^I = q_H^* > q_L^*$.
 - ► An optimistic retailer likes rebates and high quantity.
 - ▶ To prevent her from mimicking the low type, the manufacturer cuts **down** r_L^* and q_L^* .
 - Efficiency at top: $q_H^I = q_H^*$.
 - ▶ Monotonicity: $q_H^* > q_L^*$.
 - No rent at bottom can also be verified.
 - $r_L^* = 0$: There is no point to offer a rebate to the low-type retailer.

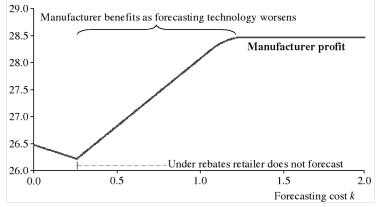
Inducing forecasting or not

- ▶ We can find $\mathcal{M}_F^r(k)$ and $\mathcal{M}_N^r(k)$, the manufacturer's expected profit, as a function of k, when the retailer is induced to or not to forecast.
- ▶ Forecasting should be induced if and only if $\mathcal{M}_F^r(k) > \mathcal{M}_N^r(k)$.
- ▶ It can be verified that:
 - ▶ When k = 0, $\mathcal{M}_F^r(0) \ge \mathcal{M}_N^r(0)$: Inducing no forecasting is too costly when forecasting is free.
 - ▶ When k goes up, $\mathcal{M}_F^r(k)$ decreases (inducing forecasting becomes more costly) and $\mathcal{M}_N^r(k)$ increases (inducing no forecasting becomes easier).
- ▶ Therefore, there exists a unique threshold $k^r \ge 0$ such that

$$\mathcal{M}_F^r(k) > \mathcal{M}_N^r(k) \quad \Leftrightarrow \quad k < k^r.$$

► Induce forecasting if and only if the **forecasting cost is low**.

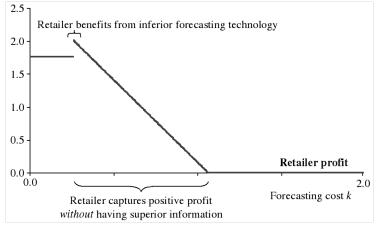
► The manufacturer may **prefer** a retailer with a **high** forecasting cost.



(Figure 1a in Taylor and Xiao (2009))

Impact of the forecasting cost

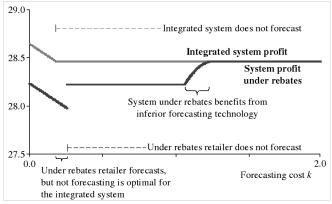
► The retailer may also **benefit** from a **high** forecasting cost.



(Figure 1b in Taylor and Xiao (2009))

Impact of the forecasting cost

- ▶ Rebates contracts may not coordinate the supply chain $(k^I \neq k^r)$.
- ► The system may **benefit** from a **high** forecasting cost.



(Figure 1c in Taylor and Xiao (2009))

Summary for rebates contracts

- Manufacturers should not blindly seek out retailers with low forecasting cost.
 - ▶ It is easier for a better-forecasting retailer to get information advantage.
- ▶ Retailers should not blindly reduce the forecasting cost.
 - ightharpoonup Especially if the reduction crosses the threshold k^r .
- ▶ In practice, a manufacturer may reduce a retailer's forecasting cost.
 - ▶ He should do that only when the retailer is already good at forecasting.
- Note that all these conclusions are made when the manufacturer is restricted to rebates contracts.
 - ► How about returns contracts?
 - ▶ How about optimal contracts?

- ▶ Introduction.
- ► Model.
- ▶ Rebates contracts.
- ► Returns contracts.

Returns contracts

- ► Here we study the manufacturer's optimal strategy for offering returns contracts.
- ▶ He may still chooses to induce the retailer to or not to forecast.
- ▶ In all equilibria, the retailer will accept a contract. Let

$$R^b(S,C) := p\mathbb{E}\min(q_C, D_S) + b_C \mathbb{E}\max(q_C - D_S, 0) - t_C,$$

be the retailer's expected profit when she observes signal $S \in \{N, H, L\}$ and chooses contract $(q_C, b_C, t_C), C \in \{N, H, L\}$.

No forecasting

- ▶ Suppose the manufacturer wants to drive the retailer not to forecast.
 - ▶ He will offer a single contract (q_N, b_N, t_N) .
- ▶ Among returns contracts that induce no forecasting, which is optimal?
- Inducing the retailer not to forecast is surprisingly simple. Just provide a full insurance!
 - ▶ A contract satisfying (q, b, t) = (q, p, pq) is a full-returns contract.³
 - ▶ Under a full-returns contract, the retailer has **no incentive to forecast**.
- ▶ The retailer **earns nothing** under a full-return contract.
- ▶ If the manufacturer offers the efficient quantity q^I , the manufacturer's expected profit is maximized to the expected system profit.
- ▶ The optimal returns contract is (q_N^I, p, pq_N^I) .

 $^{^3}$ In Pasternack (1985), this is called a full-credit return contract.

Forecasting: formulation

- ▶ If the manufacturer wants to induce forecasting, he should offer a menu of two contracts $\{(q_H, b_H, t_H), (q_L, b_L, t_L)\}$.
- ▶ To optimally induce forecasting, the manufacturer solves

$$\max_{\substack{(q_H, b_H, t_H)\\ (q_L, b_L, t_L)}} \lambda \left[t_H - cq_H - b_H E \max\{q_H - D_H, 0\} \right] \\ + (1 - \lambda) \left[t_L - cq_L - b_L E \max\{q_L - D_L, 0\} \right]$$
s.t.
$$R^b(H, H) \ge R^b(H, L), \quad R^b(L, L) \ge R^b(L, H)$$

$$R^b(H, H) \ge 0, \quad R^b(L, L) \ge 0$$

$$\lambda R^b(H, H) + (1 - \lambda) R^b(L, L) - k \ge R^b(N, H)$$

$$\lambda R^b(H, H) + (1 - \lambda) R^b(L, L) - k \ge R^b(N, L)$$

$$\lambda R^b(H, H) + (1 - \lambda) R^b(L, L) - k \ge 0$$

Forecasting: solution

▶ The optimal returns contract inducing forecasting is

$$\begin{split} q_L^* &= q_L^I \\ b_L^* &= p \\ t_L^* &= p q_L^I \\ q_H^* &= \max\{q_H^I, \Gamma^{-1}(k)\} \\ b_H^* &= 0 \\ t_H^* &= pE \min\left\{\max\{q_H^I, \Gamma^{-1}(k)\}, D_H\right\} - k/\lambda \end{split}$$

Rebates contracts

- ► The manufacturer should offer a **no-returns** (full-returns) contract for the optimistic (pessimistic) retailer.
- ▶ Efficiency at bottom, not at top!
- ▶ We need to prevent the retailer from doing no forecast but selecting (q_H^*, b_H^*, t_H^*) . Upwards distorting q_H is effective: A retailer select a high-quantity contract only if she is optimistic enough.

Forecasting: surplus extraction

- ► It can be shown that the retailer still **earns nothing** when the manufacturer wants to induce forecasting.
- ▶ Why?
- ► The retailer may earn rents because she can **mimic** the low type when she is actually of the high type.
 - However, the full-returns contract leaves the retailer no surplus regardless of her type.
 - ▶ The manufacturer thus does not need to worry about the mimicking.
 - The retailer has no informational advantage even though she has private information!

Inducing forecasting or not

- ► Again, there is a unique threshold that determines whether the manufacturer should induce the retailer to forecast.
- $lackbox{}$ (Most) surprisingly, the threshold is **always** identical to k^I , the threshold for the integrated system!

Proposition 4 (Proposition 6 in Taylor and Xiao (2009))

By offering a returns contract, manufacturer should induce forecasting if and only if $k < k^I$.

- If $k \geq k^I$, a single full-returns contract is offered.
- ▶ If $k < k^{I}$, a full-returns contract and a no-returns contract are offered.

In either case, the manufacturer's expected profit is the integrated system expected profit.

Inducing forecasting or not: intuition

- Full-returns contracts are too powerful!
- ▶ The manufacturer adopts the following strategy:
 - ▶ Always offer a full-returns contract to extract all the surplus from a type-N or type-L retailer.
 - ► Then the type-*H* also loses her informational advantage.
 - ▶ All I need to worry about is to induce forecasting when I should.
 - Offering a risky no-return contract with a large quantity encourages the retailer to forecast.
- Screening is not a problem. Inducing information acquisition is.
- ► However
 - \triangleright The retailer's threat of forecasting is credible only if k is small.
 - \triangleright But when k is small, the manufacturer prefers the retailer to forecast.
 - ▶ The threat is strong only when the manufacturer does not care about it.
- ► The key difference between rebates and returns is that screening is a **problem** when using rebates contracts.

Conclusions

- ▶ A supply chain in which the retailer may forecast or not is studied.
- ▶ Two types of contracts, rebates contracts and returns contracts, are analyzed and compared.
- ▶ From the manufacturer's perspective, returns contracts are better.
- ▶ In fact, returns contracts are optimal and coordinating.