IM 7011: Information Economics (Fall 2014)

Value of Information: the More, the Better?

Ling-Chieh Kung

Department of Information Management
National Taiwan University

November 17, 2014

Introduction

- In a typical principal-agent relationship:
- The agent have private information.
- Hidden information creates the screening problem for the principal.
- A hidden action creates the moral hazard problem for the principal.
- Many possibilities:
- What if the agent has both hidden information and a hidden action?
- What if the principal may obtain some (but not all) information?
- What if there are two cascaded principal-agent relationship?
- We will address these issues by discussing Kung and Chen (2014). ${ }^{1}$

[^0]
Road map

- The story.
- Model.
- Optimal contracts.
- Findings.
- Extensions and conclusions.

This is a story of a salesperson

Thanks for the offer, but we have no use for a fridge in this household...
http://www.cartoonstock.com/

Different supply chains in practice

- Some manufacturers hire salespeople directly.

http://img.autonet.com.tw/news/img/2005/12/

http://static.ettoday.net/images/85/d85813.jpg
- Some manufacturers let retailers manage salespeople.
- Why?

When a manufacturer hires a salesperson

- The salesperson needs to put efforts in promoting the product.
- The efforts are costly: No one wants to work for free.
- The efforts are hidden.
- The manufacturer will pay commissions to the salesperson.
- The salesperson's payoff is based on the sales outcome.
- However, the outcome is uncertain.
- What if a salesperson is diligent (resp., lazy) in promoting an unpopular (resp., popular) product?
- What if the market condition is just bad?
- The market condition is also hidden to the manufacturer.
- Is a high sales volume due to the salesperson's hard work or a good market condition?
- If a salesperson is rewarded or punished by luck, will he work hard?

When a retailer hires a salesperson

- The market condition and sales effort introduce information asymmetry between manufacturers and salespeople.
- How to collect more information? Find a retailer!
- The retailer is closer to the market and to the salespeople.
- She knows more about the market condition and sales efforts.
- We will focus on the informational impact of including a retailer.
- The retailer simply resell the product.
- It is called a reseller in this study.

Demand forecasting

- Different retailers have different demand forecasting capabilities.
- Manufacturers care about resellers' forecasting capabilities.
- Sony (Stoller, 2004), HP (Newswire, 2000), CPFR (Fraser, 2003).
- When a reseller can do better demand forecasting, its screening problem (with respect to salespeople) is alleviated.
- In estimating the random market condition:
- Salespeople are the best.
- Retailers are second best.
- Manufacturers are the worst.
- We study the impact of forecasting accuracy on supply chain performance and profit splitting.
- How should the manufacturer choose the supply chain structure?
- How should the retailer choose her forecasting accuracy?

Road map

- The story.
- Model.
- Optimal contracts.
- Findings.
- Extensions and conclusions.

Supply chain

- Manufacturer (M) - Reseller (R) - Sales agent (A).
- Production cost is 0 and retail price is 1 .
- Random market demand $x \in\{0,1\}$ is realized according to

$$
\operatorname{Pr}(x=1 \mid \theta, a)=\theta a=1-\operatorname{Pr}(x=0 \mid \theta, a),
$$

which depends on market condition θ and sales effort a.

- $\theta \in\left\{\theta_{\mathrm{L}}, \theta_{\mathrm{H}}\right\}$ where $0<\theta_{\mathrm{L}}<\theta_{\mathrm{H}}<1$.
- $\operatorname{Pr}\left(\theta=\theta_{\mathrm{L}}\right)=\operatorname{Pr}\left(\theta=\theta_{\mathrm{H}}\right)=\frac{1}{2}$.
- Cost of a is $\frac{1}{2} a^{2}$.

Demand forecasting

- R and A estimate θ independently.
- R obtains signal $s_{\mathrm{R}} \in\{G, B\}$ with forecasting accuracy λ_{R}.
- $\mathrm{G}=$ Good, $\mathrm{B}=\mathrm{Gad}$.
- $\operatorname{Pr}\left(B \mid \theta_{\mathrm{L}}\right)=\operatorname{Pr}\left(G \mid \theta_{\mathrm{H}}\right)=\lambda_{\mathrm{R}}=1-\operatorname{Pr}\left(G \mid \theta_{\mathrm{L}}\right)=1-\operatorname{Pr}\left(B \mid \theta_{\mathrm{H}}\right)$.
- A obtains signal $s_{\mathrm{A}} \in\{F, U\}$ with forecasting accuracy λ_{A}.
- $\mathrm{F}=$ Favorable, $\mathrm{U}=$ Unfavorable.
- $\operatorname{Pr}\left(U \mid \theta_{\mathrm{L}}\right)=\operatorname{Pr}\left(F \mid \theta_{\mathrm{H}}\right)=\lambda_{\mathrm{A}}=1-\operatorname{Pr}\left(F \mid \theta_{\mathrm{L}}\right)=1-\operatorname{Pr}\left(U \mid \theta_{\mathrm{H}}\right)$.
- $\lambda_{\mathrm{R}} \in\left[\frac{1}{2}, 1\right]$ and $\lambda_{\mathrm{A}} \in\left[\frac{1}{2}, 1\right]$.
- A sees s_{A} and $s_{\mathrm{R}}, \mathrm{R}$ sees s_{R}, and M sees nothing.

Contract forms

- R can only compensate A based on the realized sales outcome x.
- The optimal compensation scheme consists of a fixed payment α and a sales bonus β :

$$
\text { A's earning }=\left\{\begin{array}{ll}
\alpha & \text { if } x=0 \\
\alpha+\beta & \text { if } x=1
\end{array}\right. \text {. }
$$

- Because A privately observes s_{A}, it is optimal for R to offer a menu of contracts $\left\{\left(\alpha_{\mathrm{F}}, \beta_{\mathrm{F}}\right),\left(\alpha_{\mathrm{U}}, \beta_{\mathrm{U}}\right)\right\}$.
- Similarly, M offers $\left\{\left(u_{\mathrm{G}}, v_{\mathrm{G}}\right),\left(u_{\mathrm{B}}, v_{\mathrm{B}}\right)\right\}$ to R.
- Each player acts to maximize her own expected profit.

Timing and backward induction

R and A decide
λ_{R} and λ_{A}.

	R offers	
s_{R} and s_{A}	$\left\{\left(\alpha_{j}, \beta_{j}\right)\right\}$	x is realized;
are observed.	to A.	M earns sales
		revenue; R and A
		are rewarded.

Solution: Backward induction.

Road map

- The story.
- Model.
- Optimal contracts.
- Findings.
- Extensions and conclusions.

Sales agent's effort level

- Suppose the sales agent has observed $\left(s_{\mathrm{A}}, s_{\mathrm{R}}\right)=(j, k)$ and chosen the contract (α, β).
- The sales agent solves

$$
\begin{aligned}
\mathcal{A}_{j k}(t) & \equiv \max _{a \geq 0} \mathbb{E}\left[\left.\alpha+\beta x-\frac{1}{2} a^{2} \right\rvert\, s_{\mathrm{A}}=j, s_{\mathrm{R}}=k\right] \\
& =\max _{a \geq 0} \alpha+\beta N_{j k} a-\frac{1}{2} a^{2} .
\end{aligned}
$$

- Let $N_{j k} \equiv \mathbb{E}\left[\theta \mid s_{\mathrm{A}}=j, s_{\mathrm{R}}=k\right]$.
- The optimal service level is $a_{j k}^{*}(t)=N_{j k} \beta$.

Reseller's optimal menu

- In expectation, the sales agent earns

$$
\alpha+\frac{1}{2} \beta^{2} N_{j k}^{2}
$$

if he observes $\left(s_{\mathrm{A}}, s_{\mathrm{R}}\right)=(j, k)$ and selects (α, β).

- For the reseller (seeing $s_{\mathrm{R}}=k$) to induce truth-telling:
- To make an agent observing $s_{\mathrm{A}}=F$ prefer $\left(\alpha_{\mathrm{F}}, \beta_{\mathrm{F}}\right)$:

$$
\alpha_{\mathrm{F}}+\frac{1}{2} \beta_{\mathrm{F}}^{2} N_{F k}^{2} \geq \alpha_{\mathrm{U}}+\frac{1}{2} \beta_{\mathrm{U}}^{2} N_{F k}^{2} .
$$

- To make an agent observing $s_{\mathrm{A}}=U$ prefer $\left(\alpha_{\mathrm{U}}, \beta_{\mathrm{U}}\right)$:

$$
\alpha_{\mathrm{U}}+\frac{1}{2} \beta_{\mathrm{U}}^{2} N_{U k}^{2} \geq \alpha_{\mathrm{F}}+\frac{1}{2} \beta_{\mathrm{F}}^{2} N_{U k}^{2} .
$$

- These are the incentive compatibility constraints.

Reseller's optimal menu

- In expectation, the sales agent earns

$$
\alpha+\frac{1}{2} \beta^{2} N_{j k}^{2}
$$

if he observes $\left(s_{\mathrm{A}}, s_{\mathrm{R}}\right)=(j, k)$ and selects (α, β).

- For the reseller (seeing $s_{\mathrm{R}}=k$) to induce participation:
- To allow an agent observing $s_{\mathrm{A}}=F$ to earn something:

$$
\alpha_{\mathrm{F}}+\frac{1}{2} \beta_{\mathrm{F}}^{2} N_{F k}^{2} \geq 0
$$

- To make an agent observing $s_{\mathrm{A}}=U \operatorname{select}\left(\alpha_{\mathrm{U}}, \beta_{\mathrm{U}}\right)$:

$$
\alpha_{\mathrm{U}}+\frac{1}{2} \beta_{\mathrm{U}}^{2} N_{U k}^{2} \geq 0
$$

- These are the individual rationality constraints.

Reseller's optimal menu

- Suppose the reseller has observed $s_{\mathrm{R}}=k$ and chosen (u, v) :

$$
\begin{aligned}
\mathcal{R}_{k}(t) \equiv \max _{\substack{\alpha_{\mathrm{F}} \text { urs., } \beta_{\mathrm{F}} \geq 0, \alpha_{\mathrm{U}} \text { urs., } \beta_{\mathrm{U}} \geq 0}} & \sum_{j \in\{F, U\}} \bar{P}_{j k}\left[u_{t}-\alpha_{j}+\left(v_{t}-\beta_{j}\right) N_{j k}^{2} \beta_{j}\right] \\
\text { s.t. } & \alpha_{\mathrm{F}}+\frac{1}{2} \beta_{\mathrm{F}}^{2} N_{F k}^{2} \geq 0 \\
& \alpha_{\mathrm{U}}+\frac{1}{2} \beta_{\mathrm{U}}^{2} N_{U k}^{2} \geq 0 \\
& \alpha_{\mathrm{F}}+\frac{1}{2} \beta_{\mathrm{F}}^{2} N_{F k}^{2} \geq \alpha_{\mathrm{U}}+\frac{1}{2} \beta_{\mathrm{U}}^{2} N_{F k}^{2} \\
& \alpha_{\mathrm{U}}+\frac{1}{2} \beta_{\mathrm{U}}^{2} N_{U k}^{2} \geq \alpha_{\mathrm{F}}+\frac{1}{2} \beta_{\mathrm{F}}^{2} N_{U k}^{2} .
\end{aligned}
$$

- $\bar{P}_{j k} \equiv \operatorname{Pr}\left(s_{\mathrm{A}}=j \mid s_{\mathrm{R}}=k\right)$.
- $\mathbb{E}\left[x \mid s_{\mathrm{A}}=j, s_{\mathrm{R}}=k\right]=N_{j k} a_{j k}^{*}=N_{j k}^{2} \beta_{j}$.

Reseller's optimal contract

Lemma 1

With $s_{\mathrm{R}}=k \in\{G, B\}$ and $\left(u_{t}, v_{t}\right)$, the reseller offers

$$
\beta_{F}^{*}=v_{t} \text { and } \beta_{U}^{*}=\frac{\bar{P}_{U k}}{\bar{P}_{U k}+\bar{P}_{F k}\left(N_{F k}^{2} / N_{U k}^{2}-1\right)} v_{t}
$$

and earns $\mathcal{R}_{k}(t)=u_{t}+\frac{1}{2} Z_{k} v_{t}^{2}$ in expectation, where

$$
Z_{k} \equiv \bar{P}_{F k} N_{F k}^{2}+\frac{\bar{P}_{U k}^{2} N_{U k}^{4}}{\bar{P}_{U k}+\bar{P}_{F k}\left(N_{F k}^{2} / N_{U k}^{2}-1\right)} .
$$

- Downward distortion for the pessimistic sales agent.

Manufacturer's optimal contract

- Let $\mathcal{R}_{k} \equiv \mathcal{R}_{k}(k)$.
- The manufacturer solves

$$
\begin{aligned}
\mathcal{M}=\max _{\substack{u_{G} \text { urs., } \\
u_{B} \geq 0, \text { urs., } \\
v_{B} \geq 0}} & \sum_{k \in\{G, B\}} \frac{1}{2}\left[\left(1-v_{k}\right) Z_{k} v_{k}-u_{k}\right] \\
\text { s.t. } & \mathcal{R}_{G} \geq 0, \quad \mathcal{R}_{B} \geq 0, \\
& \mathcal{R}_{G} \geq \mathcal{R}_{G}(B), \quad \mathcal{R}_{B} \geq \mathcal{R}_{B}(G) .
\end{aligned}
$$

- $\mathbb{E}\left[x \mid s_{R}=k\right]=\sum_{j \in\{F, U\}} \bar{P}_{j k} N_{j k}^{2} \beta_{j k}=Z_{k} v_{k}$.

Manufacturer's optimal contract

Lemma 2

The manufacturer offers

$$
v_{G}^{*}=1 \text { and } v_{B}^{*}=\frac{Z_{B}}{Z_{G}}
$$

and earns $\mathcal{M}=\frac{1}{4}\left[Z_{G}+\frac{Z_{B}^{2}}{Z_{G}}\right]$ in expectation. We also have $\mathcal{R}_{B}=0$, $\mathcal{R}_{G}=\frac{1}{2}\left(Z_{G}-Z_{B}\right)\left(\frac{Z_{B}}{Z_{G}}\right)^{2}$, and $\mathcal{R}=\frac{1}{2}\left(\mathcal{R}_{G}+\mathcal{R}_{B}\right)$.

- Downward distortion for the pessimistic reseller.

Road map

- The story.
- Model.
- Optimal contracts.
- Findings.
- Extensions and conclusions.

Manufacturer's profitability

- How does the reseller's accuracy affect the manufacturer's expected profit \mathcal{M} ?

Proposition 1

- \mathcal{M} is convex on
$\lambda_{\mathrm{R}} \in\left[\frac{1}{2}, 1\right]$.
- \mathcal{M} may first decrease and then increase.

Impact of reseller's accuracy

- If there should be a retailer, which one?
- Huge upstream information asymmetry:

http://servagya.com

http://z1.dfcfw.com

http://www.hvsystems.co.uk
- Huge downstream information asymmetry:

http://servagya.com

http://1.bp.blogspot.com

http://www.hvsystems.co.uk

Two driving forces when the reseller improves

- Better-monitoring effect.
- Mitigating the R-A information asymmetry.
- Strong when λ_{R} is large.
- Rent-extraction effect.
- Aggravating the M-R information asymmetry.
- Strong when λ_{R} is small.
- The better-monitoring effect eventually dominates the rent-extraction effect when λ_{R} is large enough.

Supply chain structure

- Which supply chain structure is optimal?
- One huge level of information asymmetry:

- Two small levels of information asymmetry:

http://customdvdkiosk.com

http://www.hvsystems.co.uk

Supply chain structure

- The manufacturer prefers R to be uninformed or precise.
- Supply chain structure selection: M-R-A v.s. M-A.
- Let λ_{R}^{*} maximize \mathcal{M}. Let $\eta \equiv \frac{\theta_{\mathrm{H}}}{\theta_{\mathrm{L}}}$.

Proposition 2

There exists two cutoffs η_{1} and η_{2} such that

- for $\eta \in\left(1, \eta_{1}\right], \lambda_{\mathrm{R}}^{*}=\frac{1}{2}$;
- for $\eta \in\left(\eta_{1}, \eta_{2}\right), \lambda_{\mathrm{R}}^{*}=\frac{1}{2}$ if λ_{A} is small and $\lambda_{\mathrm{R}}^{*}=1$ if λ_{A} is large;
- for $\eta \in\left[\eta_{2}, \infty\right), \lambda_{\mathrm{R}}^{*}=1$.

Supply chain structure

- Reseller's accuracy λ_{R}^{*} maximizes \mathcal{M}.
- $\lambda_{R}^{*}=1$ for large η and λ_{A}.
- $\lambda_{R}^{*}=\frac{1}{2}$ for small η and λ_{A}.

Road map

- The story.
- Model.
- Optimal contracts.
- Findings.
- Extensions and conclusions.

An extension: General levels of pessimism

- The random market condition follows a general Bernoulli distribution:

$$
\operatorname{Pr}\left(\theta=\theta_{\mathrm{L}}\right)=\gamma=1-\operatorname{Pr}\left(\theta=\theta_{\mathrm{H}}\right)
$$

for any $\gamma \in(0,1)$.

- Too complicated to prove our main results!
- We may use numerical studies to confirm our main insights.

Nonmonotonicity

Observation 1

For any $\gamma \in(0,1), \mathcal{M}$ either first decreases and then increases or monotonically decreases in $\lambda_{R} \in\left[\frac{1}{2}, 1\right]$. In particular, \mathcal{M} tends to be nonmonotone when γ is low but monotonically decreasing when γ is high.

Manufacturer-optimal reseller's accuracy

Observation 2

For any $\gamma \in(0,1), \mathcal{M}$ is maximized at $\lambda_{R}^{*}=\frac{1}{2}$ (respectively, $\lambda_{R}^{*}=1$) if η and λ_{A} are both small (respectively, large) enough. Moreover, it is more likely that $\lambda_{R}^{*}=\frac{1}{2}$ (respectively, $\lambda_{R}^{*}=1$) when γ increases (respectively, decreases).

Other extensions

- A is protected by limited liability.
- $\alpha_{j} \geq 0$ for $j \in\{F, U\}$.
- A does not observe R's signal s_{R}.
- Informed principal.
- R offers different menus upon observing different s_{R}.

Conclusions

- A manufacturer may benefit from having a reseller indirectly collect information for it.
- However, "more" information may hurt a principal!
- Once a reseller is included in the supply chain, she should be either precise or uninformed.
- The manufacturer prefers:
- The reseller to be uninformed when the market is not volatile and the sales agent is not accurate.
- The reseller to be precise when the market is volatile and the sales agent is accurate.
- Do these implications match your daily life experiences?

[^0]: ${ }^{1}$ Ling-Chieh Kung and Ying-Ju Chen, 2014, "Impact of reseller's and sales agent's forecasting accuracy in a multilayer supply chain," Naval Research Logistics 61(3) 207-222.

