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1. (a) We have

A =


1 2 5 1 0 4
1 2 4 0 −3 4
3 6 14 4 −3 13
2 4 10 0 0 11

 =


1 0 0 0
1 1 0 0
3 1 1 0
2 0 −1 1




1 2 5 1 0 4
0 0 −1 −1 −3 0
0 0 0 2 0 1
0 0 0 0 0 4

 = LU.

(b) Because the column space is the entire R4, the projection of any vector in R4 onto the column
space is the same vector. Therefore, the projection of d is (3, 2, 4, 5).

2. (a) We have detA = det(QΛQT ) = detQdet Λ detQT = det Λ det(QTQ) = det Λ det I = det Λ,
which is exactly the product of A’s eigenvalues.

(b) • For B, first note that detB = 24 detB′, where B′ is a 4 × 4 matrix satisfying B′ij = 1
if i 6= j or 0 if i = j. For B′, note that three of its eigenvalues are −1, which then
implies that the last eigenvalue is 3 (because the sum of eigenvalues are the trace, which
is 0). Then we know that detB′ = −3, the product of the eigenvalues. Collectively,
detB = −72.

• For C, which is a generalization of B, we follow the same way. First, detC = n! detC ′,
where C ′ is an n× n matrix satisfying C ′ij = 1 if i 6= j or 0 if i = j. For the eigenvalues

of C ′, n − 1 are −1 and one is n − 1. Therefore, detC ′ = (−1)n−1(n − 1) and thus
detC = (n!)(−1)n−1(n− 1).

3. (a) u1 = Au0 = (0.2, 0.3, 0.5).

(b) u2 = Au1 = (0.29, 0.36, 0.35).

(c) Because the sum of each column in A is 1 and all entries in A are no greater than 1, A is
Markov. This implies that the process is neutrally stable.

(d) As eigenvectors corresponding to the eigenvalue 1 are {(5k, 6k, 5k)}k∈R, u∞ = ( 5
16 ,

3
8 ,

5
16 ).

(e) The problem is not meaningful. Two points are given to you for free.

(f) The problem is not meaningful. Two points are given to you for free.

4. (a) False. A should be symmetric.

(b) False. When A’s eigenvalues are all real, A may be asymmetric.

(c) False. The A in the next problem provides an example.

(d) True. A is unitary implies that A is normal, which then implies that A can have n independent
eigenvectors of A.

(e) True. If A’s eigenvalues are all positive, A is positive definite. Therefore, A can be decomposed
into A = RTR, where R has independent columns. As R has n columns, it must have n pivots.

5. We have

A =

[
1√
2

1√
2

−1√
2

1√
2

] √3 0 0

0
√

7 0
0 0 0




1√
6

3√
14

−2√
21

−2√
6

2√
14

1√
21

1√
6

1√
14

4√
21


T

.

6. (a) Let x1 and x2 be eigenvector’s of A associated with λ1 and λ2, respectively. Then we have
λ1x

H
1 x2 = xH1 A

Hx2 = xH1 Ax2 = λ2x
H
1 x2, where the second equality comes from the fact that

A is positive semidefinite (and thus symmetric). Because λ1 6= λ2, we have xH1 x2 = 0, i.e., x1
and x2 are orthogonal.
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(b) An lower bound is 0, because all eigenvalues must be nonnegative for A to be positive semidef-
inite.

(c) Suppose µ is an eigenvalue of A − kI, we have (A − kI)x = µx, i.e., Ax = (µ + k)x. This
implies that µ + k is an eigenvalue of A. Conversely, if λ is an eigenvalue of A, we have
Ax = λx, which implies that (A− kI)x = (λ− k)x. We thus know that µ is an eigenvalue of
A− kI if and only if µ+ k is an eigenvalue of A. Therefore, if the eigenvalues of A are λ1, λ2,
..., λn, the eigenvalues of A− kI must be λ1 − k, λ2 − k, ..., λn − k.

(d) The statement is false, because a stationary point x must satisfy Ax = kx, which cannot be
satisfied if k is not an eigenvalue of A.

(e) A point (x, k) is a stationary point if and only if Ax = kx, which requires k to be an eigenvalue
of A. For (x, k) to be a local minimum, we need A − kI, the Hessian matrix of f(x, k), to
be positive semidefinite. This requires that all eigenvalues of A − kI to be nonnegative, and
this happens if and only if k is the smallest eigenvalue of A. Therefore, there is a unique local
minimum (xmin, λmin, where λmin = mini=1,...,n{λi and xmin is the associated eigenvector.

7. (a) An upper bound is
(
5
2

)
= 10.

(b) An upper bound is
(
6
3

)
= 20.

(c) There may be at most ten distinct bases. However, because columns 1 and 4 are dependent,
x1 and x4 cannot form a basis. Similarly, x2 and x5 cannot form a basis. Therefore, there are
eight distinct bases.

(d) The statement is false. For example, if n = m = 2 and the two equality constraints are
2x1 + x2 = 6 and x1 + 2x2 = 6, there is only one basic solution (2, 2), which is also a basic
feasible solution.

8. (a) The Hessian matrix is

A2 =

[
2r −2
−2 2r

]
.

(b) For π(p) to be strictly convex, we need A to be positive definite. This requires that 2r ≥ 0
and detA2 = 4r2 − 4 ≥ 0, which together imply r > 1. Therefore, π(p) is strictly convex if
and only if r > 1.

(c) The Hessian matrix is

A3 =

 2r −2 −2
−2 2r −2
−2 −2 2r

 .
(d) For π(p) to be strictly convex, we need A to be positive definite. To find a condition for

positive definiteness, we calculate the eigenvalues of A3. Clearly if we can make all columns
identical, there will be two eigenvalues associated with those identical columns. Therefore,
two eigenvalues will be 2r + 2, which is always positive. The last eigenvalue can be found
by 6r − 2(2r + 2) = 2r − 4 (the sum of eigenvalues is the trace) or recognizing that we may
have an eigenvalue making the three columns sum to 0. It then follows that all we need is
2r − 4 > 0, i.e., r > 2.

(e) Similar to the case of n = 3, for a general n, there will be n− 1 eigenvalues being 2r+ 2. The
last eigenvalue will be 2nr − (n − 1)(2r + 2) = 2r − 2(n − 1). The necessary and sufficient
condition we need is r > n− 1.
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