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1. We may solve this three-variable linear program with the simplex method directly. However, we
may simplify our calculation by first observing that in an optimal solution, if there is any, we have
x3 = 3. The problem can then be reduced to

max
s.t.

2x1 + x2
x1 + x2 ≥ 3
x1 − 2x2 ≥ 2

xi ≥ 0 ∀i = 1, 2.

To solve this linear program, we first construct the Phase-I linear program

max
s.t.

− x4 − x6
x1 + x2 − x3 + x4 = 3
x1 − 2x2 − x5 + x6 = 2

xi ≥ 0 ∀i = 1, ..., 6.

We fix the objective row, obtain the initial tableau, do two iterations, and solve the Phase-I linear
program as follows.1

−2 1 1 0 1 0 −5

1 1 −1 1 0 0 x4 = 3

1 −2 0 0 −1 1 x6 = 2

→

0 −3 1 0 −1 −1

0 3 −1 1 1 x4 = 1

1 −2 0 0 −1 x1 = 2

→

0 0 0 0 0

0 3 −1 1 x5 = 1

1 1 −1 0 x1 = 3

As we have found an initial basic feasible solution, we recover the objective function:

−2 −1 0 0 0

0 3 −1 1 x5 = 1

1 1 −1 0 x1 = 3

After we fix the objective row to obtain a valid tableau

0 1 −2 0 6

0 3 −1 1 x5 = 1

1 1 −1 0 x1 = 3

we find that the linear program is unbounded (due to column 3). Therefore, the original linear
program is unbounded.

2. (a) For this program to be a convex program, we need f(y) be a convex function and g(y) be a
convex function.

(b) The Lagrangian relaxation is

min f(y) + λg(y)

s.t. 0 ≤ yj ≤ 1 ∀j = 1, ..., 4.

for some λ ≥ 0.

1Note that we may also choose to enter x2 in the second iteration. The final conclusion will not change. Here we enter
x5 because the calculation will be easier.
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(c) As the original program is quite similar to the continuous knapsack problem, our intuition tells
us that we may order variables based on the ratios. If you do so and find the correct optimal
solution, you will get full points. Nevertheless, below we show that the original problem is
indeed equivalent to the continuous knapsack problem. First, let yi = 1 − xi for i = 1, ..., 4,
we obtain

min 18− 3x1 − 7x2 − 2x3 − 6x4

s.t. 13− 4x1 − 3x2 − 4x3 − 2x4 ≥ 7

0 ≤ xj ≤ 1 ∀j = 1, ..., 4,

which is equivalent to the following continuous knapsack problem

max 3x1 + 7x2 + 2x3 + 6x4

s.t. 4x1 + 3x2 + 4x3 + 2x4 ≤ 6

0 ≤ xj ≤ 1 ∀j = 1, ..., 4.

To solve this problem, we follow the ratio rule and first choose x4 to be 1. As the remaining
capacity 4 > 0, we choose x2 to be 1. As the remaining capacity 1 > 0, we choose x1 to be
1
4 . x3 is then set to be 0. The optimal solution to the original program is then found through
yi = 1− xi as (y∗1 , y

∗
2 , y
∗
3 , y
∗
4) = (0, 34 , 1, 0).

(d) To solve this problem, first we recognize that the feasible region is convex. Moreover, we
find that we are minimizing a convex function. This implies that there exists an extreme
point optimal solution. As y4 = 0, the remaining constraints tell us that there are eight
extreme points, which satisfy yi ∈ {0, 1} for i = 1, ..., 3. All we need to do is to evaluate
these eight candidates and pick up the one with the highest objective value. The calculation
is summarized below:

y1 y2 y3 f(y)

0 0 0 0
0 0 1 2.29
0 1 0 2.99
0 1 1 1.71
1 0 0 4.25
1 0 1 2.94
1 1 0 3.67
1 1 1 1.76

Therefore, the optimal solution is (y∗1 , y
∗
2 , y
∗
3 , y
∗
4) = (1, 0, 0, 0).

(e) This program can be separated into four independent problems, one for each variable. For
y1, this is a convex program and FOC suggests the solution ȳ1 = −1. As it is infeasible,
the optimal solution is y∗1 = 0. For y2, this is also a convex program and FOC results in the
optimal solution y∗2 = 1

4 . For y3, because e2y3 is increasing in y3, the optimal solution is y∗3 = 1.
For y4, because

√
y4 + 3 is increasing in y4, the optimal solution is y∗4 = 1. Collectively, the

optimal solution to the original program is (y∗1 , y
∗
2 , y
∗
3 , y
∗
4) = (0, 14 , 1, 1).

3. (a) The EOQ is
√

2(20)(1000)
1 = 200.

(b) The EOQ is
√

2(5)(2000)
2 = 100.

(c) The order cycle time of these two products are 200
1000 = 0.2 year and 100

2000 = 0.05 year, re-
spectively. Suppose we follow the EOQ rule to order product 1 and obtain 200 units at the
beginning of a year. If we also want to follow the EOQ rule for product 2, to best utilize our
warehouse, we should order product 2 after 0.025 year. However, because in 0.025 years we
only consume 1000×0.025 = 25 units of product 2, we only have a room of (250−200)+25 = 75
units in the warehouse, which is not enough for the 100 units in an order of product 2. There-
fore, we cannot follow the EOQ rule for both products.

Note. If you say no only because 200 + 100 > 250, you will only get partial credits.
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4. (a) First, we define V = {1, ..., n} and Vi+ = {i+ 1, ..., n}. Let

xi =

{
1 if there is an office in city i
0 otherwise

, i ∈ V, and

yij =

{
1 if there is a direct flight between cities i and j,
0 otherwise

, i ∈ V, j ∈ Vi+,

be the decision variables. The formulation is

max
∑
i∈V

∑
j∈Vi+

(
Rij − Cij

)
yij −

∑
i∈V

Fixi

s.t. yij ≤ xi ∀i ∈ V, j ∈ Vi+
yij ≤ xj ∀i ∈ V, j ∈ Vi+
xi, yij ∈ {0, 1} ∀i ∈ V, j ∈ Vi+.

In particular, the first two constraints ensure that we may operate a direct flight between
cities i and j only if we operate offices in both cities i and j.

(b) Continue from Part (a), we define two more sets of decision variables

zij =

{
1 if there are offices both in cities i and j
0 otherwise

, i ∈ V, j ∈ Vi+

wij =

{
1 if there is a one-stop indirect flight but no direct flight between cities i and j
0 otherwise

,

i ∈ V, j ∈ Vi+

With these new variables, we add the following term

α
∑
i∈V

∑
j∈Vi+

Rijwij ,

which represents the revenue collected from indirect flights, into the objective function. Now
the question is how to correctly connect wij with yij and zij . First, we add the following
constraint

2zij ≤ yik + ykj ∀i ∈ V, j ∈ Vi+, k ∈ V \ {i, j}

to connect zij and yij : If there is a city k /∈ {i, j} such that yik = ykj = 1, i.e., there are direct
flights between i and k and between k and j, we know there is a one-stop flight between i
and j and thus zij can be 1. We cannot use zij to determine the collection of revenues from
indirect flights because even if zij = 1, it is still possible that there is a direct flight between
i and j. Therefore, we introduce wij and add the following constraint

wij ≤ zij − yij ∀i ∈ V, j ∈ Vi+

to ensure that wij = 1 only if zij = 1 and yij = 0. Certainly we also need to add the binary
constraints zij , wij ∈ {0, 1} for all i ∈ V, j ∈ Vi+.

(c) For the linear relaxation, an optimal solution is not always an integer solution. To see this,
consider a two-city instance in which the cost of operating an office in each city is 5 and
the net benefit of operating the flight between the two cities is 10. Let the two cities be
cities 1 and 2. While one optimal solution is x1 = x2 = y12 = 1, another optimal solution
is x1 = x2 = y12 = 0. Moreover, x1 = x2 = y12 = h for any h ∈ (0, 1) is also an optimal
solution, which implies an optimal solution may not be an integer solution.

Note. In fact, for the integer program in Part (a), relaxing the binary constraints is fine, i.e.,
there is always an integer optimal solution to the linear relaxation (even through there may be
some non-integer ones) and the simplex method will always find an integer optimal solution.
To prove this, we may either show that the program in Part (a) is totally unimodular or it is
equivalent to a maximum flow problem. These are certainly beyond the scope of this course.
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5. There are two types of bidders: The one whose valuation is the highest and those whose valuations
are not the highest. We will discuss these two cases separately and show that no one will unilaterally
deviate from the strategy “bidding my valuation” in either case:

• Suppose I have the highest valuation and all other bidders bid at their valuations. In this
case, if I bid at my valuation, I will win the item and pay the second highest bid, which is the
second highest valuation. Therefore, I can get a positive valuation. If I bid a higher price, the
expected utility does not increase: I will still win the item by paying the same price. If I bid
a lower price, however, the expected utility decreases because I may lose the item. Note that
even if I bid a lower price that still allows me to win the item, my utility does not become
higher because I still pay the same amount, the second highest bid, to the seller.

• Suppose I does not have the highest valuation and all other bidders bid at their valuations. In
this case, if I bid my valuation, I will not win the item and my utility will be zero. Suppose I
bid a lower price, my expected utility does not increase: It is still zero because I will still not
win the item. Suppose I bid a higher price, however, my expected utility decreases. This is
because I may win the item by paying the second highest bid, which is the highest valuation.
As the highest valuation is higher than my valuation, my utility will be negative once I win
the item.

Therefore, we conclude that as long as all other bidders bid at their valuation, I have no incentive
to deviate from bidding at my valuation. That all bidders bid at their valuations is thus a Nash
equilibrium.

6. (a) To show that there is no saddle point, first we find those row minima and column maxima:

E F row min
A 2 −2 −2
B 1 −1 −1
C 0 0 0
D −1 2 −1

column max 2 2

The minimum of column max, 2, is not identical to the maximum of row min, 0. Therefore,
there is no saddle point.

(b) Let x1, x2, x3, and x4 be the probabilities for player 1 to select A, B, C, and D, respectively.
Player 1’s problem can then be formulated as

max u

s.t. u ≤ 2x1 + x2 − x4
u ≤ −2x1 − x2 + 2x4

x1 + x2 + x3 + x4 = 1

xi ≥ 0 ∀i = 1, ..., 4.

(c) The first way of finding player 1’s equilibrium strategy is to solve the linear program in Part
(b) directly. However, as there are five variables with three constraints, running the simplex
method may require a lot of time. We may choose another way by utilizing duality. First,
the dual linear program (which is player 2’s problem with y1 and y2 being the probabilities of
choosing E and F, respectively) is

min v

s.t. v ≥ 2y1 − 2y2

v ≥ y1 − y2
v ≥ 0

v ≥ −y1 + 2y2

y1 + y2 = 1

yi ≥ 0 ∀i = 1, 2.

⇔

min v

s.t. v ≥ −2 + 4y1

v ≥ −1 + 2y1

v ≥ 0

v ≥ 2− 3y1

0 ≤ y1 ≤ 1,
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where the equivalence is based on y2 = 1 − y1. The latter can be solved graphically as in
Figure 1. As we find that constraints 2 and 3 are nonbinding, at an primal optimal solution
x2 and x3 must be 0. Therefore, the primal program reduces to

max u

s.t. u ≤ 2x1 − x4
u ≤ −2x1 + 2x4

x1 + x4 = 1

xi ≥ 0 ∀i = 1, 2.

⇔

max u

s.t. u ≤ −1 + 3x1

u ≤ 2− 4x1

0 ≤ x1 ≤ 1,

where the equivalence is based on x2 = 1 − x1. The latter can be solved graphically as in
Figure 2 with x∗1 = 3

7 being a part of an optimal solution. This implies that an optimal
solution to the original player 1’s problem is (x∗1, x

∗
2, x
∗
3, x
∗
4) = (3

7 , 0, 0,
4
7 ).

Figure 1: Solving the dual for Problem 6c. Figure 2: Solving the primal for Problem 6c.

7. (a) Let πR(q) be the retailer’s expected profit when ordering q units, we have

πR(q) = rEmin{q,D} − wq =

{∫ q

0

x

(
1

b

)
dx+

∫ b

q

q

(
1

b

)
dx

}
− wq

=
r

b

[
1

2
q2 + q(b− q)

]
− wq = − 4

2b
q2 + (r − w)q

and the retailer’s problem is to solve maxq≥0 πR(q). By applying the newsvendor formula, we
have

1− F (q∗(w)) =
w

r
⇒ 1− q∗(w)

b
=
w

r
⇒ q∗(w) =

(
r − w
r

)
b.

Note. To get full credits for formulation, you do not need to do the Calculus. Those deriva-
tions are only for calculating the retailer’s equilibrium expected profit in Part (c).

(b) Let πM (w) be the manufacturer’s profit when choosing the wholesale price w, we have

πM (w) = (w − c)q∗(w) = (w − c)
(
r − w
r

)
b

and the manufacturer’s problem is maxw≥c πM (w). By applying the FOC, we have w∗ = r+c
2 .

(c) The retailer’s equilibrium order quantity

q∗ = q∗(w∗) =

(
r − c

2r

)
b.

5



The retailer’s equilibrium expected profit is

π∗R = πR(q∗) = − r

2b

[
(r − c)2

4r2

]
b2 +

(
r − c

2

)(
r − c

2r

)
b =

b(r − c)2

8r
.

The manufacturer’s equilibrium profit is

π∗M = πM (w∗) =

(
r − c

2

)(
r − c

2r

)
b =

b(r − c)2

4r
.

(d) Suppose the manufacturer faces consumers directly, she solves

max
Q≥0

= rEmin{Q,D} − cQ,

whose optimal solution (through the newsvendor formula) is Q∗ = ( r−c
r )b. As q∗ = r−c

2r b, it
is clear that Q∗ > q∗.

(e) For any continuous random variable D with cdf F , the newsvendor formula implies that

F (q∗) = 1− w∗

r
< 1− c

r
= F (Q∗),

where the inequality comes from the fact that the equilibrium wholesale price w∗ must be
higher than the unit production cost c. As F is an increasing function, we have Q∗ > q∗.
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