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1. For me, Ling-Chieh Kung, I have no midterm exam between April 15th and 19th.

2. We run one iteration to get

−1 −1 0 0 0 0

1 1 1 1 0 1

1 0 2 0 1 1

→

0 0 1 1 0 1

1 1 1 1 0 1

0 −1 1 −1 1 0

The optimal solution to the original problem is (x∗
1, x

∗
2, x

∗
3) = (1, 0, 0). The corresponding objective

value is 1. Since there is one nonbasic variable x2 having 0 in the objective row, we may enter it
and get the following tableau:

0 0 1 1 0 1

1 1 1 1 0 1

1 0 2 0 1 1

Therefore, another optimal solution to the original problem is x∗ = (x∗
1, x

∗
2, x

∗
3) = (0, 1, 0). The

corresponding objective value is 1.

3. (a) Because all the reduced costs are nonnegative, this is an optimal tableau. As there is an
optimal solution, the problem is not unbounded.

Note. Even though the third column contains only nonpositive numbers in the constraint
rows, that just means this is an unbounded direction. It does not imply that the problem is
unbounded.

(b) Yes, there are multiple optimal solutions. First, we know this tableau corresponds to an
optimal solution. Second, we find that there is a nonbasic variable whose reduced cost is zero.
If we try to enter this variable, we then realize that we can indeed move for a positive distance.
In fact, the direction is unbounded. Combining all the above conditions, we conclude that
there are multiple optimal solutions.

(c) There is only one optimal basic feasible solution (according to this tableau). The current
optimal solution associated with this tableau is basic. However, all other optimal solution
that can be found along the direction are not basic.

4. We run one iteration as below. Since the first column has a negative number in the objective row
and nonpositive numbers in the first and second row, we know the problem is unbounded.

0 −2 0 0 0

1 −1 1 0 4

−1 1 0 1 1

→

−2 0 0 1 2

0 0 1 1 5

−1 1 0 1 1

5. First we generate the Phase-I program

min + x4 + x5

s.t. x1 + 2x2 − x3 + x4 = 6
2x1 + 3x2 + x5 = 4

xi ≥ 0 ∀ i = 1, ..., 5.
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We then prepare the initial tableau by fixing the objective row

0 0 0 −1 −1 0

1 2 −1 1 0 x4 = 6

2 3 0 0 1 x5 = 4

→

3 5 −1 0 0 10

1 2 −1 1 0 x4 = 6

2 3 0 0 1 x5 = 4

and run two simplex iterations and get

3 5 −1 0 0 10

1 2 −1 1 0 x4 = 6

2 3 0 0 1 x5 = 4

→

0 1
2 −1 0 4

0 1
2 −1 1 x4 = 4

1 3
2 0 0 x1 = 2

→

− 1
3 0 −1 0 10

3

−1
3 0 −1 1 x4 = 10

3
2
3 1 0 0 x2 = 4

3

This is the optimal tableau (for the Phase-I program), but we still have an artificial variable (x4)
in the basis. Therefore, we conclude that the original problem is infeasible. You may draw a graph
to verify this.

6. We define

xi =

{
1 if player i is chosen
0 otherwise

, i = 1, ..., 7

as our decision variables. We also define D = (3, 2, 2, 1, 3, 3, 1) as the vector of defense levels and
R = (1, 3, 2, 3, 3, 2, 2) as the vector of rebounding levels.

The complete formulation is

max
∑7

i=1 Dixi

s.t.
∑7

i=1 xi = 5

x1 + x3 + x5 + x7 ≥ 2

x3 + x4 + x5 + x6 + x7 ≥ 2

x2 + x4 + x6 ≥ 1∑7
i=1 Rixi ≥ 10

x3 + x6 ≤ 1

2x1 ≤ x4 + x5

x2 + x3 ≥ 1

xi ∈ {0, 1} ∀ i = 1, ..., 7.

The objective function maximizes the total defense level. The first constraint chooses five starting
players. The second to the four constraints ensure that we have enough players that can play
guard, forward, and center. The fifth constraint ensures that the average rebounding level is at
least 2. The sixth constraint ensures that “if player 3 starts, then player 6 cannot start.” The
seventh constraint ensures that “if player 1 starts, then players 4 and 5 must both start.” The
eighth constraint ensures that “Either player 2 or player 3 must start.”

7. We define

xi = tons of water processed in station i, i = 1, ..., 3, and

yi =

{
1 if station i is used
0 otherwise

, i = 1, ..., 3

2



as our decision variables. We also define F = (100000, 60000, 40000) as the fixed cost vector for
stations, C = (20, 30, 40) as the variable cost vector for stations, P = (80000, 50000) as the vector

of pollutants to be removed for pollutants, and R =

 0.4 0.3
0.25 0.2
0.2 0.25

 as the matrix of pollutants

removal for stations and pollutants. Let Mi be very large numbers for a while, i = 1, ...,, the
complete formulation is

min
∑3

i=1 Fiyi +
∑3

i=1 Cixi

s.t.
∑3

i=1 Rijxi ≥ Pj ∀ j = 1, 2

xi ≤Miyi ∀ i = 1, ..., 3

xi ≥ 0 ∀ i = 1, ..., 3

yi ∈ {0, 1} ∀ i = 1, ..., 3.

The first constraint is for us to remove the required amount of both pollutants. The second
constraint sets up the binary variables: When xi > 0, we have yi = 1. The objective is to minimize
the total fixed and variable costs.

Now we find appropriate values for Mi, i.e., an upper bound of xi. These upper bounds can be
found by treating station i as the only station we build. For example, if we only build station 1,
then we need P1

R11
tons of water processed in station 1 to meet the pollutant removal constraint

for pollutant 1. Similarly, we need P2

R12
tons of water for pollutant 2. We thus need to process

max
{

P1

R11
, P2

R12

}
tons of water in station 1 (if we only build it). This quantity then become an

upper bound of x1. In general, we can define Mi = maxj=1,2

{
Pj

Rij

}
as an upper bound of xi. Then

we can replace the constraint xi ≤ Myi by xi ≤ Miyi. With the problem parameters, we have
M1 = 200000, M2 = 320000, and M3 = 400000.

8. Let z be a binary variable such that

z =

{
0 if x + y ≤ 3 is satisfied and
1 if 2x + 5y ≤ 12 is satisfied

.

Let M1 and M2 be upper bounds of x + y − 3 and 2x + 5y − 12, respectively, then the following
two constraints

x + y − 3 ≤M1z

2x + 5y − 12 ≤M2(1− z)

ensures that at least one of x+ y ≤ 3 and 2x+ 5y ≤ 12 is satisfied. The condition that both x and
y are integers is not important. Note that because there is no information regarding the possible
values of x and y, there is no way for us to find a specific values for M1 and M2.

9. First, note that “if x ≤ 2 then y ≤ 3” is equivalent to “x > 2 or y ≤ 3”. Before we apply the
technique of modeling “either-or” requirements, note that it is not allowed to have strict inequalities
in an LP or IP formulation. Therefore, we must apply the condition that x is an integer to convert
x > 2 into a weak inequality. To do this, note that x > 2 is equivalent to x ≥ 3 if x is an integer.
Therefore, all we need to do is to write constraints so that “x ≥ 3 or y ≤ 3”. Let z be a binary
variable such that

z =

{
0 if x ≥ 3 is satisfied and
1 if y ≤ 3 is satisfied

.

Let M1 and M2 be upper bounds of 3−x and y−3, respectively, then the following two constraints

3− x ≤M1z

y − 3 ≤M2(1− z)

ensures that at least one of x ≥ 3 and y ≤ 3 is satisfied, i.e., if x ≤ 2 then y ≤ 3. Note that because
there is no information regarding the possible values of x and y, there is no way for us to find a
specific values for M1 and M2.
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