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Example: pricing a single good

I Suppose a retailer purchases one product at a unit cost c.

I It chooses a unit retail price p to maximize its total profit.

I The demand is a function of p: D(p) = a− bp.
I What is the mathematical program that finds the optimal price?

I Parameters: a > 0, b > 0, c > 0.
I Decision variable: p.

max
s.t.

(p− c)(a− bp)
p ≥ 0.
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Example: folding a piece of paper

I We are given a piece of square paper
whose edge length is a.

I We want to cut down four small
squares, each with edge length d, at
the four corners.

I We then fold this paper to create a
container.

I How to choose d to maximize the
volume of the container?

max
s.t.

(a− 2d)2d
0 ≤ d ≤ a

2 .
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Example: locating a hospital

I In a country, there are n cities, each lies at location (xi, yi).

I We want to locate a hospital at location (x, y) to minimize the
distance between city 1 (the capital) and the hospital.

I However, we want none of the cities is far from the hospital by
distance d.

min
s.t.

√
(x− x1)2 + (y − y1)2√
(x− xi)2 + (y − yi)2 ≤ d ∀i = 1, ..., n.
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Nonlinear programming

I In all the three examples, the program is by nature nonlinear.

I Moreover, it is impossible to linearize these formulation.
I Because the trade off can only be modeled in a nonlinear way.

I In general, a nonlinear program (NLP) can be formulated as

min
x∈Rn

f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m.

I x ∈ Rn: there are n decision variables.
I There are m constraints.
I This is a nonlinear program unless f and gis are all linear in x.

I The study of optimizing nonlinear programs is
nonlinear programming (also abbreviated as NLP).
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Difficulties of nonlinear programming

I Compared with LP, NLP is much more difficult.

I Given an NLP, it is possible that no one in the world knows
how to solve it (i.e., find the global optimum) efficiently. Why?

I Difficulty 1: In an NLP, a local min may not be a global min.

I A greedy search may stop at a local min.
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Difficulties of nonlinear programming

I Difficulty 2: In an NLP which has an
optimal solution, there may be no
extreme point optimal solution.

I For example:

min
s.t.

x21 + x22
x1 + x2 ≥ 4.

I The optimal solution x∗ = (2, 2) is not
an extreme point.

I In fact, there is no extreme point.
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Difficulties of nonlinear programming

I For an NLP:
I What are the conditions that make a local min always a global min?
I What are the conditions that guarantee an extreme point optimal

solution (when there is an optimal solution)?

I To answer these questions, we need convex sets and convex and
concave functions.
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Convex programming

Convex sets

I Recall that we have defined convex sets and functions:

Definition 1 (Convex sets)

A set F is convex if

λx1 + (1− λ)x2 ∈ F

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Convex programming

Convex functions

Definition 2 (Convex functions)

A function f(·) is convex if

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Convex programming

Condition for global optimality

I Suppose we minimize a convex function with no constraint, a
local minimum is a global minimum.

I When there are constraints, as long as the feasible region is
also convex, the desired property still holds.

Proposition 1

For an NLP minx∈F f(x), if
I the feasible region F is a convex set and
I the objective function f is a convex function,

a local min is a global min.

Proof. See Proposition 1 in slides “ORSP13 03 BasicsOfLP”.
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Convex programming

Convexity of the feasible region is required

I Consider the following example

min
s.t.

x2

x ∈ [−2,−1] ∪ [0, 1].

Note that the feasible region
[−2,−1] ∪ [0, 1] is not convex.

I The local min x′ = −1 is not a
global min. The unique global
min is x∗ = 0.
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Convex programming

Condition for extreme point optimal solutions

I While minimizing a convex function gives us a special property,
how about minimizing a concave function?

Proposition 2

For an NLP minx∈F f(x), if
I the feasible region F is a convex set,
I the objective function f is a concave function, and
I an optimal solution exists,

there exists an extreme point optimal solution.

Proof. Beyond the scope of this course.
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Convex programming

Convex programs

I Between the above two propositions, Proposition 1 is applied
more in solving NLPs.

I We give those NLPs that satisfy the condition in Proposition 1 a
special name: convex programs.

Definition 3

An NLP minx∈F f(x) is a convex program if its feasible region
F is convex and the objective function f is convex over F .

Corollary 1

For a convex program, a local min is a global min.

I Therefore, for convex programs, a greedy search finds an
optimal solution (if one exists).
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Convex programming

Convex programming

I The field of solving convex programs is convex programming.
I Several optimality conditions have been developed to analytically

solve convex programs.
I Many efficient search algorithms have been developed to

numerically solve convex programs.
I In particular, the simplex method numerically solve LPs, which are

special cases of convex programs.

I In this course, we will only discuss how to analytically solve
single-variate convex programs.

I All you need to know are:
I People can solve convex programs.
I People cannot solve general NLPs.
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Solving single-variate NLPs
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Solving single-variate NLPs

Solving single-variate NLPs

I Here we discuss how to analytically solve single-variate NLPs.
I “Analytically solving a problem” means to express the solution as a

function of problem parameters symbolically.

I Even though solving problems with only one variable is
restrictive, we will see some useful examples in the remaining
semester.

I We will focus on twice differentiable functions and try to
utilize convexity (if possible).
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Solving single-variate NLPs

Convexity of twice differentiable functions

I For a general function, we may need to use the definition of
convex functions to show its convexity.

I For single-variate twice differentiable functions (i.e., the
second-order derivative exists), there are useful properties:

Proposition 3

For a single-variate twice differentiable function f(x):
I f is convex in [a, b] if f ′′(x) ≥ 0 for all x ∈ [a, b].
I x̄ is a local min only if f ′(x̄) = 0.
I If f is convex, x∗ is a global min if and only if f ′(x∗) = 0.

Proof. For the first two, see your Calculus textbook. The last
one is a combination of the second one and Proposition 1.
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Solving single-variate NLPs

Convexity of twice differentiable functions

I The condition f ′(x) = 0 is called the first order condition
(FOC).

I For all functions, FOC is necessary for a local min.

I For convex functions, FOC is also sufficient for a global min.
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Solving single-variate NLPs

Example 1

I Now let’s apply these properties to solve Example 1

max
s.t.

π(p) = (p− c)(a− bp)
p ≥ 0.

I The feasible region [0,∞) is convex.
I Let’s first ignore this constraint.
I The profit function is concave in p:

π′(p) = a− bp− b(p− c) and π′′(p) = −2b < 0.

I An optimal solution p∗ satisfies

π′(p∗) = 0⇒ a− 2bp∗ + bc = 0⇒ p∗ =
a+ bc

2b
.

I As p∗ = a+bc
2b is feasible, it is optimal.

I Does p∗ = a+bc
2b make sense?
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Solving single-variate NLPs

Example 2

I Now condition Example 2:

max
s.t.

V (d) = (a− 2d)2d
0 ≤ d ≤ a

2

.

I The feasible region [0, d2 ] is convex.
I The volume function V (d) = 4d3 − 4ad2 + a2d is not concave!
I However, as long as it is concave over the feasible region, FOC will

still be sufficient (if we apply it to only feasible points). Is it?

V ′(d) = 12d2 − 8ad+ a2 and V ′′(d) = 24d− 8a.

In the feasible region [0, a2 ], V is also not concave.
I What should we do?
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Solving single-variate NLPs

Example 2

I Recall that FOC is always necessary!

I We may find all the points that satisfy FOC and compare all
those that are feasible.

V ′(d) = 12d2 − 8ad+ a2 = 0 ⇒ d =
a

6
or

a

2
.

I As V
(
a
6

)
> V

(
a
2

)
= 0, a6 is optimal... ?

I Is this enough?

I As there are constraints, we also need to check the boundaries!
I As both boundary points 0 and a

2 result in a zero objective value, a6
is indeed optimal.
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Lagrangian duality and the KKT condition
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Lagrangian duality and the KKT condition

Lagrangian relaxation

I Recall that we have learned duality for LP.

I The same idea can be applied to NLPs.

I Consider a primal NLP

z∗ = max
x∈Rn

f(x)

s.t. gi(x) ≤ bi ∀i = 1, ...,m.

I The primal may be difficult:
I There are many constraints.
I The primal may be a nonconvex program.
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Lagrangian duality and the KKT condition

Lagrangian relaxation

I Instead of solving the primal directly, we may move all the
constraints to the objective function:

max
x∈Rn

f(x) +

m∑
i=1

[
bi − gi(x)

]
.

I Solving this program is easier but is not helpful. For example, the
optimal solution may be infeasible!

I To avoid violating a constraint gi(x) ≤ bi, we may add a penalty
λi to this constraint. These λis are called Lagrange multipliers.

I This penalty λi should be nonnegative. Why?

I For λ = (λ1, ..., λm) ≥ 0, the Lagrangian relaxation is

L(λ) = max
x∈Rn

f(x) +

m∑
i=1

λi
[
bi − gi(x)

]
.
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Lagrangian duality and the KKT condition

Lagrangian relaxation provides a bound

I Like what we have done in LP duality, the Lagrangian relaxation
provides a bound of the primal.

Proposition 4

L(λ) ≥ z∗ if λi ≥ 0 for all i = 1, ...,m.

Proof. We have

z∗ = max
x∈Rn

{
f(x)

∣∣∣∣gi(x) ≤ bi ∀i = 1, ...,m

}
≤ max
x∈Rn

{
f(x) +

m∑
i=1

λi[bi − gi(x)]

∣∣∣∣gi(x) ≤ bi ∀i = 1, ...,m

}

≤ max
x∈Rn

{
f(x) +

m∑
i=1

λi[bi − gi(x)]

}
= L(λ),

where the first inequality relies on λ ≥ 0.



Operations Research, Spring 2013 – Nonlinear Programming 29 / 38

Lagrangian duality and the KKT condition

Lagrangian duality

I For a given λ ≥ 0, the Lagrangian relaxation provides an upper
bound of the primal.

I It is natural to search for the λ that results in the lowest upper
bound. This defines the Lagrangian dual program:

w∗ = min
λ≥0

L(λ)

I As L(λ) ≥ z∗ for all λ ≥ 0, certainly w∗ ≥ z∗.
I Examples exist show that w∗ > z∗ for some NLPs.
I It can be shown that w∗ = z∗ for all convex programs (under some

mild conditions).
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Lagrangian duality and the KKT condition

Example 1

I Consider the following example

z∗ = max x1 + x2

s.t. x21 + x22 ≤ 8

x2 ≤ 6.

I For this primal program, the
optimal solution is x∗ = (2, 2).

I What is the Lagrangian dual?
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Lagrangian duality and the KKT condition

Example 1

I Lagrangian relaxation:

L(λ) = max
x∈R2

x1 + x2 + λ1(8− x21 − x22) + λ2(6− x2)

for all λ = (λ1, λ2) ≥ 0.

I Some examples:
I L(1, 2) = max

x∈R2
−x21 + x1 − x22 − x2 + 20 = 20.5.

I L(1, 0) = max
x∈R2

−x21 + x1 − x22 − x2 + 8 = 8.5.

I L(0, 1) = max
x∈R2

x1 + 6 =∞.
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Lagrangian duality and the KKT condition

Example 1

I Let’s express L(λ) as a function of λ only:

L(λ) = max
x∈R2

−λ1x21 + x1 − λ1x22 + (1− λ2)x2 + 8λ1 + 6λ2.

I The optimal x is x∗1 = 1
2λ1

and x∗2 = 1−λ2
2λ1

.

I So we plug in x∗1 and x∗2 back to the above program and obtain

L(λ) =
1

4λ1
+

(1− λ2)2

4λ1
+ 8λ1 + 6λ2.

I The Lagrangian dual minλ≥0 L(λ) is thus

w∗ = min
λ≥0

1

4λ1
+

(1− λ2)2

4λ1
+ 8λ1 + 6λ2,

which is another NLP.
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Lagrangian duality and the KKT condition

Example 2

I Consider the primal

z∗ = min x21 + x22

s.t. x1 + x2 ≥ 4

whose optimal solution is x∗ = (2, 2) with
objective value z∗ = 8.

I Lagrangian relaxation with λ ≥ 0 (why nonnegative):

L(λ) = min
x∈R2

x21 + x22 + λ(4− x1 − x2)

= 4λ+ min
x∈R2

x21 − λx1 + x22 − λx2 = 4λ+
x2

2
.

I Note that x∗1 = x∗2 = λ
2 are optimal to the subprogram.
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Lagrangian duality and the KKT condition

Example 2

I Lagrangian duality:

w∗ = max
λ≥0

L(λ) = 4λ− λ2

2
.

I Note that this is a convex program!

I As L′′(λ) = −1 < 0, we apply FOC:

L′(λ∗) = 4− λ∗ = 0 ⇒ λ∗ = 4.

As λ∗ is feasible, it is optimal.

I The optimal dual objective value w∗ = 8 = z∗.

I Moreover, the dual optimal solution allows us to find the primal
optimal solution:

x∗1 =
λ

2
= 2 and x∗2 =

λ

2
= 2.
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Lagrangian duality and the KKT condition

From dual to primal

I Solving the Lagrangian dual may allow us to solve the primal.

Proposition 5

For a “regular” convex program, solving the Lagrangian duality
results in a primal optimal solution.

Proof. Beyond the scope of this course.

I We need some mild conditions to make a convex program “regular”.
While we omit those conditions in this course, all NLPs you see in
this course are “regular”.

I For a nonconvex program, this is not true!
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Lagrangian duality and the KKT condition

The KKT condition

I Now we present an optimality condition for general NLPs to
close this session.

Proposition 6 (KKT condition)

For a ”regular” nonlinear program

max
s.t.

f(x)
gi(x) ≤ bi ∀i = 1, ...,m,

if x̄ is a local max, then there exists λ ∈ Rm such that
I gi(x̄) ≤ bi for all i = 1, ...,m,
I λ ≥ 0, and
I Of(x̄) =

∑m
i=1 λiOgi(x̄),

I λigi(x̄) = 0 for all i = 1, ...,m.
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Lagrangian duality and the KKT condition

The KKT condition

I For a multi-variate function f(x) where x ∈ Rm,

Of(x) =
[

∂f(x)
∂x1

· · · ∂f(x)
∂xn

]T
is the gradient of f .

I Remarks for the KKT condition:
I Condition 1 means x̄ must be feasible.
I Condition 2 means the Lagrangian multipliers should be penalties.
I Condition 3 means the objective function in the Lagrangian

relaxation satisfies the first order condition.
I Condition 4 means “if the constraint is not binding at x̄, the

corresponding shadow price must be 0.”

I Anyway, this will not appear in homework or exams.
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Lagrangian duality and the KKT condition

The story of the KKT condition

I About the discovery of this condition:
I Harold W. Kuhn and Albert W. Tucker are two very famous

mathematicians and economists.
I In 1951, they together published a paper stating the KKT

condition, which was called the Kuhn-Tucker condition at that time.
I However, later scholars found that a master student William

Karush has proved this condition in his master thesis in 1939.
I Starting from then, the condition is called the KKT condition.

I Two things we may learn from this story:
I Do not underestimate what we are doing.
I Sadly, what you are reading (the KKT condition) was discovered 70

years ago, and we cannot even put it in your homework and exam...

I One final remark: The KKT condition is sufficient for convex
programs.
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